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The Number of Huffman Codes, Compact Trees,
and Sums of Unit Fractions
Christian Elsholtz, Clemens Heuberger, and Helmut Prodinger

Abstract—The number of “nonequivalent” compact Huffman
codes of length over an alphabet of size has been studied fre-
quently. Equivalently, the number of “nonequivalent” complete
-ary trees has been examined. We first survey the literature,
unifying several independent approaches to the problem. Then,
improving on earlier work, we prove a very precise asymptotic
result on the counting function, consisting of two main terms and
an error term.

Index Terms—Algorithm design and analysis, codes, equations,
sequences, tree graphs.

I. INTRODUCTION

I N this paper, we study a combinatorial object that has ap-
peared in the literature in several equivalent forms, such as

compact Huffman codes, canonical rooted trees, and level se-
quences. In this paper, we have the following two aims: we first
give a thorough survey of the existing literature, thus unifying
these approaches (Sections II and III).
Second, we count these compact Huffman codes (respec-

tively, canonical rooted trees, level sequences) with an accuracy
that goes much beyond what was previously known. In partic-
ular, the best previously available asymptotic approximation
for the number of binary trees would allow to approximate the
number of objects with giving the first 39% of the bits, whereas
our new asymptotic formula with two main terms achieves an
approximation which gives about 80% of the leading bits. In
the case of -ary trees, we achieve comparable results. Here,
the previous literature only contained an asymptotic result,
but no explicit error term. Moreover, we have implemented
an exact generating function and can compute exact values of
these sequences for large examples.
Section IV contains the statement of themain result, indicated

previously, and the following sections contain the proof.
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II. SEVERAL EQUIVALENT DEFINITIONS

In this section, we list a number of equivalent ways of
defining our main object. This reflects that the same type of
question has been studied from various points of view, inde-
pendent of the corresponding results expressed in a different
mathematical language.

A. Coding Theory

Let a source emit words with probabilities
, respectively. Here, and .

For each word , we assign a codeword of length
, over an alphabet of size . Given the word probabilities
Huffman [22] constructed a code with minimum average word
length . These Huffman codes are prefix free,
and can therefore be decoded instantaneously. Moreover, these
codes can be found efficiently.
A code is called compact if it satisfies the Kraft equality

(II.1)

Let be the maximum word length. When multiplying the
equation by , we observe that in a compact code, the number
of codewords of length is divisible by . Also, if there are two
distinct codewords starting with the same prefix but
then continuing differently, and ,
then all possible symbols must occur at position . In other
words, if a sequence branches, it branches into all possible di-
rections. This is the reason why it is possible to model the sit-
uation by means of a rooted -ary tree, which we do in the fol-
lowing. It is possible to arrive from a given Huffman code at a
solution of (II.1), and vice versa, to arrive from a solution to this
equation at an admissible Huffman code. All Huffman codes
with the same set of word lengths are considered as “equiva-
lent” codes.
This motivates the following two equivalent definitions. The

first is based on Kraft’s equality, and stresses the number theo-
retic properties and was at the origin of Boyd’s [6] work.

Definition 1 (Number Theoretic Definition): Let denote
the number of solutions of the equation

where the are nonnegative integers and .
For more information on other counting functions related to

representations of one as a sum of unit fractions, see [8] and
[11].
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Fig. 1. Rooted tree corresponding to the code
.

Collecting the number of words of the same length (corre-
sponding to in the last definition), one arrives at the following
definition.

Definition 2 (Huffman Sequences): Let and be
positive integers. Let denote the number of sequences of
nonnegative integers

The name “Huffman sequence” comes from the observation
that there is a bijection between distinct Huffman sequences and
nonequivalent compact Huffman codes, and that every Huffman
code can actually be obtained from a given probability vector
by applying the Huffman algorithm. To see the latter, let us
just remark that the Huffman sequence with

can be obtained if we take as probability vector
, the ’s being the values of , each with fre-

quency . As observed previously, is divisible by . Hence,
the first step of the Huffman algorithm combines times the least
probability to one new probability . This reduces the
problem to a smaller one, and inductively we can assume that
the statement is true for all smaller instances. For some further
comments, see Hankerson et al. [20, Exercise 4.3.6, p. 85], and
also in a quite general setup in Hoffman et al. [21, p. 116].

