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Capacity Analysis of Correlated MIMO Channels
Leif Hanlen, Member, IEEE, and Alex Grant, Senior Member, IEEE

Abstract—This paper gives expressions for the capacity of er-
godic multiple-input multiple-output channels with finite dimen-
sions, in which the channel gains have a correlated complex normal
distribution and receivers experience independent Gaussian noise.
The particular correlated normal distribution considered corre-
sponds to flat Rayleigh fading with arbitrary transmit and receive
correlation. Knowledge of the correlation matrices is assumed at
both the transmitter and receiver, while the receiver, but not the
transmitter, has complete knowledge of the channel realization.
The optimal input density is characterized via a necessary and
sufficient condition for optimality, along with an iterative algo-
rithm for its numerical computation. The resulting capacity is ex-
pressed in terms of hypergeometric functions of matrix argument,
which depend on the channel correlation matrices only through
their eigenvalues. Some closed-form expressions are also given in
the case of single-sided correlation. Some consideration is given to
high- and low-power asymptotics. Easily computable asymptotic
expressions are also given for receive-side only correlation in the
case that the number of transmitters is large. In that case, the ca-
pacity can be divided into two components: one arising from the
dominant eigenvalues of the receiver-end correlation matrix, and
the other from the remaining spherically distributed eigenvalues.
Some numerical results are also presented.

Index Terms—Correlated multiple-input multiple-output
(MIMO) channels, MIMO channel capacity, random matrix
theory.

I. INTRODUCTION

T HE work in [2]–[4] has shown that under the assumption
of an i.i.d. transfer matrix, the capacity of a multiple-input

multiple-output (MIMO) channel grows linearly in proportion
to the minimum of the number of inputs and outputs. This is the
often cited linear growth in capacity of MIMO channels. The
channel assumptions model flat Rayleigh fading in a point-to-
point wireless system and have been verified under the condition
of widely separated (uncorrelated) antenna elements, and dense
multipath scattering [5].
The application of MIMO transmission to spatially diverse

systems does not necessarily lead to the large growth predicted
in [2] and [3]. Several authors have recently investigated cor-
relation of the MIMO channel due to various physical mecha-
nisms and shown a reduction in the rate of growth in channel
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capacity. The work in [6] and [7] showed that for widely sep-
arated array elements, sparse scattering results in a correlation
of the channel and lower mutual information for equal-power
white transmission. These results, however, require parameter-
izations of the channel in terms of physical placement of scat-
terers and are difficult to apply in an abstract setting.
Recently, Chuah et al. [8] have used the Stieltjes transform

(see, for example, [9] and [10]) to obtain asymptotic results for
the capacity of a correlated channel. The results obtained pro-
vide insight into the asymptotic properties of MIMO channels.
Unfortunately, the Stieltjes transform does not lend itself well
to numerical solutions. Authors in [7] and [8] have suggested
that the growth of the MIMO channel will remain linear for a
correlated channel, although the proportionality constant for the
linear growth may change.
This paper provides an analysis of correlatedMIMO channels

using random matrix theory [11]. Using hypergeometric func-
tions of matrix argument, we find the capacity for transmit-end
and/or receive-end correlation, where the correlation matrices
are known to both the transmitter and receiver and the channel
realization is known to the receiver but not the transmitter. In
the special case of single ended correlation (i.e., transmit corre-
lation, or receive correlation, but not both) closed-form results
are obtained. High- and low-power asymptotes are considered,
along with the corresponding effect on the optimal input den-
sity. The asymptotic channel capacity (as the number of trans-
mitters becomes large, with receive-end only correlation) is also
derived.
Related work,1 taking a number of different approaches is

found in [12]–[18] (see also [19] for channel measurement re-
sults). In contrast, this paper concentrates on the direct gener-
alization of [2]. In the final stages of the September 2004 re-
vision of this paper, we became aware of related independent
work [20], [21], also using hypergeometric functions to obtain
capacity results. In that work, the authors find the characteristic
function of capacity for receive-side correlation only. Asymp-
totics are not considered in [20] and [21].
This paper is arranged as follows. Section III presents the

