
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 1, JANUARY 2013 635

On the Security of Pseudorandomized
Information-Theoretically Secure Schemes

Koji Nuida and Goichiro Hanaoka

Abstract—In this paper, we discuss a naive method of random-
ness reduction for cryptographic schemes, which replaces the
required perfect randomness with output distribution of a com-
putationally secure pseudorandom generator (PRG). We propose
novel ideas and techniques for evaluating the indistinguishability
between the random and pseudorandom cases, even against an
adversary with computationally unbounded attack algorithm.
Hence, the PRG-based randomness reduction can be effective
even for information-theoretically secure cryptographic schemes,
especially when the amount of information received by the ad-
versary is small. In comparison to a preceding result of Dubrov
and Ishai (STOC 2006), our result removes the requirement of
generalized notion of “nb-PRGs” and is effective for more general
kinds of protocols. We give some numerical examples to show
the effectiveness of our result in practical situations, and we also
propose a further idea for improving the effect of the PRG-based
randomness reduction.

Index Terms—Information-theoretic security, pseudorandom
generator (PRG), randomness reduction.

I. INTRODUCTION

A. Backgrounds

R ANDOMNESS is an essential resource for cryptog-
raphy, and is one of the most important ingredients of

applications in information theory, e.g., efficient computation
by probabilistic algorithms. Most of the existing schemes are
designed by basing on an (implicit) assumption that perfect
random sources are freely available. However, in practice
such perfect (or even approximately perfect) sources are either
not available, or available but cost consuming. Hence, it is
necessary to relax the requirements for quality and amount
of randomness used in the schemes. Some preceding works
have shown that, although imperfect random sources (entropy
sources) can be used for noncryptographic schemes and some
kinds of cryptographic schemes [10], [12], [19], [25], [29],
[30], it is essentially impossible for many cryptographic pur-
poses to replace the perfect random sources with imperfect
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ones without diminishing quality of the scheme [6], [12], [20].
Hence, the possibility of relaxing the requirements for quality
of randomness is limited; therefore, it is significant, especially
for cryptographic purposes, to relax the requirements for the
amount of randomness, i.e., to perform randomness reduction
or derandomization.
There have been proposed many randomness reduction

techniques, such as [1], [3], [8], [16], and [24], which are in-
formation-theoretically indistinguishable, i.e., the result of the
randomness-reduced protocol is statistically indistinguishable
from that of the original protocol. However, those techniques
are scheme-dependent, and the negative results mentioned in
the previous paragraph suggest that information-theoretically
indistinguishable universal randomness reduction techniques
using a single (imperfect) random source are unlikely to exist.
(In the aforementioned impossibility statement, the condition
of using only one source is important, since it is known that
two independent weak random sources can be used to extract
almost perfect random bits [10], [26]. Here, we emphasize that
the latter preceding results require weak but information-the-
oretic random sources, i.e., their randomness is measured
regardless of the distinguisher’s computational complexity.)
On the other hand, there exists a well-known computationally
indistinguishable universal randomness reduction technique,
which is to replace the required randomness with outputs of
(computationally) secure pseudorandom generators (PRGs).
For an intermediate situation, Dubrov and Ishai introduced

in their work [11] a generalization of PRGs, called pseudo-
random generators, that fool non-Boolean distinguishers (nb-
PRGs, in short). They gave a concrete example of nb-PRGs
under a certain computational assumption. By the definition
of nb-PRGs, for any efficient algorithm with sufficiently small
output set, the algorithm with uniform input distribution and
the one with input distribution replaced with the output of an
nb-PRG have statistically indistinguishable output distributions.
Hence, information-theoretically indistinguishable randomness
reduction for such a randomized algorithm is possible by using
an nb-PRG under the corresponding computational assumption.
More precisely, the statistical distance between the output distri-
butions in random and pseudorandom cases is bounded in terms
of hardness of the underlying computational problem. They also
applied nb-PRGs to information-theoretically indistinguishable
randomness reduction of private multiparty computation pro-
tocol (see [11, Section 6.2]). Hence, their technique is also ef-
fective for some kinds of cryptographic protocols.
However, there are some drawbacks of the aforementioned

randomness reduction technique using nb-PRGs for crypto-
graphic protocols, as follows. First, the security evaluation

0018-9448/$31.00 © 2012 IEEE



636 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 1, JANUARY 2013

method of Dubrov and Ishai in [11] depends on the property of
the considered protocol that calculation of a secret protected by
the protocol does not use the randomness to be replaced with
nb-PRGs, and this property fails for many cryptographic pro-
tocols. Second, the construction of nb-PRGs presented in [11]
is based on a certain nonstandard computational assumption,
and no nb-PRGs based on standard assumptions (e.g., hardness
assumptions of decisional or computational Diffie–Hellman
problem) have been obtained so far. (More precisely, in fact it
has been mentioned in [11] without proof that any secure PRG
in usual sense is also an nb-PRG with suitably chosen param-
eters. However, in the implication the overhead in the bounds
of advantages of distinguishers frequently becomes heavy in
practical settings; therefore, the implication is not efficient. See
Proposition II.1 and a subsequent remark for details.) More-
over, in contrast to the notion of usual PRGs that is well known
even for nonexperts of cryptography, the notion of nb-PRGs
seems not yet popular even for experts of cryptography. Hence,
it is worthy to investigate a similar information-theoretically
indistinguishable randomness reduction technique based on
usual (secure) PRGs.

B. Our Contributions

In this paper, we reveal that information-theoretically indis-
tinguishable randomness reduction is possible by using secure
PRGs in a naive manner. More precisely, we consider the situ-
ation of randomness reduction that (a part of) the required per-
fect randomness for a cryptographic protocol is replaced with
output of a PRG whose indistinguishability is based on an un-
derlying hard computational problem. Then, our result implies
that the difference of success probabilities of any attack by an
adversary (within the scope of the security definition of the orig-
inal protocol) between the random and pseudorandom cases is
bounded by a function of both of hardness of the underlying
problem for the PRG and, roughly speaking, the amount of in-
formation used for the attack by the adversary. (We notice that,
to make the bound of difference of attack success probabilities
sufficiently small, it is actually required that the amount of in-
formation received by the adversary does not exceed a certain
threshold calculated from parameters and other characteristics
of the protocol.)
A remarkable characteristic of this result is that the bound

is independent of any property, including computational com-
plexity, of the attack algorithm. This means that our result can
be applied even to cryptographic schemes with information-the-
oretic security. Moreover, it is also noteworthy that, intuitively
speaking, the computational environment in which the hard-
ness of the underlying problem for the PRG is evaluated can be
chosen independently of the adversary’s computational environ-
ment. A typical example of the property is that the randomness
reduction can be indistinguishable for quantum adversary even
when the underlying problem for the PRG is classically hard but
quantumly easy (e.g., integer factoring and discrete log).
In comparison to the preceding result of Dubrov and Ishai