B. Rooted Trees

Let us look at a small example. Let . Let the code consist
of the codewords

The code can be nicely represented by the tree in Fig. 1. This
motivates that counting the number of nonequivalent Huffman
codes is equivalent to counting certain rooted trees.
A rooted tree is a connected cycle-free graph, with one vertex

being distinguished (root). (We will draw it on the top, all other
vertices below). We say the tree is -ary, if all those vertices,
which are not the root, are either a leaf, which is an end of a
path from the root, or have one predecessor and children. All
nonleaves are called inner vertices. Note that the root is also an
internal vertex unless for the trivial tree of order one. In other
words, for the trees we consider, the root has degree , and all
other vertices either have degree 1 (leaf) or have degree .

Definition 3 (Canonical Rooted Tree): A rooted tree is called
canonical if its corresponding prefix code has the property that
the lexicographic ordering of its words corresponds to a nonde-
creasing ordering of the word lengths.

Fig. 2. Canonical tree corresponding to
.

Let us say that two rooted -ary trees are equivalent, if their
number of leaves at distance from the root is the same, for all
. Let denote the number of equivalence classes of -ary
rooted trees with exactly leaves.
Note that each equivalence class contains exactly one canon-

ical tree. Also, if the tree has leaves at distance from the
root, then . This follows inductively, since a leaf at
distance from the root, i.e., which contributes a weight , can
be split into children at distance , of weight each.
The number of “inner” vertices is .
As such a rooted -ary tree corresponds to a compact code,

we also call these trees “compact trees.”
Using Definition 3, one would, for example, replace the code

by the following equivalent code:

The corresponding canonical rooted tree is in Fig. 2. In our
usual way of drawing these diagrams, a canonical tree therefore
has the longer paths as far to the right-hand side as possible.

C. Bounded Degree Sequences and Proper Words

The number of codewords of length , or leaves at level is
of course bounded above by . But there is no absolute bound
on . For a given , let us study another sequence
instead, namely , , see Komlos et al.
[26] and Flajolet and Prodinger [15]. The problem of counting
these sequences is equivalent to the earlier counting problem.
For these sequences, the ratios are bounded, which is why
one may call these sequences “bounded degree sequences.” Fla-
jolet and Prodinger [15] used this definition when they counted
level number sequences of trees.

Definition 4 (Bounded Degree): Let , be integers.
Let denote the number of sequences

For convenience, we will later also use

Again, one can think of as the number of inner
vertices, in the language of rooted trees. A bijection between
the last two definitions is as follows: Given a canonical tree,
we set to be the number of internal vertices at height .
Observe that the internal vertices guarantee that there are at
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most vertices of any type (internal vertices or leaves) on the
next level.
A similar definition is due to Even and Lempel [13].

Definition 5 (Proper Words): Let and be inte-
gers. A word over the alphabet is said to be
a proper word, if it can be written in the form

such that and
holds for all . Note that the sequence

describes the lengths of the runs of consecutive zeros. We note
also that from the representation as a word of length , we im-
mediately get .
To see that Definition 5 is equivalent to Definition 4, we

simply note that the relations and
induce a bijection between the objects counted in the

two definitions. Even and Lempel [13] also give a combinato-
rial interpretation of this bijection (for , but the generaliza-
tion is straightforward): essentially, for each 1 in a proper word,
they replace a leaf of maximum height by an internal vertex
with leaves as successors; for each 0, they replace a leaf of
second-most height by an internal vertex with leaves as suc-
cessors.
We briefly mention some further approaches that investigate

equivalent sequences. Working on a different problem, Minc
[29] reduced it to the study of a binary bounded degree se-
quence, see Definition 4 above. Let be a free commutative
entropic cyclic groupoid. The number of elements of of a
given degree turns out to satisfy the aforementioned relation.
(For a full description, we must refer to [29]). The condition
in Definition 4 looks like a special partition function. Andrews
[2] expanded on Minc’s work, in particular studying generating
functions.
A related problem, on lambda algebras , has been related