main results, namely a fixed-point equation for the optimal input
density and expressions for capacity. High- and low-power
asymptotics are considered in Section IV. Section V gives
an asymptotic channel capacity as the number of transmitters
becomes large with fixed numbers of receivers and receive-side
only correlation. This capacity may be expressed in terms of
an i.i.d. component and a correlated component. This is used
to compare the correlated channel with the well-known i.i.d.
channel. Using a trace-rule to compare different correlated
matrices, numerical results are presented in Section VI. All
proofs are contained in the Appendix, which also contains an
overview of some properties of hypergeometric functions.

1This section refers only to related work up to the 2004 revision of this paper.
Section II details further developments, 2004–2011.
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Section II, a new section, describes relevant developments
that have been published since the 2004 revision of this paper,
up to the present, 2011. The remainder of the paper is identical
to the 2004 revision, expect for minor typographical corrections
and some minor technical fixes, the latter noted in the footnotes.

II. SUBSEQUENT DEVELOPMENTS

Since the original submission and subsequent revision of this
paper in 2004, several of our results have been independently re-
discovered and in some cases generalized by other authors. This
section aims to cover those more recent developments of partic-
ular relevance to this paper. The contemporary state of the art
(circa 2004) is summarized in [22] and [23]. In particular, work
in [22, Sec. 3.3.3] gives a summary of the separable correlation
case. An excellent recent reference is the book by Couillet and
Debbah [24], which has an up-to-date treatment of correlated
channels (including reporting on the results of this paper as an-
nounced in [1]).
The optimal covariance for a zero mean Kronecker random

matrix is well known to diagonalize the transmit covariance—a
result already established in [25] and used here and elsewhere
[26]–[29]. Theorem 1 that gives necessary and sufficient
conditions for optimality of an input covariance matrix was
rediscovered (using similar arguments stemming from the
Karush–Kuhn–Tucker conditions) in [30, eq. (5)]. In that paper,
the authors also usefully reexpress the result in terms of the
minimum mean squared error [30, eqs. (10) and (11)]. For
numerical computation, [30, Algorithm 1] is an implementation
of our fixed-point (6), again expressed in terms of MMSE. A
similar fixed-point equation to that given in this paper was also
provided in [31]; however, a transformation into “virtual chan-
nels” was required in order to use the equation. Another related
iteration can be found in [24, p. 314]. In another direction, there
has been a significant amount of work considering optimal
input covariances, and optimized precoding for restricted inputs
[30], [32], [33].
A key observation of this paper is that correlations may be

beneficial to MIMO capacity under certain combinations of cor-
relation and power limits, a phenomenon which cannot be seen
under isotropic transmission assumptions. Similar conclusions
that correlated channels could have higher capacity under op-
timal signaling were provided by [34] using a virtual channel
argument. Feedback of the statistics of the channel to the trans-
mitter was shown to be beneficial as a medium access protocol
[35], and Jafar and Goldsmith [36] drew similar conclusions.
Kang and Alouini [37] also showed that correlation of MIMO
channels might not lead to capacity reduction under appropriate
covariance feedback.
A variation on random channels that generalized the Kro-

necker model and used the algorithm of [30] to find the input
covariance was given in [33]. Extensions of this work to pre-
coding with parallel channels [32] and nondiagonal channels
[38] under certain input constraints have been developed.
Many authors have developed similar input covariance op-

timization algorithms for specific special cases of channel. In
[39], an algorithm for determining the optimal input covariance
based on asymptotically large antenna numbers was described

and Dupuy and Loubaton in [40] extended this to include fre-
quency selectivity. Marques and Abrantes [41] found an exact
closed-form expression for the receive-side correlated channel
using hypergeometric functions and developed a program to
evaluate a formula similar to (8). Li et al. [42] offered a method
that was related to Karush–Khun–Tucker conditions for the co-
variance matrix and provided a solution for the input covariance
for a two-input multiple-output system under the constraint that
either the matrix was deterministic (i.e., fixed channel known
to both transmitter and receiver), or Jensen’s inequality could
be used, effectively corroborating [43]. For deterministic chan-
nels, Vandenberghe et al. [44] provide the optimization solution
for matrix channel capacity with total power constraint, per-an-
tenna power constraint, and with crosstalk.
Works such as [45]–[47] considered alternate power con-

straints, where the transmit covariance is premultiplied by a
known deterministic matrix.
Other researchers have developed bounds [48]–[50] for