[11] mentioned in Section I-A, our result has the following ad-
vantages. First, our result uses PRGs in a usual sense instead of
the generalized and less popular notion of nb-PRGs. (In fact, we
can prove that secure PRGs with sufficiently long seed lengths

are also nb-PRGs, as mentioned in [11, Observation 3.1]; see
Proposition II.1 in Section II.) As a result, our randomness re-
duction technique can be based on any standard security as-
sumption (such as classical hardness of integer factoring or dis-
crete log) instead of nonstandard assumption used in [11] for
constructing concrete nb-PRGs. Second, our result is applicable
to more general kinds of cryptographic schemes than [11], since
it is allowed that calculation of a secret protected by the protocol
does use the randomness to be replaced with PRGs (it may not
use the randomness in the case of [11]; see the discussion in
Section III-B). We notice that our result requires a condition
that, intuitively speaking, the amount of information used by an
adversary for the attack is sufficiently small (such a condition
was also required in the case of [11]). However, the numerical
example given later shows that our result is still applicable to
some existing schemes; sufficiently indistinguishable random-
ness reduction is possible by using a PRG whose seed size is
significantly shorter than the size of the original required ran-
domness.
In order to explain the essence of our main result that covers

various situations, in this and the next paragraphs we present
an example of our result applied to an intuitive special case. In
the example, we consider a function whose output
value is to be protected. An adversary tries to make a guess
about the value . Now we suppose that the adversary can
make use of some information on the input of , which is
calculated from by a certain function where
denotes the set of possible information received by the ad-

versary (hence ). One may imagine that the information
has “leaked” from the storage of the input and the func-

tion represents the information leakage. Let
denote an attack algorithm of the adversary, where denotes
the set of possible guesses derived by the attack. Moreover, we
introduce an auxiliary algorithm that
evaluates whether the adversary’s guess about

is “correct” or not .
Then the success probability of the adversary’s guess is the
probability that , where we define
by . This process is represented
by the upper half of Fig. 1. Here, we assume that the algorithms
, , and are all efficient, while we do not have any as-
sumption on the computational complexity of (denoted by a
circled arrow in the picture).
Now suppose that the function is secure in the sense that

when the input of is chosen uniformly at random, the
adversary’s success probability is bounded by a suffi-
ciently small value. We would like to bound, by a sufficiently
small value, the difference between and the adversary’s
success probability in the case that the input of is
given by a PRG (with output set ). If the adversary re-
ceives no information (i.e., ), then even the computa-
tionally unbounded attack algorithm can nothing better than
the perfectly random case. On the other hand, if the adversary
receives much information (i.e., is too large), then the adver-
sary would be able to break the pseudorandomness of and to
make a much better guess than the perfectly random case. Now
our result provides a quantitative argument for the separating
point of those two extreme situations. Given any elements
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Fig. 1. Flowchart for input leakage-resilient functions against unbounded at-
tack algorithms (upper half) and the corresponding auxiliary flowchart (lower
half).

and , we introduce an auxiliary algorithm
such that

if and
otherwise

(1)

(see also the lower half of Fig. 1). Our result tells us the way
of deriving appropriate algorithms such as from the current
situation (see also Section III-C). Note that is composed of
efficient algorithms only, not involving the attack algorithm .
In this situation, if the complexity of is bounded by a constant
and the advantage for -time algorithms of distinguishing the

outputs of from perfectly random outputs is bounded by ,
then our result implies that

Therefore, we have a lower bound of the allowable amount of
information received by the adversary.
Our evaluation technique is effective especially in the situ-

ations that the information received by the adversary is suffi-
ciently small. A typical case is that a small piece of the ran-
domness, which is to be replaced with pseudorandomness, is
distributed to each of a large number of players for a protocol,
including a limited number of adversaries. Such applications
include parallel computation over honest-but-curious modules,
secret sharing [4], [27], broadcast encryption [14], traitor tracing
[2], [9], [17], and collusion-secure fingerprint codes [5], [28].
In later section, we present a numerical example of applications
of our result to randomness reduction of information-theoreti-
cally secure existing schemes, by using a collusion-secure code
in [21] and a secure PRG in [13] based on the DDH assumption.
For the parameter choices in the example, we see that the seed
lengths of the PRG which are approximately 75% to 0.0002%
of the original perfectly random bits suffice to bound the differ-
ences between random and pseudorandom cases by sufficiently
small values. This shows that our result is indeed effective for
existing cryptographic schemes.
Moreover, the observation for the case of collusion-secure

codes provides a novel technique to improve the effect of ran-
domness reduction. The technique is to divide the randomness
that is the target of the randomness reduction into several pieces,
in such a way that only a smaller component of the information
received by the adversary depends on each piece of the random-
ness. Then, we replace each piece of the randomness with output

of an independent PRG, and we evaluate the total difference
between random and pseudorandom cases by using “hybrid ar-
gument.” By applying the technique to the aforementioned ex-
ample of collusion-secure codes, we see that in the setting, the
total seed length of the independent PRGs is reduced to approx-
imately 29 times as short as the case of the plain randomness
reduction. This shows that our proposed technique is also effec-
tive.

C. Organization of the Paper

This paper is organized as follows. Section II summarizes
some definitions, notations, and terminology used throughout
this paper, and mentions some properties. In Section III-A,
we introduce a certain kind of diagram expressions of cryp-
tographic procedures and some relevant notions, which play
a key role in our main theorem. Section III-B is devoted to
a toy example of our main theorem in order to motivate us
to introduce further auxiliary definitions in later sections and
to help understanding of the main theorem. In Section III-C,
we introduce an auxiliary diagram expression of an algorithm
associated with the original cryptographic scheme, which also
plays a central role in our main theorem. Section III-D presents
the main theorem of this paper and its proof. Section III-E col-
lects some remarks on our result. In order to show a numerical
example of the main result, in Section IV-A we summarize
some definitions and properties for an existing PRG given
in [13]. In Section IV-B, we summarize some definitions for
collusion-secure codes given in [21], which are an example
of information-theoretically secure schemes. In Section IV-C,
we propose a technique to improve the effect of randomness
reduction as mentioned in the final paragraph of Section I-B.
Then in Section IV-D we give the numerical example based
on the results in previous sections. Technical details omitted
in Section IV are supplied as the appendix. Finally, Section V
concludes this paper.

II. DEFINITIONS AND NOTATIONS

In this section, we summarize some definitions and notations
used throughout this paper. In this paper, any algorithm is prob-
abilistic unless otherwise specified. Let denote the uniform
probability distribution over a finite set . We often identify
a probability distribution with the corresponding random vari-
able. We write to signify that is a particular value
of a random variable . Let denote the set of nonnegative
real numbers. Put . For any element of a set , let
denote an algorithm that takes an input from and out-

puts 1 if and 0 if (i.e., that computes Kronecker
delta).We identify the set of integers modulo naturally with

. Moreover, we identify the set of -bit se-
quences with via binary expressions of inte-
gers. Let denote the bit length of an integer .
To explain the results of this study, here we clarify some ter-

minology used in this paper.