to these sequences, see [38].
There are a number of publications that use bounded de-

gree sequences: Brown and Gitler (see [7, Lemma 2.2]) used
them in connection with certain lattices related to Steenrod
algebras. Carlsson (see [10, Proposition 4]) used bounded
degree sequences in his work on the solution of a conjecture
of Segal. Other examples are papers by Bousfeld et al. (see
[5, Sec. 5.3 and 5.5]) and Mahowald (see [28, Section V]) on
Adams spectral sequences. However, it seems, in this work, the
bounded degree sequences are used as a tool, not as an object
of independent study.

D. Example

As an example for these various definitions, let us compute
in the different forms. Using Definition 1

is a complete list of all solutions.
Counting Huffman sequences (Definition 2), we count

where is the number of words of length , or

the number of occurrences of the fraction , . Here, with
, these sequences are

From this, one can write down the compact Huffman codes

The canonical trees (see Definition 3) are the following:

The bounded degree sequences counted in Definition 4 are
, , and . The proper words in Defi-

nition 5 can be found as follows: From the bijection and the
bounded degree sequences above, we find that the are given
by , , and . Therefore, the proper
words are , , and , with ,
for the first word, and , , both for the second and
third words.

III. REVIEW ON RESULTS ON THE GROWTH OF

A. First Elementary Bounds

As far as we are aware of, Bende [4] and Norwood [31] (both
in 1967), were the first to examine the sequence , and they
observed the connection to coding theory and trees. (Minc’s
paper [29] was, of course, earlier but had less interest in the se-
quence itself.) Bende asked about the asymptotic growth. Erdős
in his review of Bende’s paper (Mathematical Reviews) also
wrote it is “desirable” to know the asymptotic.
The early 1970’s saw a considerable number of contributions

to the problem, such as Boyd [6], Even and Lempel [13], and
Gilbert [17].
A trivial upper bound for the number of rooted canonical

trees on vertices is . A much more precise bound is the
number of all trees. The number of binary trees on vertices
is determined by the Catalan numbers
and the number of nonisomorphic trees is asymptotically

, where and ,
see [33].
A trivial lower bound comes from observing that Definition 4

shows that , where is the number of ways of
partitioning into ones and twos. It is known that this is
the th Fibonacci number so that
(for sufficiently large ). Using simple estimates on the complex
roots of equations such as or

, Clowes et al. [12] proved that there are positive constants
, such that holds.
Similarly, a lower bound on can be obtained by parti-

tioning into 1’s, 2’s… and ’s. By means of the generating
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series of and determining a real root of the equa-
tion near 0.5, the corresponding
generalized Fibonacci number can be shown to be about

, where , and is a positive constant. In our
main theorem, we refine an analysis of this type considerably.

B. Improved Elementary Bound on

When evaluating , according to the Definition 2
of Huffman sequences, it suffices to investigate in which
way a solution counted by can be split.
Let denote the set of all sequences counted by

. Generally, can be split into
, whenever . Starting

from a complete set of solutions, i.e., , one only
needs to branch each sequence at the last two positions, in
order to compile a complete set of solutions, . The reason
for this is that all elements of obtained from branching
at any of the earlier positions will be obtained from another
member of by branching at the last two positions.
Before we generally prove this, let us look at an example.
Let us determine , starting from the three elements of

There is no need to consider

as these are obtained otherwise.
To see this generally, let us consider the step from

to : If ,
i.e., , with , we need to check
if will be
reached by branching an appropriate element of
in any of the last two positions only.
Note that

. Hence, one reaches
by branching in the last two po-

sitions only. We may also observe that this gives a trivial upper
bound of .
Using the aforementioned observation of branching at two

positions only, Narimani and Khosravifard [30] describe a re-
cursive algorithm to create all codes counted by .
The first terms of the sequence are

The values of are zero, whenever is even. The non-
trivial part of the sequence for odd , i.e., , starts with

(see also [35]). For general , the sequence is only nonzero for
. For convenience, one examines

instead, see Definition 4. For reference purposes,

TABLE I
VALUES OF FOR AND

we list the first values of the sequences in Table I. In these
tables, one can easily notice the aforementioned observation,

.
The sequences , , and have been included

into the OEIS (sequences A002572, A176485, and A176503).
(The latter two sequences only after the appearance of the
Paschke et al. paper [35].)