Ricean models and for outage capacity of a isotropic source
[51], [52]. Vu and Paulraj [53] considered so-called dynamic
channel state information (CSI). This provides a bridge from
full CSI at the transmitter to statistical models only (as used in
this paper). The extension of this is toward uncertain statistical
knowledge given by [54] which then bridges to channels that
are completely unknown [55].
Some results that effectively extend work in this paper may

be seen in [56] where the authors considered the nonuniqueness
of the optimal covariance, and provided necessary and sufficient
conditions for unique input covariance. The work of multiuser
components of [56] was developed to include interference cases
[57]. Gao et al. [58] were unable to form analytic solutions to
capacity but developed closed-form (tight) upper bounds for ca-
pacity for nonseparable correlation, going beyond work in this
paper.
The fixed-point equation of this paper has been shown to hold

in the case of arbitrary random matrix channels [59] where the
transmitter possesses the channel statistics. In this case, the al-
gorithm is simply repeated application of (6), followed by a
trace constraint. The factorization of the covariance matrix into
upper triangular matrices used in [60] is unnecessary. Gohary et
al. [61] applied the algorithm in [59] and compared this to the
water filling on the covariance matrix directly [43].
There is still no clear approach for nonzero mean chan-

nels when the channel mean and channel correlation(s) are
not jointly diagonalizable. For general channels, the optimal
transmit direction is not a simple combination of the eigenvec-
tors of the mean and/or transmit correlation [62, Myth 2], [59,
Fig. 2].
Existing closed-form results for optimal covariance are for

specific numbers of elements, specific correlations [28], or nu-
meric algorithms [30], [63]. The differential of mutual of infor-
mation [30] and other secondary functions (such as moments)
do yet not have closed-form solutions for general input covari-
ance. The expectation given in (5) still does not appear to have
a closed-form solution. This represents a significant barrier to
advances in optimal input covariance: the objective function it-
self (let alone the optimal solution) has not yet been expressed
in closed form. One approach which side-steps the lack of a
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closed form for the expectation (5) is to use the iteration in [30],
where the fixed point is expressed in terms of MMSE, for which
a closed-form expression has been given in the case of Rayleigh
fading and separable correlation [64, Th. 1].
The numerical evaluation of the hypergeometric function re-

mains an impediment for evaluation of capacity formulae. Work
in [20], [21], and this paper applied particular channel simpli-
fications to provide closed-form solutions that could be evalu-
ated. Advances by Koev and Edelman [65] may yet remove this
barrier for general input covariance. High- and low-signal-to-
noise-ratio (SNR) asymptotic results have since been consid-
ered by several authors. Our high-SNR asymptotes (11) and (12)
are special cases of [66, Proposition 4], which generalizes the
result in several useful ways including for double-ended cor-
relation and for Ricean channels. Low-SNR asymptotes have
since been extensively treated in [67], which considers approx-
imations derived from second-order expansions rather than our
first-order approximations in Section IV. While work in [67]
provides generalizations for Ricean channels and polarization
diversity; the results were all constrained to isotropic input sig-
naling. We have also subsequently given second-order asymp-
totes and second-order conditions for optimality for the input
covariance at low SNR in [68]. These conditions follow from
the fact that it is possible to simultaneously diagonalize both
terms in the second-order Taylor expansion by the eigenvectors
of the transmit correlation. More general results for SNR inter-
cept, slope, and first-order optimality were given in [69]. At low
SNR, it is of interest to know the conditions under which beam-
forming is optimal. These conditions are provided in [26].
Large dimension asymptotes for correlated channels have

been subsequently considered in [28], [33], and [34], achieving
generalization to double-ended correlation, and dropping our
requirement for .