Definition II.1: A complexity measure is a function
on a set of algorithms that assigns to each

algorithm its complexity .
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Definition II.2: Among computational assumptions for se-
curity proofs, a computational power assumption means an as-
sumption of the following type: “the adversary cannot solve a
specified computational problem by a practical computational
cost (e.g., computing time).” On the other hand, a computa-
tional hardness assumption means an assumption of the fol-
lowing type: “the complexity of an algorithm (in an explicitly
or implicitly specified underlying set of algorithms) that solves
a specified computational problem is lower bounded by a sig-
nificantly large value.”
In Definition II.1, the “complexity” may take various mean-

ings depending on the context, such as time complexity on a
fixed turing machine, circuit complexity with a fixed set of fun-
damental gates, average- or worst case running time on a fixed
real computer, or space complexity. An important point is that
a complexity measure depends on the choice of the computa-
tional environment in which each algorithm is executed. For ex-
ample, when the computer is replaced with a new one which is
twice as fast as the original, the complexity measure is also re-
placed with the one whose value is twice as small as the original.
Therefore, any speedup of the adversary’s computation induced
just by an improvement of its computational environment (e.g.,
the number of computers for parallel computing), not by an al-
gorithmic improvement, can be interpreted as a change of the
complexity measure.
For Definition II.2, we notice that most of the existing cryp-

tosystems that provide computational security are in fact based
on computational power assumptions (in the aforementioned
sense), e.g., assumption on infeasibility for the adversary of fac-
toring 1024-bit RSA composites. On the other hand, our result
in this paper (Theorem III.1) is based on a computational hard-
ness assumption.
Let be a PRG with seed set and output

set . In this paper, we deal with exact (concrete) security
rather than asymptotic security; therefore, is a single algo-
rithm rather than a sequence of algorithms with various seed
lengths. The following notion of indistinguishability for PRGs
is a natural translation of the conventional notion to the case of
exact security and has appeared in the literature (except slight
modification mentioned later), e.g., [13, Definition 1]:

Definition II.3: An algorithm is called a
distinguisher for a PRG . For any distinguisher for , its
advantage is defined by

Definition II.4: Let be a complexity
measure and a nondecreasing function. A PRG is
called -secure with respect to if for any distinguisher
for that belongs to , its advantage is bounded by

An instance of -secure PRGs was given by Farashahi et
al. [13] under DDH assumption, which is used in our numerical
examples below, where the function is estimated in terms
of complexity of the best known classical algorithm to solve the
DDH problem (see Section IV-A for details). Note that there is a

general tendency such that when the basic structure of the PRG
is not changed but the seed length is increased, the PRG will be
more indistinguishable, implying that the value of the function

in Definition II.4 will be smaller.
We also recall the definition of statistical distance.

Definition II.5 (e.g., [15, Appendix D.1.1]): For two proba-
bility distributions , over the same finite set , their sta-
tistical distance is defined by

Note that for any (proba-
bilistic) function . We also notice that the definition of statis-
tical distance implies the following fact, which shows that any

-secure PRG with respect to is also an nb-PRG with
suitable parameters (cf., [11, Observation 3.1]).
Proposition II.1: Let be an -secure

PRG with respect to . Let be an effi-
cient algorithm. Assume that, for each , the algorithm

satisfies that and that
for a common constant . Then

.
Proof: We have

We have for each
by the assumption on , while since

and is a nondecreasing function. Hence,
we have

Therefore, Proposition II.1 holds.
We notice that in practical applications of nb-PRGs, it is ex-

pected that the size of the output set of a distinguisher for an
nb-PRG is frequently large, in which case the parameter
for in the aforementioned proposition should be extremely
small. This means that the implication of nb-PRGs from usual
PRGs in Proposition II.1 is practically inefficient.

III. FORMAL DESCRIPTION OF THE MAIN RESULT

A. Flowchart Expressions of Procedures

From now, we describe the idea of our main result of this
paper. For the purpose, we need to introduce a formal expression
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Fig. 2. Example of a flowchart and the corresponding algorithm.

of the flow of a protocol under consideration. This will be done
by using some diagrams (directed graphs) as explained below.
First, we give a toy example to give an intuition for the di-

agram expression of a protocol or an algorithm. The diagram
in Fig. 2 is a flowchart of an algorithm computing the value

from inputs , and
. (The parentheses in Fig. 2 signify examples of inputs

and intermediate values in the algorithm; for example, we set
in the example.) The two arrows toward

the vertex “ ” represent the addition
which is performed first. Then, the two arrows toward “ ” rep-
resent the multiplication which is performed
secondly. The entire calculation is expressed as
the concatenation of these two operations, which corresponds to
the diagram in Fig. 2.
In order to generalize the aforementioned toy example to

more complicated protocols, we introduce some notations and
terminology. In what follows, we assume, unless otherwise
specified, that any directed graph with vertex set
and edge set is finite (i.e., , ), acyclic (i.e., having
no directed cycles), and simple (i.e., having no parallel edges).
Let denote the set of predecessors of
in , namely . Let
and denote the sets of sources (i.e., vertices with no

predecessors) and of sinks (i.e., vertices that are predecessors
of no vertices) of , respectively. In the setting, we give the
following definition.

Definition III.1: In this paper, a flowchart signifies a tuple
satisfying the following conditions.

1) is a directed graph.
2) To each vertex a finite set is associated;

.
3) To each an algorithm is associated, where
the output set of is and the input set of is the
product of the sets over all ;

.

Here, for a subset of , denotes the product of the
sets over all . In the case of Fig. 2, we set to be a
directed graph with vertex set and four edges

, , , and . We put ,
, and (we omit the concrete choices of

the sets and in Fig. 2). We have , and the
algorithms and correspond to the addition and
multiplication given above, respectively.

In a manner similar to the expression of the calculation
by Fig. 2, we associate with each flowchart an algo-

rithm as follows.

Definition III.2: Let be a flowchart. We
define an algorithm with input set and output set

, in the following inductive manner. Suppose that an el-
ement is given for each as input for the
algorithm . Then, when an element has been de-
termined for every predecessor of a vertex but

has not been determined, an element is deter-
mined as the output of the algorithm with input .
Finally, outputs the tuple of elements with

.
The expressions of algorithms introduced by the aforemen-

tioned definitions will be used throughout this paper. More
precisely, not only a protocol under consideration but also the
process of security evaluation of the protocol, including the
attack model, will be represented by using flowcharts.

B. Motivating Example of the Main Result

Here, we focus on an example of our main result mentioned
in Section I-B (see Fig. 1), and give the statement and its proof
specialized to this situation. It aims at motivating our defini-
tion of an “auxiliary flowchart” associated with each flowchart,
which will be introduced below.
Recall that the upper half of Fig. 1 expresses a toy example

of an attack model and security evaluation of computation of
a function with private output. The flowchart representing
the whole process is defined by using a directed graph with

, where and we identify each
vertex with the corresponding set in the collection
. The edges of are , , ,
, and . We have , ,

, , , and
. Now the attack success probability

in the situation is equal to the probability that the algorithm
defined from the flowchart as in Definition III.2 outputs

1 when the input is chosen from uniformly at random;
.