C. Asymptotic Growth, Previous Results

Boyd (1975) [6], Komlos,W.Moser and Nemetz (1984) [26],
Flajolet and Prodinger (1987) [15], all independently, gave an
asymptotic

where and . Boyd and Flajolet and
Prodinger additionally gave an error term ,
where Boyd proves , and Flajolet and Prodinger proved
that this even holds for . Boyd and Komlos et al. also
briefly study the case of more general . Boyd mentions that
some error term can be achieved, but does not give an explicit
error term. Komlos et al. state an asymptotic only.
As noted previously: as is positive only for

, one examines instead.
In particular, Komlos et al. observed that with

, as increases. Flajolet and Prodinger [15] also refer to
other areas, where the sequence naturally occurs.
Building upon [15], but not making use of [6] nor [26], Tan-

gora (1991) [38] generalized the results to prime values of .
Another string of references follows from Gilbert’s experi-

mental observation that , see [17]. The
observation was based on the values for , and is relatively
close to the true asymptotic .
However, the aforementioned approximations have been re-
ferred to in the more recent coding literature, see, for example,
[1], [24], [25], [30], [34], and [36].
More recently Burkert (2010) [9] and Paschke, Burkert,

Fehribach (2011) [35] studied and , respectively,
unfortunately with inferior results and unfortunately making no
use of the earlier work.1

D. Numerical Discussion of the Results in Section IV

In the results that we describe in detail in Section IV, we state
a rather precise asymptotic formula, with two main terms, and

1The oversights some decades ago can be easily explained due to the fact that
the results were discovered independently by people with interests in number
theory, coding theory, or graph theory. Boyd’s paper [6] has a number theoretic
title, the Komlos et al. paper [26] a coding title and appeared in a less accessible
journal. Using standard tools such as MathSciNet, Zentralblatt, Google Scholar,
Online Encyclopedia of Integer Sequences (OEIS), we found a considerable
corpus of literature referring to the result that .
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an error term, which is exponentially smaller. As an example,
one finds an approximation

with

Let us evaluate
. While the error analysis of Theorem 7 (below)

gives an error of
, the absolute error is much smaller and, in this case, the

aforementioned approximation predicts the correct value of
. For comparison, Boyd has an error

term of which is in this case larger than the main
term. The best available previous error term by Flajolet and
Prodinger would give (assuming for simplicity the
constant is bounded by 1) an error of about .
As this is a “small” example, let us analyze how many cor-

rect bits the approximation generates,
asymptotically when tends to infinity. As the error term is

, where “ ” denotes the “main term,” and
. In other words, the pro-

portion of correct bits that the main term generates is 38.98%.
Now, let us analyze, for comparison, the quality of the new

approximation

with an error term of . The error term is in terms
of the main term: with

. In other words, now the two main terms generate at
least 80.154% correct bits. Experimentally, the absolute error
is even smaller, but the fact that in the example the ap-
proximation was actually precise may have been somewhat ac-
cidental.
A corollary of our main theorem (Theorem 7) is the

following: As increases, the proportion of correct bits gen-
erated by the main term tends to 1. This can be seen from
Theorem 7 where tends to 2, and tends to 1. In fact,

.

For each fixed , an analysis of this type can be performed,
based on some finite amount of computation. We have worked
out the details for . For larger , our uniform asymptotic
analysis, which includes the size of the constants in terms of ,
is perhaps, from a theoretical point of view, even more valuable.

E. Note on Algorithms and Complexity

The question of the complexity of the evaluation of is
raised by Even and Lempel [13]. They give an algorithm to de-
termine in additions. This appears to be the only al-
gorithmwith a statement about its complexity. Even and Lempel
also state another algorithm giving a complete list of the
elements.