III. MAIN RESULTS

Consider a point-to-point communication link with inputs
and outputs. Throughout the paper, and

. At each symbol interval, the received complex
vector depends on the transmitted vector
according to

(1)

Element is the th matched-filter output, while is the th
transmitted symbol. The transmitter has an average power limit

, where the superscript denotes conjugate trans-
pose and denotes expectation. The matrix has
entries , which are the complex gains between input and
output . The vector contains i.i.d. circularly symmetric
Gaussian noise samples [70, p. 134], , a scaled

identity matrix. Without loss of generality, assume .
More general choices of noise covariance are easily accommo-
dated by appropriate modification of and .
According to the notation of [71], the random2 ma-

trix is chosen from a complex Gaussian ensemble

2Assume is chosen independently each symbol interval, although need
only change often enough to consider the channel ergodic.

where the receive covariance is
and the transmit covariance is (both and are

assumed to be symmetric, nonsingular).
Subject to this choice of rewrite (1) as

(2)

where has i.i.d. circularly symmetric complex Gaussian
entries, with independent real and imaginary parts, each with
variance [2] and and (such
“square roots” exist since the covariance matrices are positive
definite). Accordingly, the scope of this paper is restricted to cor-
relation structures of the form ,
where stacks the columns of into a single column
vector and is the Kronecker product. The well-known
case and is considered in [2]. It is assumed
throughout that and are known at the transmitter and
receiver and that the channel realization is known at the
receiver but not at the transmitter.
This choice of correlation structure for is the so-called

Kronecker model [72], used for analytical purposes by many
authors (see, for example, [8] and [73]–[77]). The accuracy of
this model has received recent scrutiny [19], [78], [79] and there
may be cases of practical interest which require more general
structures [80]. Despite potential deficiencies of the model,
it provides a tractable approach to the analysis of correlated
MIMO channels and it is for that reason adopted here.
For exact knowledge of at the receiver, a zero-mean

Gaussian distribution on the input vector is optimal [2],
[81], although this distribution is not necessarily i.i.d. [25],
[82]. The capacity-achieving input distribution is, therefore,
completely specified its covariance , which must
be optimized for the determination of capacity.
The capacity of the ergodic correlated MIMO channel (1)

with channel matrix with correlationmatrices
and and power constraint is then given by

(3)

and the optimizing transmit covariance will be denoted . In the
case and , the optimal input covariance is the
well-known equal power “white” transmit scenario
[2]. The following lemma shows that nonwhite receive covari-
ance does not affect the form of the optimal input distribution.

Lemma 1: Given the channel (2), with , power limit
and both and known at the transmitter, the capacity-

achieving input distribution is equal power, independent white
Gaussian signals and is thus indepen-
dent of .
For the remainder of the paper, it will be assumed that

and are diagonal. That this results in no loss of generality
is demonstrated by the following Lemma.

Lemma 2: Let and
be the respective eigenvalue decompositions of and
(i.e., , , unitary and , diagonal). Then,

.
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The main results of the paper are Theorem 1 which gives an
implicit characterization of the optimal input density as a func-
tion of and , Theorem 2 which expresses capacity in terms
of a hypergeometric function of matrix argument, and Theorem
3 which gives closed-form expressions for capacity in the case
of single-ended correlation.
In the case that the transmitter has complete knowledge of

the channel realization , the capacity-achieving strategy is
transmission of independent Gaussian symbols on the right sin-
gular vectors of . The optimal power allocation is obtained by
water-pouring on the corresponding singular values. The fol-
lowing theorem gives the form of the optimal input covariance
when the transmitter only has knowledge of and but not .