Let denote the attack success probability in the case
that the input is generated by a PRG ;

. Our aim here is to give
a bound of the difference . Note that the
difference is equal to the advantage of a “distin-
guisher” for . By virtue of the observation, if the attack
algorithm as well as the other algorithms in the flowchart
is computationally bounded, then the algorithm will

also be computationally bounded and the aforementioned dif-
ference can be immediately bounded by using an -secure
PRG with respect to satisfying . However,
in the setting of information-theoretic security, the attack algo-
rithm is not necessarily computationally bounded; therefore,
the aforementioned straightforward argument does not work.
To obtain an effective bound of the aforementioned difference

regardless of the computational complexity
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of , we introduce a novel mathematical trick explained below.
For any random variable on the input set , we have

Now for each and , we have

where is the algorithm defined in (1). This implies that

Therefore by triangle inequality, we have

Here, the auxiliary algorithm is regarded as a distinguisher
for . An important fact is that the distinguisher for is no
longer relevant to the attack algorithm ; therefore, its advan-
tage can be effectively bounded even if the attack algorithm
has unbounded computational complexity.
If the PRG is -secure with respect to and we

have and the quantities have a common
upper bound for all and , then the advantages

also have a common upper bound ; therefore,

We emphasize again that the resulting bound for the difference
is not relevant to the computational com-

plexity of the attack algorithm (on the other hand, the bound
depends on the size of the input set of the attack algorithm
; therefore, should be sufficiently small in order to make the

bound effective).
The aforementioned auxiliary algorithms are also ex-

pressed by using flowcharts in the following manner. For each
, we have

Now note that the event is equivalent to that the
output of satisfies , where

denotes an algorithm that outputs 1 if and only if the input
is (i.e., that computes Kronecker delta). By using this notation,
we have

where denotes an algorithm that computes the log-
ical AND of two input bits. This equality implies that

, where is the flowchart corresponding to
the lower half of Fig. 1. We emphasize that the resulting flow-
chart does not involve the attack algorithm , which allows
the algorithm to have low computational complexity
even if the attack algorithm is computationally unbounded.
Summarizing, our novel mathematical trick is to “factor

out” the (possibly computationally unbounded) attack algo-
rithm from the original flowchart; then an upper bound for the
difference of the attack success probabilities in random and
pseudorandom cases can be given in terms of the advantage of
a distinguisher defined by the resulting (somewhat modified)
flowchart, which does no longer involve the attack algorithm.
Our main result of this paper says how to construct such an
auxiliary flowchart by “factoring out” the attack algorithm in
more general settings.
Here, we notice that the technique to evaluate the difference

of random and pseudorandom cases by the preceding result of
Dubrov and Ishai [11] using nb-PRGs is essentially not effective
in the aforementioned case. Roughly speaking, an nb-PRG is a
PRG such that even if the output set of a distinguisher for is
not (i.e., outputs more than one bits), the statistical dis-
tance of the output distributions of between random and pseu-
dorandom cases is effectively bounded provided the output set
of is not too large. To apply their randomness reduction tech-
nique using the nb-PRG , first we replace the uniform random
variable on with the output of , and then we must find a de-
composition of the algorithm of the form
such that may have unbounded complexity but has bounded
complexity and output set of bounded size. (If such a decompo-
sition is found, then the output distributions of , hence those
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of , in random and pseudorandom cases have a sufficiently
small statistical distance, as desired.) However, in the case of
Fig. 1 it is essentially impossible to find such a decomposition
of . Indeed, the possible choices of the efficient are the
followings: , or (the
latter being trivial). In any case, the output set of includes ei-
ther or , which should not be too small to make the original
function secure in the random case (if or is too
small, then the success probability to guess the output of
cannot be negligibly small). Hence, the preceding technique

in [11] is not effective for this example, which means that our
result improves the preceding result significantly.

C. Definition of the Auxiliary Flowcharts

From now, we give a generalization of the construction of
auxiliary flowcharts associated with a flowchart in the
previous example. We suppose that a flowchart under con-
sideration satisfies that for every
(note that the example discussed in Section III-B satisfies the
requirement). Moreover, we specify a subset and
a source of the directed graph underlying the flow-
chart . Here, a choice of intuitively means that we evaluate
the difference of some behavior of the algorithm between
the case that a part of the input is chosen from uniformly
at random and the case that it is chosen from by using a
PRG, where the way to choose the remaining part of the input is
not changed (in the example in Section III-B, corresponds to
the set ). On the other hand, a choice of intuitively means
that every algorithm with will be “factored out” from
to make the auxiliary flowcharts; therefore, these algorithms
may have unbounded computational complexity (in the ex-

ample in Section III-B, consists of the vertex corresponding
to the set ).
We need some more definitions. First, let be the set of all

such that there is a path in
from to which does not contain any vertex belonging to .
By the definition, we have and the restriction of to
the vertex subset has as the unique source (in particular,

). Intuitively, any vertex in not belonging to
will not be affected by the change of the way to choose an

element of . Now we define

In the example in Section III-B, the set consists of the vertices
other than , consists of , and consists of (see below
for a more “generic” example).
Recall that in the construction of an auxiliary flowchart in the

example in Section III-B, the output set of was replaced
with a singleton for an arbitrary element , while the
input set of was followed by a Kronecker delta algorithm
with an arbitrary element . Then, two output sets

were combined by the logical AND function to make the
sink unique in the resulting flowchart. We give a generalization
of the construction. First, we introduce a symbol for each

, and put which will corresponds to

the output sets of the Kronecker delta algorithms. Second, we
introduce another symbol that will be the unique sink of the
resulting directed graph. Now the new vertex set is defined by

where denotes the disjoint union. The new edge set is de-
fined by

We define a new directed graph by the pair . A direct
argument shows that has the source set
and the unique sink , and we have and

for every .
The construction of the remaining components of the new

flowchart depends on a collection of specified elements
for . First, we define the sets for

in the following manner: we put for each ,
for each , and for each
. Second, for each , let be the same

algorithm as but each component of its input chosen from the
set with (if exists) is specialized to the
constant value . For each (where ), we
put where is the Kronecker delta algo-
rithm associated with the element as in Section III-B. Finally,
for the remaining nonsource vertex of , let be an algo-
rithm, with input taken from the product of the sets over

, that outputs 1 if all components of the input
are 1 and outputs 0 otherwise (i.e., the logical AND operation).
Thus, the new flowchart is defined, where

and . One can verify that in the example
in Section III-B, our definition of coincides with by set-
ting and . Note that for the algorithm ,
all of the components of the input other than

are specialized to the constant values ; therefore,
essentially has input set and output set
(i.e., we can regard as a distinguisher for a PRG used for
generating an element of ).
Here, we give an example to help understanding of the afore-

mentioned construction. The upper half of Fig. 3 shows an ex-
ample of a “generic” flowchart , where denotes a copy of

. For simplicity, here we identify each vertex of the
graph with the corresponding set ; the same identification
will be applied to other cases as well, unless some ambiguity
occurs. We put . In the figure, the three circled arrows
signify that the corresponding algorithms may have unbounded
computational complexity (which should be “factored out” to
construct an auxiliary flowchart). Hence, we let consist of the
terminal vertices of the circled arrows; . Then
by the definition, we have
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Fig. 3. Example of “generic” flowchart and its auxiliary flowchart.

Let the symbols and correspond to the sets and ,
respectively; therefore, is identified with . On the
other hand, let the symbol correspond to the set .
To obtain the edges of , we start with the subgraph of re-

stricted to the vertex subset , and we add the arrows in from
a vertex in to a vertex in (three arrows in total), the arrows
from some to (two arrows in total), and the ar-
rows from some vertex in to (three arrows
in total). Thus, we obtain the flowchart as in the lower half of
Fig. 3, where (according to the definition) each set
in the flowchart is replaced with a singleton for a spec-
ified element . As mentioned previously, the corre-
sponding algorithm is essentially an algorithm with input
set and output set .