Huffman et al. [21] describe another algorithm to give a com-
plete list.
A tree-based algorithm for generating the binary compact

codes is described by Khosravifard et al. [24]. Narimani and
Khosravifard [30] describe a recursive algorithm to create all
-ary codes of length by those of length .

IV. NEW COMPUTATIONAL AND ANALYTIC RESULTS

We generalize the generating function approach of Flajolet
and Prodinger [15] to the case of arbitrary . In particular, our
Theorem 6 corresponds to their Theorem 2. Although the proof
is similar, we prefer to include it in order to be self-contained
and to include some more details of the proof.
The asymptotic result (our Theorem 7), however, needs more

than a simple generalization: On the one hand, dealing with all
simultaneously needs a careful asymptotic analysis in

with exact error terms. On the other hand, the technical de-
tails have been omitted in [15]. Finally, the second-order term
is completely new. Moreover, for , no explicit error term
was known (in any of the references). So, for , not even
any proportion of digits was known.
In the following, a tree will always be a -ary rooted canon-

ical tree. The set of -ary canonical trees is denoted by . The
number of internal vertices (non-leaves) of a tree is denoted
by . We are interested in the generating function

Here, the sum goes over trees of arbitrary size, and is a vari-
able. The aforementioned expression is an element of the ring
of formal power series. (Later, we evaluate the power series for

, where is the dominant pole, and prove its conver-
gence.)
This generating function can be computed explicitly.

Theorem 6: Setting , we have

The proof of this theorem will be given in Section V. In
Section VI, we give the proof of the following theorem which
gives a very precise asymptotic expression for , based
on the aforementioned generating function. In view of the
numerous asymptotic approximations, we point out that this is
the first result containing two main terms and an explicit error
term.
We used this exact formula for comparing the asymptotic ap-

proximations with the exact values of . Our straightfor-
ward implementation of this formula in Sage (Version 5.3) [37]
easily allows us to compute very large values: For , we
computed the exact values of , using the formal power se-
ries in the range . The program completed in only 135.94
s. For comparison, our asymptotic formula in the same range
took 19.93 s. The exact evaluation using formal power series is
also memory intensive. We stopped the computation at the ar-
gument due to memory constraints of 8 GB.
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TABLE II
VALUES FOR SMALL VALUES OF . STARRED ENTRIES CORRESPOND TO VALUES SATISFYING THE ASYMPTOTIC ESTIMATES OF THEOREM 7. THE VALUES

COULD BE GIVEN WITH MUCH HIGHER PRECISION. THERE IS SOME UNCERTAINTY ABOUT THE LAST DIGIT

Theorem 7 (Main Theorem): For , the following holds:

(IV.1)

Here, and , , are positive real constants
to be specified in the following, and depending on . Here and
below, , , denote real functions with
for all valid values of the indicated parameters.
For , we have

(IV.2)

(IV.3)

(IV.4)

(IV.5)

(IV.6)

(IV.7)

where .
For , (IV.1) holds with (IV.2), (IV.5), and (IV.6)

and the values for , , and given in Table II.
For , (IV.1) holds with (IV.6) and the values for , ,
, , and given in Table II.
For simplicity, the functions can be thought of as

terms. Some of our proofs indeed depend on explicit values of
the error bounds. For this reason, we had to compute absolute
-constants in any case, and decided to include these in the

statement of the theorem.
The asymptotic result focuses on the first and the second ex-

ponential terms and and no effort has been made
to improve the error term : note that for large , it is not
much smaller than the second-order term . For Table II,
the values have been improved by a computer calculation in

comparison with (IV.4), also leading to a stronger value of the
constant in comparison with (IV.7). In principle, this type of
improvement is possible for any fixed as well.
The asymptotic expansions of , , , and can always be

refined by further iterating the fixed-point equations in the proof
of Proposition 10. So, for fixed , we could refine the estimates
for and to a precision of and the estimates for and
to a precision of .