Theorem 1 (Optimal Covariance): Consider the channel (2),
with and , where
both and are known at the transmitter, and power limit . A
necessary and sufficient condition for the optimality of an input
covariance is

(4)

(5)

for and some constant . The expectation is with
respect to the random matrix , .
In the case , condition (4) may be rewritten as a fixed-

point equation3

(6)

which suggests the following iterative procedure for numeri-
cally finding the optimal . Starting from an initial diagonal

, compute

selecting at each step to keep . Although there

is no existing closed-form solution for , it
may be accurately estimated using Monte Carlo techniques.
Conditions (4), (5) may be compared with the corresponding

condition for parallel Gaussian channels. Suppose
where is a deterministic diagonal matrix known to both the
transmitter and receiver; then, the condition for optimality of
the input covariance is

Thus, Theorem 1 can be recognized as a direct generalization of
the classical water-pouring result for parallel channels.
The following theorem, proved in the Appendix, expresses

the capacity in terms of hypergeometric functions of matrix ar-
gument.

3Here, we have assumed that . A little more care must be taken if some
of the are zero.

Theorem 2: The capacity of the ergodic correlated MIMO
channel (1) with and power constraint

is given by

(7)

where , is selected optimal according
to Theorem 1, is the
complex multivariate gamma function and is a hy-
pergeometric function of three matrix arguments.
This theorem is a natural generalization of the result in [2],

as is a generalization of . Setting and
directly recovers Telatar’s result since

. In the case of single-ended correlation, i.e.,
and or and , the resulting hyper-

geometric functions in Theorem 2 can be computed in closed
form using a determinant formula [83]. The resulting capacity
for both cases may be written in terms of a function ,
defined for diagonal as

(8)

(9)

where the sum is over all permutations of ,
is 0 for even and 1 for odd permutations, denotes

a Vandermonde matrix of the eigenvalues of and if
and is zero otherwise. Finally, is

the capacity for receivers, 1 transmitter and power , defined
in (69) and given in [2].

Theorem 3: For the channel (2)

(10)

where for the second line is selected according to Theorem 1.
It is interesting to note that using (10) or (9), the capacity for

a single-ended-correlated -input -output channel is expressed
completely as weighted sums of single-input multiple-output
channels for both transmit-side and receive-side correlation.

IV. ASYMPTOTIC POWER RESULTS

The results of the previous section show how to numerically
compute the optimal power distributions across the singular
vectors of the transmit covariance matrix. In this section, the



HANLEN AND GRANT: CAPACITY ANALYSIS OF CORRELATED MIMO CHANNELS 6777

low- and high-SNR extremes are considered, yielding simple
closed-form results for capacity and corresponding optimal
power distributions.
For high SNR

where now . This may be simplified in the following
two cases, using [71, Prob.3.15]. First, for and ,

and4

(11)

where is the psi function. This shows that at high SNR
depends on only through its determinant. On the

other hand, for , and ,

(12)

and clearly (12) is maximized for which is independent
of .
Some care is needed with this result, which requires that the

product . This requires that is large and is
nonsingular. For the case where is almost singular, a signifi-
cantly larger value of is required before the asymptotic result
holds. In practical terms, what this means is that as long as the
variation in the is small compared to , the gain to be had by
optimizing the power allocation is minimal.
For low SNR (once again setting )

(13)

with and . This is a con-

sequence of for small . Now, since trace and
expectation commute [2]

(14)

according to [71, Th. 7.3.5(i)]. For the case

(15)

and the optimal input strategy is not unique: all inputs with
diagonal covariance satisfying achieve ca-
pacity. For , is clearly maximized when

so that and

(16)

This corresponds to the well-known beamforming results of
[25], [82], and [84]. Note that (13) is valid for small power levels
and/or singular . As opposed to the high-SNR dependence on

, the low-SNR dependence is on .

4Equations (11)–(13) have been modified from the 2004 revision to replace
a sloppy on the left-hand side with an order expansion. Other than
this, the expressions are identical to the 2004 version. Thanks to A. Lozano for
pointing out this correction.