D. Main Theorem

From now, we present our main theorem formally by using
the aforementioned definitions. Here, we introduce some nota-
tions. Given a flowchart and a collection of
random variables on the sets , let
denote the output distribution of the algorithm with input
given by the random variables . Let denote a col-
lection of copies of . Then, our main theorem is described
as follows.

Theorem III.1: Let be a complexity mea-
sure. Let be a flowchart such that for every

. Let and . Let
be a PRG with output set . Let
be a collection of random variables on such
that is uniformly random, and let be
obtained from by replacing with the random variable

given by the output of for uniformly random seeds. As-
sume the following.
1) is -secure with respect to .
2) There exists a constant such that for every collection
of elements for , the corresponding
flowchart satisfies that and

(see Section III-C for the definition of and choices of
and ).

Then, we have

Proof: Given elements of , we define
an algorithm with input set and output set

in the following inductive manner.
1) Set to be the given input for .
2) For each , set .
3) If and has been determined for every

but has not been determined, then set
. Repeat the process until is

determined for every .
4) Finally, output .
Note that is determined for every by repeating the
process in Step 3. Indeed, assume contrary that some cannot
be determined, and we choose such a that is closest to
sources in . Then, we have ; therefore,
every with can be determined by the choice
of , while cannot be determined. This is a contradiction.
Hence, every is determined; therefore, the algorithm is
well defined (it is shown by induction that the calculation of the
elements is independent of the order of choices of vertices
). Let be the collection of random variables obtained by
removing from , or equivalently, by removing from

; namely . We define a probability
distribution over in the same way as
and .
For simplicity, given elements , , we write

and for ;
and for ; and

and for
. Put . Then by the definition

of , we have

By factoring out some terms, the last value is equal to

(2)

(note that for every ; therefore,
the terms with can indeed be factored out).
Wewould like to calculate the sum in the parenthesis in (2) for

given elements . First, note that
for every ; therefore, the values in
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the sum depend on the elements . Second,
we have

where (disjoint union). Hence, given
elements , we have

By the definition of , the last value is equal to

where the algorithm is corresponding to the given elements
.

By substituting the aforementioned equality for (2), we have

(3)

where and (note
that ).
Now we would like to calculate the sum in the parenthesis on

the right-hand side of (3) for given elements
such that for all . First, note that

for every ; therefore, the values in the sum
depend on the elements . Second, we have

(where the right-hand side is disjoint union). Hence, for given
elements such that for all

, we have

By definition of the algorithms , the last row is equal to

Moreover, by the definition of , the last value is equal to

where the flowchart is corresponding to the given elements
.

By substituting the aforementioned equality for (3), we have

(4)

The same argument for instead of implies that

(5)

By using (4), (5), and triangle inequality, we have

(6)
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By the assumption, we have , and
; therefore,

Since is -secure with respect to , the assumption on
implies that

(recall that is a nondecreasing function). By substituting
these for (6), we have

Note that the value in the last row
does not depend on the elements . Since

, the last sum is equal to

By using the relation

it follows that

Hence Theorem III.1 holds.
For practical applications, we consider the situation that an

attack by an adversary for a protocol “succeeds” if and only
if every component of output of the algorithm is 1. We
assume that an element of is originally given by a per-
fect random source and we would like to replace the perfect
source with output of the PRG . In this setting, the quantity

is the dif-
ference of the adversary’s attack success probabilities between
random and pseudorandom cases. Now, we choose as the set
of all vertices corresponding to the output sets of the adversary’s
attack algorithms. Then, each vertex in corresponds to (a part
of) the set of information received by the adversary. In this case,
it is an important property that, by the definition of , the algo-
rithm does not involve any attack algorithm of the adver-
sary. Hence, the complexity of can be effectively bounded
even if the attack algorithms have unbounded complexity; there-
fore, the assumption for Theorem III.1 can be indeed satisfied.

By Theorem III.1, the difference between random and pseudo-
random cases is bounded well when the product of sizes of the
sets is sufficiently small, which means intuitively
the situation that the amount of information received by the ad-
versary is sufficiently small. Moreover, the complexity mea-
sure can be chosen independently of the adversary’s at-
tack algorithms; therefore, the bound of the difference between
random and pseudorandom cases given by Theorem III.1 is in-
dependent of the adversary’s computational environment (for
example, the adversary may use quantum computers even if the
complexity measure is according to classical computa-
tion).

E. Miscellaneous Remarks

Here, we collect some remarks on our result.
1) A frequently asked question on our result: Why the ad-
versary cannot recover the presently used seed of the just
computationally secure PRG by using algorithms with
unbounded complexity (which would break the proven
indistinguishability between random and pseudorandom
cases)? Answer: Our result requires the property of the
situation that the set of possible information received by
the adversary is sufficiently small. In such cases, the infor-
mation actually received by the adversary is too scanty to
recover the seed, even though the adversary can perform
powerful computation.

2) Our result may provide a significant insight for randomness
reduction of not only protocols with information-theoretic
security, but also those with computational security. For
instance, when the considered computationally secure pro-
tocol is postquantum (i.e., secure against quantum adver-
saries), our result shows that indistinguishable randomness
reduction is still possible even by using a PRG whose un-
derlying computational problem is easy for quantum com-
puters. The reason is that the indistinguishability of the
PRG is evaluated with respect to a fixed complexity mea-
sure that is independent of the adversary’s (quantum)
algorithm; therefore, may be classical.

3) Our result gives a bound of the difference of security be-
tween random and pseudorandom cases, which depends
on computational complexity of the considered protocol.
This means that the efficiency of the protocol contributes
directly to the security level, which is a rare phenomenon.
Indeed, in usual situations efficiency of the considered pro-
tocol contributes just indirectly to the security level, e.g.,
in such a way that the more efficient a protocol, the larger
the encryption/decryption keys used by the protocol, and
hence the higher the achieved security level.

4) A typical situation where our result works effectively is
the following: there are a large number of players for the
protocol, including a small number of adversaries, and just
a small piece of an element generated from the random-
ness (which is the target of the randomness reduction) is
distributed to each player. In such a situation, the amount
of information on the randomness received by an adver-
sary will be small, as required in our result. Now imagine
that if we could know in advance who are the adversaries
among all players, then smaller randomness would suffice
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for fighting the exposed adversaries directly, since the in-
formation on the randomness received by the adversaries
is now small. However, actually we have no practical way
to know it in advance, and it is inevitable to fight huge pos-
sibilities of where the adversaries are hiding, requiring fur-
ther randomness. The randomness for the latter purpose
looks less essential than the former one, and our PRG-
based randomness reduction can be intuitively thought of
as reducing the latter inessential randomness. The security
notion for PRGs (Definition II.4) fits the purpose very well;
advantages of distinguishers are bounded regardless of the
bit positions (corresponding to the place of adversaries, in
the aforementioned situation) that are picked up from out-
puts of a PRG.

5) In the aforementioned argument, we have carefully
avoided the term “computationally unbounded adver-
sary”; instead, we used, e.g., “computationally unbounded
attack algorithm.” The reason is that the exact meaning
of “computationally unbounded adversary” seems de-
pending on people, and someone may think that existence
of “computationally unbounded adversary” breaks not
only computational power assumptions but also compu-
tational hardness assumptions (in the sense of Definition
II.2). If it is the case, then our result cannot be applied
against “computationally unbounded adversary,” since our
result is based on a computational hardness assumption
on indistinguishability of the PRG. Nevertheless, our
result can imply the following: by PRG-based randomness
reduction, the random and pseudorandom cases can be
indistinguishable even against an impractically strong
adversary who is supposed to be able to perform arbitrary
algorithms in arbitrary (theoretically consistent) compu-
tational environments. Hence, anyway our result proves
indistinguishability between random and pseudorandom
cases much stronger than ordinary computational indistin-
guishability.