V. GENERATING FUNCTION

This section is devoted to the proof of Theorem 6.
Proof of Theorem 6: In the proof of the theorem, we will

actually consider more refined statistics in order to derive a
functional equation for a more general generating function.
The height of a vertex in a rooted tree is defined to be its

distance from the root. So, the root has height 0. The height
of a tree is defined to be the maximal height of its

vertices.
For a rooted tree , we set to be the number of leaves

of maximum height of .
We will derive a functional equation for the generating func-

tion

i.e., counts the number of leaves of maximal height and
counts the number of internal vertices. By definition, we have

.
To derive the functional equation for , we partition

with respect to the height and consider

Obviously, we have

A tree of height corresponds to exactly trees ,
, of height : arises from by re-

placing of the leaves of maximum height by vertices
with attached leaves. On the other hand, all trees of height

are uniquely described by this process.
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Thus, we have

(V.1)

We have , so summing over all yields

(V.2)

The generating function is certainly convergent for
and , as can be seen from (V.1).

We now keep with fixed and consider everything
as a function of with .We use the abbreviations

and . We rewrite the functional
equation (V.2) as

(V.3)

By iterating (V.3) times, we obtain

for . As holds for all , the
limits

exist and we have

Thus, we obtained

Setting yields

VI. ASYMPTOTICS, PROOF OF THEOREM 7

After some preparatory lemmas, at the end of this section, we
prove Theorem 7.

We will use the following notations in order to work with the
generating function :

The quantities have been defined such that .
The names and refer to their roles as numerator and de-
nominator, respectively.
We intend to work with the finite sums and for fixed

values of , so we need upper bounds for the approximation
errors.

Lemma 8: Let and . Then

(VI.1a)

(VI.1b)

These bounds are decreasing in and increasing in .
Proof: As and is decreasing in ,

we have

which, upon inserting the definition of , yields (VI.1b). The
approximation bound (VI.1a) for the numerator follows along
the same lines; we get an additional factor .

We will also need estimates for the derivative (we re-
call the abbreviation introduced in Theorem 7).

Lemma 9: Let and with ,
where (cf., (IV.4)). Then
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Proof: Let with . Then,
and . We

use standard estimates on logarithms and exponential function
which arise by truncating Taylor series of these functions and
by bounding the truncation error. This results in

(VI.2a)

(VI.2b)

We have

The exponential growth of the coefficients of is
directly related to the dominating pole of . So, we now
investigate the location of the poles of . Essentially, this is
equivalent to finding the zeros of the denominator of .

Proposition 10: Let . Then, there are exactly two poles
and of with , where has been

defined in (IV.4) (or Table II for ).
Both and are simple poles of . The dominant

pole of is asymptotically given by (IV.2) (or Table II
for ).
The residue of at is where is asymptotically

given by (IV.5) (or Table II for ).
The pole is given by (IV.3) (or Table II for ),

the residue of at is , where is given in (IV.6).
Finally, we have

(VI.3)

for all with .
We first outline the proof of Proposition 10; the details follow

below. We rewrite the equation into a fixed-point
equation (cf., (VI.4)). It turns out that the dominant
pole is an attractive fixed point of . Therefore, inserting
preliminary bounds for improves these bounds. After sev-
eral iterations (“bootstrapping”, cf., [19, Sec. 4.1.2]), we get
very precise bounds for . The second pole , however, is
a repellent fixed point of . Inverting the fixed-point equation
yields and is indeed an attractive fixed point
of . However, inverting involves extracting a -st

root, so several branches occur. In order to pick the correct
branch, additional inequalities are required. After establishing
these, precise bounds for are obtained. We repeatedly use
power series estimates in order to get the required inequalities.
In order to sharpen these estimates, we first assume that .