V. ASYMPTOTIC BEHAVIOR LARGE DIMENSION

Motivated by a down-link scenario in which a base station
transmits to a small mobile terminal, this section concentrates on
the behavior of capacity as is held fixed and
with . Let The following lemma results
from [11, Corollary 9.5.7], converting for complex and .

Lemma 3 [11]: Without loss of generality, assume that is
diagonal. Suppose that for some value of , has
eigenvalues satisfying

(17)

which incorporates having distinct eigenvalues as a special
case. Define

(18)

Then, the limiting joint density function of for
is given by

(19)

(20)

(21)

where , and is the standard zero-mean, Gaussian
distribution with variance and is independent of for

and .
For the case , i.e., , (21) reduces to the

standard Wishart distribution for i.i.d. matrices. A similar result
[85] as above holds even in the case of
where contains several (different) repeated eigenvalues.
With the changes of variable (18) (7) may be expanded into

two parts, for the first distinct eigenvalues of and
for the remaining equal eigenvalues of

(22)

(23)

(24)

where and are normalizing constants. The terms
(23) and (24) may be simplified as follows.
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Reversing the order of sum and integral in (23), write (23) as
a summation of iterated integrals

(25)

In each iterated integral, only one particular term is inside
the , all the others may be integrated out as they are
independent. As the limits for all the integrals in (23) are iden-
tical, this results in the simplified form:

(26)

The asymptotic limit is completed using the following sub-
stitution:

(27)

As has normal distribution, so too does . However,
and consequently, in the limit the distribution

of becomes where is the Dirac delta function.
Therefore, in the limit of large may be approximated by

(28)

The integral of (24) is independent of ordering of and the
unordered density function may be used to simplify
the calculations. Following [2], the analysis for is very sim-
ilar. First, remove the sum of (24) by noting that the terms are
identically distributed

(29)

In order to calculate , integrate the density function
over the terms

(30)

Note that (19) contains a similar Jacobian term
of [2] which suggests the use of the Vandermonde determinant

identity. Define the Vandermondematrix over
the eigenvalues as

...
...

(31)

and write (30) as

(32)

Applying a set of (orthonormal) functions
, to the rows of the Vandermonde

matrix. Then, may be rewritten as
with

...
...

The orthonormality condition on is given by

(33)

where is the Kronecker delta. The orthonormal functions
that satisfy (33) are Hermite polynomials [86] giving

(34)

Now can be written in terms of the determinant iden-
tity for row operations as [2], [87]

(35)

Substituting (35) into (32) and integrating over
gives

(36)

From (34), can be written as

(37)
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where is the th Hermite polynomial [88]. Hence, com-
bining (28) and (37) results in the following limit theorem.

Theorem 4 (Asymptotic Correlated MIMO Capacity): Con-
sider a correlated MIMO channel (1) such that the correlation
matrix has eigenvalues which satisfy (17), and . Then,
the asymptotic capacity of the channel, as with

and finite is given by

(38)

where is the th Hermite polynomial, and the approxi-
mations are accurate to . The notation denotes

for , [11, p. 391].
It is also possible to accommodate MIMO channels with re-

duced rank correlationmatrices having eigenvalues satisfying

(39)

that is, the smallest eigenvalues are identically zero. In
this case, apply the transform [71]

(40)

where is and and replace with in
the Theorem 4. This generalization permits arbitrary correlation
matrices which may not be strictly full rank.
It is interesting to compare the result of Theorem 4 with the

well-known i.i.d. case [2]. In the following, constants arising
from the integrals will be suppressed. Using the change of vari-
able (27), the integral of Theorem 4 has the form

(41)

for constant . A similar argument may be applied to the log-
arithmic term in (41) as was used in (28). The Hermite poly-
nomial, however, requires special care. While the variance of
shrinks to zero, the argument of the Hermite polynomial will

have constant variance, independent of . As such, the summa-
tion term in (41) must be integrated over the range
and the above result simplifies to give

(42)

with and in [2]. Fig. 1 plots the value of in
for various , and . It can be seen that the integral of
Theorem 4 is closely approximated by a linear function.
The relation (42) may also be compared with the result for

from [2]

(43)

Fig. 1. as a function of .