IV. NUMERICAL EXAMPLE AND IMPROVEMENT

In this section, we present a numerical example of our main
result to show that, for an existing information-theoretically
secure cryptographic scheme with reasonable parameters, the
scheme based on a pseudorandom source instead of a perfectly
random one can still achieve a sufficient security level (against
attack algorithms with unbounded computational complexity)
by using an existing PRG with significantly short seed length.
More precisely, in order to apply Theorem III.1 to a practical
situation, one should know the following three data: the secu-
rity property of a PRG (i.e., the function ), the complexity
of the auxiliary algorithms (which are practically almost
equal to the complexity of the original cryptographic scheme),
and the amount of the information received by the adversary
(e.g., the size of the set in the example in Section III-B).
In the numerical example, we evaluate the aforementioned
quantities for an existing scheme and an existing PRG.
Moreover, in this section we also present a novel improve-

ment of our PRG-based randomness reduction technique for in-
formation-theoretically secure schemes. Since the technique is

scheme-dependent and is difficult to describe in a generalized
manner like Theorem III.1, here we only explain the technique
by showing its application to the same existing cryptographic
scheme, but it would not be difficult to apply the technique to
other individual situations. Some technical part of the numerical
example will be supplied as the appendix.

A. Existing PRG

The PRG used in our numerical example is the one given by
Farashahi et al. [13, Section 4.1] under the DDH assumption,
which we call a DDH generator in this paper. Here, we sum-
marize notations and some properties; technical details omitted
here will be described in Appendix A.
The DDH generator with integer parameter
has seed set and output set , where
is a Sophie–Germain prime (i.e., both and are prime
numbers). It is shown in [13] that is -secure with
respect to a complexity measure , where
is the set of classical algorithms, is determined by using
the data of computer experiments by Lenstra and Verheul [18],
and we put with a function given in
[13, Section 2.4] (see also Appendix A).
The seeds and outputs of are sequences of finite

field elements rather than bit sequences. For the purpose of our
discussion, we try to convert them into bit sequences. First, we
give some notations. For integer parameters and , define
two maps and

by

where and are defined by

and we let . Then, the following
property holds.

Lemma IV.1: We have

where

Proof: First note that if and are random variables on
the same set for each , and are independent,
and and are independent, then we have

Owing to this fact, it suffices to show that
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For the former equality, write with
. Then, we have for

out of the elements , while for the
remaining elements . This implies that

The latter equality is similarly proven. Hence, Lemma IV.1
holds.
Let denote the composition of

followed by , which is also a PRG with seed set
and output set . Note that the map just

outputs some lower bits of the original output of ; therefore,
the issue of complexity of may be ignored for simplicity in
practical situations. Then, Lemma IV.1 and the aforementioned
choice of imply (by ignoring complexity of ) that the
PRG is -secure with respect to the same , where

(7)

B. Collusion-Secure Codes

In our numerical example, we choose collusion-secure codes
[5] (also referred to as fingerprinting codes) as an instance of ex-
isting information-theoretically secure cryptographic schemes
to which our result is applied. We summarize some definitions
and notations; further technical details omitted here will be de-
scribed in Appendix B.
Here, we deal with a concrete scheme of collusion-secure

codes given by Nuida et al. [21]. The scheme is an improvement
of the celebrated Tardos code [28] and its construction is based
on a simpler probability distribution than Tardos code, which
is desirable for our discussion. The scheme in [21] consists of
a codeword generation algorithm and a tracing algorithm
. An overview of the protocol and the security model are de-

scribed as follows. The players of the protocol are a provider and
a number, say , of users. Some users are adversaries, called
pirates, not known by the provider. The protocol proceeds as
follows.
1) The provider generates by a probability distribution
and a binary matrix of size , where is a given
parameter, the latter matrix being generated according to
the former probability distribution. Here, th row of the
matrix represents a codeword of length that will be sent
to the th user. Let denote the set of all possible outputs
of .

2) The provider distributes the codewords to the corre-
sponding users. Hence, the pirates receive their own code-
words; let denote the collection of the pirates’ code-
words. Let be the set of all the possible collections ,
and the process that the collection is extracted from the
output of is expressed by an algorithm .

Fig. 4. Flowchart for collusion-secure codes (the circled arrow signifies an at-
tack algorithm without bound of complexity).

TABLE I
OUR PARAMETERS FOR COLLUSION-SECURE CODES IN [21]

3) The pirates execute an attack algorithm to generate from
a pirated word , where “?”

denotes an “erasure symbol.” We emphasize that the stan-
dard assumption on for collusion-secure codes, called
marking assumption [5], does not restrict the computa-
tional complexity of .

4) Finally, the provider executes , with and the original
output of as inputs, to accuse a user who is likely to
be one of the pirates. Let denote the set of the possible
accused users.

We define that the attack of the pirates has succeeded if and only
if is not a pirate. This evaluation is expressed by an auxiliary
algorithm , where 1 and 0 denote the
success and the failure of the attack, respectively. The whole
process is described by a flowchart given in Fig. 4, where
the set signifies a random source used by the algorithm .
Hence, the attack success probability in the present setting
is the probability (for a random element of ).
In the numerical example, we consider the case that the

number of pirates is 3, and we use a set of parameters and
as in Table I which is determined in such a way that the attack
success probability is bounded by when a
random input for is chosen from uniformly at random.
Further details will be described in Appendix B.

C. Improved Randomness Reduction Technique

By the shape of the bound for the differences between random
and pseudorandom cases given by the main theorem, it is ex-
pected that the indistinguishability between the two cases will
be improved if the amount of variation of information received
by the adversary (i.e., the size of the input set for the attack
algorithm) is diminished. Therefore, if we can divide the ran-
domness used in a protocol into several pieces in such a way
that only a smaller component of the information received by
the adversary depends on each piece of the randomness, and we
use an independent PRG to generate each of the pieces, then re-
placement of each perfectly random piece with pseudorandom
one would be more indistinguishable than the original situation.
By the “hybrid argument,” the total indistinguishability between
fully random and fully pseudorandom cases will be improved as
well. From now, we explain this idea further by applying it to
a concrete scheme of collusion-secure codes [21] mentioned in
Section IV-B. Our numerical example will be given in the im-
proved situation, which also includes the original situation as a
special case.
To apply our idea, first we divide the set of

bit positions in the codewords of the collusion-secure code into
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Fig. 5. Modified flowchart for collusion-secure codes, with (the circled
arrows signify an attack algorithm without bound of complexity).

parts . A key property of the scheme in [21] is
that the probability distribution, generated by the algorithm ,
is the product of independent distributions each of which is
used for generating the corresponding column of the codeword
matrix (see Appendix B). Therefore, we can also divide the set
of random input for into pieces in such a

way that a part of the input chosen from is relevant to the
columns in for the output of . The flowchart of this
modified situation is shown in Fig. 5 (we present the picture
only for the case for simplicity, but a more general case
is analogous). Here, the th part of the whole output of

is regarded as being generated by an algorithm with
random input chosen from , and the th part
of the pirates’ codewords depends solely on . Note that the
original situation corresponds to the case .
In the situation, we would like to compare the following two

cases: the input for is generated by the uniform random
variable for every (the “fully random” case);
and is generated by an independent PRG with
uniformly random seed for every , where
(the “fully pseudorandom” case). Now for and