Proof: In the proof of this proposition, some more func-
tions occur. We first allow complex values for the

; it will later turn out that those occurring in Theorem 7
have only real values.
In the following, we consider the case . The remaining

cases are much easier and will be discussed at
the end of this proof. Assume that is a pole of with

for some . As is holomorphic
for , cf., Lemma 8, must be a root of . Using

, we get

which is equivalent to

(VI.4)

Taking absolute values, (VI.1b) yields

(VI.5)

We have

(VI.6)

for . By (VI.2a) and (VI.2b), we have

(VI.7)

Consider now the case . Then, (VI.5)–(VI.7) yield

(VI.8)

We conclude that . So, using now ,
(VI.5)–(VI.7) yield
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and therefore . Inserting this and (VI.7) in (VI.5) now
yields

We conclude that . We now rewrite (VI.4) as

(VI.9)

Inserting in the right-hand side of (VI.9)
yields

We now repeat the process: We insert this estimate on the right-
hand side of (VI.9) and get a better estimate. After a few iter-
ations (and taking care of all implicit constants), we finally get
(IV.2). Inserting the lower and the upper bounds of (IV.2) into

(and taking into account ), we see that
changes sign within the interval, so there is certainly a root
of fulfilling (IV.2).
Inserting this asymptotic expression into and using

Lemma 9, we get

(VI.10)

for . This shows that there is at most one zero of
within the bounds of the asymptotic expression (IV.2): if there
were two, say and , then

which implies . Here, we integrate over the straight
line from to . The estimate (VI.10) also shows that
there can only be a simple root. Thus, we have shown that the
only root of with is a simple zero with as
in (IV.2). The residue (IV.5) follows upon inserting (IV.2) into

. Note that this also shows that the dominant
zero of the denominator does not cancel out against a zero of
the numerator.
Now assume that holds for some with

. Inserting these bounds into (VI.5), we get

(VI.11)

The intersection point with positive imaginary part of the
circle of radius centered at the origin with the circle
of radius centered at 2 is denoted by . We obtain

In particular, we have

(VI.12)

and

(VI.13)

As , we have (after multiplication with )

Solving for yields

As by (VI.12), we obtain

We conclude that

(VI.14)

for some integer with . In particular, we have

which, in view of (VI.13), implies . Thus, (VI.14) simpli-
fies to

We may now repeat the argument a few times to finally obtain

Thus, we have . We have therefore shown that

So, we now assume that for some with
. Repeating the aforementioned steps with

replaced by 0 gives the slightly better bound with as
in (IV.3).
Inserting the real upper and lower bounds implied by (IV.3)

into and taking the error into account
shows that the sign of changes sign in this interval, so
there is a real root of fulfilling (IV.3).
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For the in (IV.3), we get

which implies that there is exactly one simple zero of
with fulfilling (IV.3). By the same argument as earlier, this
is the only zero with . Computing

finally yields the residue given in (IV.6).
We already know that for all with
. We also get . This yields (VI.3).

We now turn to the case . Here, the asymptotic
estimates can be replaced by concrete numbers. In fact, we only
have to find zeros of the denominator, where the infinite series
is truncated and the error is estimated as in Lemma 8. We use
the interval arithmetic built in Sage [37], which uses correct
rounding and therefore keeps track of rounding errors.
We start with the unit square in . We carry out a bisec-

tion process discarding those intervals where no zero can occur.
More precisely, given a square , we compute the image

of the complex interval under the denominator (com-
puting for a suitable using the interval arithmetic and
adding the error obtained in Lemma 8). If zero is not contained
in the resulting interval containing , there is no zero of
in , so can be discarded. If lies outside the circle with radius

, we also discard , because we are not interested in large
zeros of the denominator. Otherwise, we bisect .
This procedure leads to two small intervals (of diameter

) containing all roots of the denominator. Within these
small intervals, we obtained good bounds for the derivative
; so, we can conclude (by the same arguments as in the case

) that there can only be one root in each of these intervals
and that these roots have to be simple. Both of these intervals
intersect the real axis. By computing the signs of at the ends
of the intersection of the complex intervals with the real axis
and observing a sign change, we conclude that the roots are
simple roots. The standard real bisection method is then used
to improve the real bounds.

Using Proposition 10, the proof of Theorem 7 only requires
a standard application of results from complex analysis.

Proof of Theorem 7: This is a consequence of singularity
analysis [14], cf., also [16].
In this simple case, this also follows from Cauchy’s integral

formula and the residue theorem: By Cauchy’s integral formula,
we have

Shifting the line of integration to and taking the
residues at and into account, the residue theorem (and
Proposition 10) yield

Estimating the latter integral using Proposition 10 finally gives
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