For , (42) and (43) are identical. The parameter may be
interpreted as the degree of correlation of the channel matrix .
Note that the asymptotic channel capacity grows linearly
with increasing although the rate of growth is a function of .
In order to compare different correlation matrices with

(43), adopt a constraint on the trace of . The elements of an
arbitrary are confined to satisfy

(44)

This is equivalent to requiring that each correlated channel
transfers the same total power from transmitters to receivers,
given the same power input. In the case of equal eigenvalues,

for some value , we note that (44) gives
corresponding to the i.i.d. channel.
Note that the number of distinct eigenvalues is insufficient

to fully determine the “severity” of the correlation of the
channel. The range of values that the eigenvalues take must
also be considered. Therefore, consider different correlation
matrices in terms of a parameter , where is defined as

(45)

and is the mean eigenvalue of . The second equality arises
from the normalization of (44) giving . The correlation
matrix may be considered in terms of the combination of
and .
The eigenvalues of give the energy transfer through the

MIMO channel. As shown above, these eigenvalues are dom-
inated by the eigenvalues of . For fixed total energy transfer
(44), the parameters and may be considered as distributions
of energy across the effective parallel channels between trans-
mitters and receivers.
The value of determines the concentration of channels—for

small , the total fading channel is well approximated by
a singular line-of-sight channel. For larger values of , the en-
ergy of the MIMO channel is distributed over a wider range of
directions. The value of gives the variation of the eigenvalues
of . For small , the smaller (equal) eigenvalues will diminish.
The worst case is where which corresponds to a reduced
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Fig. 2. Capacity for and , such that
.

Fig. 3. Mutual Information for and ,
such that for various SNR levels. The optimal input distribution
(circled) is compared with , shown solid.

rank (singular) channel. The optimal value for is unity, which
results in an i.i.d. channel.

VI. NUMERICAL RESULTS

Fig. 2 plots the capacity of a , with
and such that . For low SNR,
the correlation has little impact on the capacity. Similarly, for
high SNR, the capacity is not significantly impacted for mod-
erate values of —the plot becomes flat for a wide range of .
Fig. 3 shows the capacity of a channel, with

and such that . The
capacity resulting from optimal given by (6) (shown solid)
is compared to the mutual information given by equal power

for various values of . It can be seen for low values
of , and/or large ratios , that the optimal covariance out-
performs equal power allocation, although the benefit reduces
as increases. In particular, for low SNR, the optimal covari-
ance reduces to beamforming. This corresponds to well-known
results on water filling for deterministic channels: for high-SNR
optimal power allocation offers little benefit over equal power

Fig. 4. Capacity, for , with and
, with and given above (a) (b)

(c) .

distributions, while at low SNR, optimal power allocations sig-
nificantly outperform equal power distributions.
Fig. 4 shows the capacity of the as a func-

tion of and such that
. For , we have the well-known

i.i.d. case studied in [2]. Note that for variations in , the ca-
pacity may increase (at low SNR) for more correlated channels,
as beamforming on a correlated channel may outperform equal
power on the i.i.d. channel, while for high SNR, we must have
quite severe correlation before beamforming offers an advan-
tage over equal power. There is no capacity benefit achieved by
having greater receive-side correlation.
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Fig. 5. Capacity for and , with .

Now consider the case that . For simplicity, .
Fig. 5 shows the effective growth rate of the channel capacity
as a function of and . As shown above, the growth
is linear, although the proportionality constant is a function of
the correlation of the channel. For this reason, we define the
normalized capacity