, let be a random variable on such that we
have if and if ,
and put . Hence, and correspond to
fully random and fully pseudorandom cases, respectively. By
the hybrid argument, the difference between fully random and
fully pseudorandom cases is bounded by the sum, over all
with , of differences between the cases of
and , while and differ only at the th components;

and . Hence, it suffices to evaluate
the indistinguishability for randomness reduction of each ran-
domness piece .
For the purpose, we apply Theorem III.1 to the aforemen-

tioned flowchart by setting and . Then,
we have

Put . Given elements ,
for and , the corresponding auxiliary flowchart

is as shown in Fig. 6. Now assume that each PRG
is -secure with respect to a common complexity mea-

sure . Assume further that the complexity
is bounded by a constant . Then by applying Theorem
III.1, we have

Fig. 6. Auxiliary flowchart corresponding to Fig. 5, with .

for each ; therefore, the difference between the attack success
probabilities and in fully random and fully
pseudorandom cases, respectively, is bounded by

(8)

D. Numerical Examples

From now, we present numerical examples of the bound in
(8) by using the objects and data in Sections IV-A and IV-B.
First, for simplicity, we suppose that the partition of
bit positions satisfies that

, where we put and
(hence, and ). We choose the sizes of
in a balanced manner ; therefore,
. On the other hand, we set each PRG to be a copy

of the modified DDH generator introduced in the final
paragraph of Section IV-A; therefore, we have
where is as in (7). In this case, each set consists of
binary matrices of size (recall that the number of pirates
is 3); therefore, and

(9)

(see Appendix A for the function ).
Since the parameters for the collusion-secure codes have been

chosen in Section IV-B in such a way that the attack success
probability for fully random case is bounded by , it is de-
sired to make the difference of attack suc-
cess probabilities in fully random and fully pseudorandom cases
significantly smaller than . In the numerical example, we
would like to determine the parameters for the PRGs in such
a way that the right-hand side of (9) is smaller than . On
the other hand, since the seed set of
consists of nonbinary elements, in order to compare the lengths
of required perfect randomness in fully random and fully pseu-
dorandom cases, we approximate the seeds of each by
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TABLE II
COMPARISON OF LENGTHS OF REQUIRED RANDOMNESS IN THE NUMERICAL EXAMPLE

outputs of the map introduced in Section IV-A
with uniformly random inputs; now, the new total seed length in
fully pseudorandom case is bits. By Lemma IV.1, the sta-
tistical distance between the distribution over induced by
outputs of copies of and the uniform distribution is bounded
by . We would like to determine the parameters in
such a way that is also smaller than .
By the estimate of the bounds for the complexity

given in Appendix C and the calculation of the
other parameters in Appendix D, the numbers of required
perfectly random bits in the original (fully random) and fully
pseudorandom cases can be computed as in Table II. In Table II,
for every choice of , the ratio of the seed length to the original
number of required random bits decreases (namely, the effect
of randomness reduction improves) as the number of users
increases. More precisely, the original numbers of required
random bits are almost linear in , while the seed lengths are
almost independent of the values of . This can be interpreted
as that the amount of required randomness “inessential” for
the security increases as the number of users increases; see the
fourth remark in Section III-E.
In the table, for each choice of user number and code length
, the ratio is significantly low already in the case , i.e.,

when the improved technique presented in Section IV-C is not
applied. This shows that even the plain PRG-based randomness
reduction can be effective for information-theoretically secure
cryptographic schemes, by using our indistinguishability eval-
uation technique.
Moreover, in the table the ratios for the cases , 5 are

significantly better than the plain case . Note that the ra-
tios for the case are better than the case further.
Also, Fig. 7 shows a relation between the value and the ap-
proximated total seed length in the case (written in
scientific E notation), where the approximation was performed
in the same way as the argument in Appendix D. (By the afore-
mentioned observation, the overall tendency would be similar
for the other choices of .) In the graph, it can be shown that
the approximated seed length takes the minimum value 236 220
at the case , which is approximately 2.57% of the orig-
inal number of required random bits (this ratio would be further
improved in the case of larger ) and is about 29 times as short
as the plain case . These results show that our improved
technique in Section IV-C indeed works effectively. We also no-

Fig. 7. Values of and approximated seed lengths for the example, with
.

tice that, as a by-product, our technique in Section IV-C reduces
the computational cost of the PRGs as well, since the sizes of
the Sophie–Germain primes used in the PRGs are significantly
decreased as increases (see Appendix D).

V. CONCLUSION

In this paper, we proposed novel ideas and techniques for
evaluation of indistinguishability between random and pseudo-
random cases in PRG-based randomness reduction of crypto-
graphic schemes. Our evaluation technique can prove the indis-
tinguishability even against an adversary with computationally
unbounded attack algorithm, especially when the amount of in-
formation received by the adversary is small; hence, it reveals
that PRG-based randomness reduction can be effective for not
only computationally secure but also information-theoretically
secure schemes. In comparison to a preceding result of Dubrov
and Ishai [11], our result removes the requirement of the gen-
eralized notion of nb-PRGs and is effective for more general
kinds of protocols. We presented the effectiveness of our result
by giving numerical examples of randomness reduction for col-
lusion-secure codes. Moreover, we also proposed another idea
of dividing the required randomness into several smaller pieces
for improving the effect of randomness reduction, and presented
numerical examples to show that the idea also works effectively.

APPENDIX A
DETAILS OF DDH GENERATOR

In this section, we supply the technical details for the DDH
generator omitted in Section IV-A. Recall that a prime param-
eter is chosen in such a way that is also a
prime number (i.e., is a safe prime). Let be the multiplica-
tive group of nonzero quadratic residues modulo ; therefore,



NUIDA AND HANAOKA: ON THE SECURITY OF PSEUDORANDOMIZED INFORMATION-THEORETICALLY SECURE SCHEMES 649

. We identify the set with via the bijection
used in [13, Section 4.1]. Under the identification, the

DDH generator has seed set and output
set ; note that, in their construction, two elements
and of are randomly chosen as well as the “seed” of

the PRG [13, Section 3.1], and here we include those random
elements and in the seed of the PRG. We omit further de-
tails of the construction of the PRG, since it is not relevant to
our argument in the paper.
In [13], indistinguishability of the PRG is eval-

uated by using the data of computer experiments by Lenstra
and Verheul [18]. Accordingly, for each classical algorithm
, we define to be the worst case running time of

when executed on a fixed Pentium machine that was used in the
experiments in [18]. (Note that it is not clear in [13] whether the
running times are in the sense of average case or of worst case,
and here we adopt the worst case ones for safety since worst case
running time is longer than or equal to average-case running
time.) The time unit is set to be 360 Pentium clock cycles that
is, according to the experiment in [18], approximately the time
for one encryption in a software implementation of DES (see
also [13, Section 2.4]). Now [13, Theorem 2] shows that if there
is a distinguisher for such that
and , then the DDH problem in the group
can be solved by some such that with
advantage larger than . H0 assuming that the time-success
ratio for the complexity and the advantage of any
algorithm in for the DDH problem in does not exceed a
constant , it follows that is -secure with respect
to with . In [13, Assumption 1] the value

is assumed to be the complexity of the best known algo-
rithm for solving the DDH problem in , which is estimated
according to the data in [18] as where

(see [13, Section 2.4]).

APPENDIX B
DETAILS OF COLLUSION-SECURE CODES

In this section, we supply the technical details for the collu-
sion-secure codes in [21] specialized to the case of three pirates,
omitted in Section IV-B. First, for the codeword generation al-
gorithm , we introduce a publicly known probability dis-
tribution that takes one of the two values and with
equal probability , where

These values are approximations of the probability distribution
given in [21, Definition 4] with approximation error less than

(here, we require and to have short binary ex-
pressions rather than short decimal expressions; the same also
holds for values and introduced below). The algorithm

generates values independently ac-
cording to (hence each is either or ). Then, it gen-
erates each, say, th bit of the th user’s codeword inde-
pendently by and .
On the other hand, the tracing algorithm first calculates the
score of the th user, where the bit-wise score

for the th bit is a function of (the th symbol in the pi-
rated word ), , and specified in the following manner: if

with , then put

if and
if and
if and
if and

where we define two auxiliary values and by

Then outputs any one of the users with highest score. We no-
tice that these values and are approximations of Tardos’s
scoring function (which is also used in [21]) at

and , respectively, with approximation error
(the effects of such approximation

errors are already considered in the security proof of [21]).
Recall that we would like to choose the parameters in such a

way that the attack success probability for the
case that a random input for is chosen from uniformly at
random is bounded by against pirates. Now by
the results of the first part of [21, Theorem 1], we can calculate
the code lengths as in Table I of Section IV-B, where we used
auxiliary values , , ,
and in the calculation (see [21] for details of
those auxiliary values).

APPENDIX C
COMPLEXITY OF ALGORITHMS IN THE EXAMPLE

In this section, we estimate the computational complexity
of the algorithm corresponding to the auxiliary

flowchart given in Section IV-C. Here, we use the same com-
plexity measure as mentioned in Appendix A.
First, we give a “pseudocode” for the algorithm in the

following manner. Let , , be
the indices of the three pirates. Here, we encode each digit
of a pirated word in such a way that two-bit sequences
00, 01, and 10 represent “0,” “1,” and “?,” respectively (hence
one can determine whether or not by just one bit compar-
ison at the lowest bit). The element consists of the bits

with and . For each ,
the element consists of the values and bits

. Since each is chosen from the two
values and given in Section IV-B, here we encode each
into such that . We also use the values
and given in Section IV-B. In the aforementioned set-

ting, we describe a pseudocode for together with an esti-
mate of its complexity (see below for details) as follows, where
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denotes an operation to load the next bits from
the input bit sequence (the subscript “ ” is omitted in the
case ), denotes the constant , and the remaining
values , , and

are given:

: : 0 1

01:

02: \\ 1

03: \\ for 01–03

04:

05:

06:

07: \\ 2

08:

09: \\ 1

10: \\ 3 for 06–10

11:

12:

13: 0

14: \\ 1 for 12–14

15: \\ 4 for 11–15

16: \\ for 05–16

17: \\ for 04–17

18: \\ 1

19:

20: \\ 1

21:

22:

23:

24:

25: \\ 1

26:

27: \\ 1

28: \\ 2 for 24–28

29:

30:

31: \\ 1

32:

33: \\ 1

34: \\ 2 for 30–34

35: \\ 3 for 23–35

36:

37:

38:

39: \\ 1

40:

41: \\ 1

42: \\ 2 for 38–42

43:

44:

45: \\ 1

46:

47: \\ 1

48: \\ 2 for 44–48

49: \\ 3 for 37–49

50: \\ 4 for 22–50

51: \\ for 21–51

52:

53: , \\ 2

54: \\ 3 for 52–54

55: \\ for 19–55

56:

57: 0

58: \\ 3 for 56–58

59: 1

Recall from Appendix A that our complexity measure
is defined in terms of the worst case running time on a com-
puter used by the work [18]. Since it is infeasible to determine
the precise running time, in the aforementioned estimate we ap-
proximated the worst case running time according to the fol-
lowing two rules. First, we regard each operation of substitu-
tion, addition, subtraction, and comparison as taking one time
unit (in the aforementioned description, “TU” stands for “time
unit”) that is approximately the time for one DES encryption.
This first rule would be justified since, for the current choice of
parameters, every such operation in the aforementioned pseu-
docode is either an operation between fixed-point numbers with
just 12-bit or shorter integer parts and just 16-bit or shorter frac-
tional parts, or an operation between just 30-bit or shorter inte-
gers, which would be much more efficient than DES encryp-
tion (in fact, this is likely to be overestimation, but it does not
cause any serious problem since we need only an upper bound
of the complexity). Second, we ignore the complexity of op-
erations of loading a next bit from the input (i.e., an operation

), outputting an element (i.e., an operation ),
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TABLE III
DETAILS OF PARAMETERS IN THE NUMERICAL EXAMPLE

and jumping in the execution flow (implicitly used in loops
and statements), which (together with any other missed issue
on complexity) seem negligibly small andwould be absorbed by
the aforementioned overestimation. From the two rules, it fol-
lows that the worst case running time of a loop of the form
“ ” is (over)esti-
mated to be the sum of time units (composed
of 1 initialization of the counter , increments
for , and checks for the terminating condition)
and the sum of running times of for all .
In particular, if the running time of is constantly equal
to time units, then the estimated running time of this loop is

time units. The aforementioned es-
timates of running times of each line, each loop, and each
statement are thus obtained. By summing the estimated run-

ning times presented at lines , , , , and , we have
where

Hence, we have

By substituting it for (9), the right-hand side of (9) is now equal
to

(10)

APPENDIX D
DETAILS OF THE NUMERICAL EXAMPLE

In this section, we determine the appropriate parameters for
DDH generators in order to complete the numerical example in
Section IV-D.
First, by the pseudocode for the algorithm given in

Appendix C, the necessary and sufficient bit length of the input
is . Hence, the total number of required random

bits in fully random case is , and the parameters
and for should satisfy . For
simplicity, we suppose that the integer is as small as possible,
i.e., we set .
We determine the total seed lengths and other parame-

ters in fully pseudorandom cases under the conditions that the
quantity in (10) should be smaller than andwe should have

. Table III shows the results of calculation
for three cases . In the table, “difference” signifies
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the sum of the quantity in (10) and , and “ratio” sig-
nifies the ratio of the seed length in fully pseudorandom
case to the number of required random bits in the original (fully
random) case. For each case in the table where the choice of
Sophie–Germain prime is specified, we used the following
values:

where the last four Sophie–Germain primes are quoted from the
July 2009 version of a list by Caldwell [7], while the first one
is quoted from the September 2008 version of that list. On the
other hand, for each of the remaining cases, an approximation of
was performed since the authors could not find in the literature
a concrete Sophie-Germain prime with appropriate size. In such
a case, we calculated the “difference” and the corresponding
total seed length under the assumption that both and

vanish and . This approximation
would be allowable, since and are not significantly far
from in the five cases with precise values of .
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