(46)

gives the rate of growth of the capacity of the MIMO
channel for increasing . For the i.i.d. channel,
resulting in the largest rate of growth in channel capacity for
increasing numbers of receivers. This corresponds to the i.i.d.
channel being entropy maximizing [2], and hence, an i.i.d.
channel exhibits the greatest increase in capacity for a given
increase in numbers of receivers.
Eigenvalues were generated as random samples with the

last values set to unity. The entire eigenvalue set was then
normalized in accordance with (44). Fig. 5 shows the result of
several Monte Carlo simulations.
The value of gives the ratio of the number of distinct eigen-

values, to the number of (smaller) equal eigenvalues, indepen-
dent of . For (no distinct eigenvalues), the capacity
of the correlated channel approaches the capacity of the i.i.d.
channel and . For other values of and , the correla-
tion becomes more severe giving a reduction in capacity growth
rate. Note that diminishes most rapidly as varies form
0 to small, nonzero, values. This is seen in both Figs. 5 and 6. In
Fig. 5, note that the plot does not extend completely to for

, although it is possible to plot arbitrarily small values of
, resulting in a step from . This is because for ,
there is no variation in eigenvalues, and so nonzero values of
are meaningless.
Fig. 6 shows with respect to for a particular

and various . As can be seen, for any value of , the growth
is “linear,” although the rate of growth is a function of . For
highly correlated , the growth rate becomes negligible.
The most severe correlation can be seen for small, nonzero,

values of with large . This is due to (44). For large and
small , the (large) variance of the eigenvalues is given by
large values of a small number of eigenvalues—the remainder
being very small to satisfy (44). This approximates a channel

Fig. 6. Capacity for and , given and .

which is singular, with only a small number of significant eigen-
values—the rest being approximately zero.
As becomes closer to unity the effect of a large variance is

distributed over many eigenvalues, and consequently, the effec-
tive correlation of the channel is reduced.
Intuitively, this can be seen from a beamforming perspective.

For a fixed variation in eigenvalues , small values corre-
spond to a small number of dominant signal paths—such as oc-
curs in Ricean fading. In the extreme case, the channel has only
one significant eigenvector or beam direction, the rest being
negligible. In this case, the total variation in eigenvalues is ac-
commodated by one direction.
A transmitter using equal power white Gaussian signals

wastes the majority of its power: only a tiny component of the
signals uses the particular beam direction, and the capacity
is correspondingly reduced. As increases, the number of
dominant signal paths increases. For a particular value, this
corresponds to a reduction in the difference between the largest
eigenvalue and the smallest eigenvalue, so that a larger number
of signal directions have similar power gains. Note that Fig. 6
does not extend to where all the eigenvalues of are
equal, as there can be no variation in eigenvalue magnitudes,
as such the regions and are mutually exclusive.

VII. CONCLUSION

The main results of this paper are expressions for the capacity
and corresponding optimal input density of a correlated ergodic
MIMO channel, where the channel is assumed to have a (Kro-
necker) correlated normal distribution. These expressions are
valid under the assumption that the noise experienced by the re-
ceiver is independent (although not necessarily i.i.d.).
The optimal input density is Gaussian with a covariance

matrix which satisfies a certain fixed-point equation, being
a function of the receive and transmit correlation matrices.
This equation is a natural generalization of the well-known
water filling solution (although the resulting optimal power
allocation is not water filling). Using this fixed-point equation,
an iterative method for numerical computation of the optimal
covariance has been suggested. Numerical capacity results
obtained using this algorithm were compared with the mutual
information given by the equal power strategy. In the case of
receive-only correlation, the optimal input strategy is equal
power independent Gaussian signals.
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In the case of receive- or transmit-only (single-ended) corre-
lation, a closed-form expression for the capacity has been given,
which is a function of the correlation matrix eigenvalues. It was
shown that the capacity may be written in terms of a summa-
tion of single-input multiple-output channel capacities. High-
and low-SNR asymptotic expressions were also obtained in the
general case, along with the corresponding asymptotically op-
timal input distributions.
An asymptotic closed-form expression has been given for

the case when the number of transmit antennas is increased,
while holding the number of receive antennas fixed and keeping

. This asymptotic limiting capacity has two com-
ponents: the first component is due to the dominant (distinct)
eigenvalues of the receive correlation matrix, and the second
component is due to the remaining (equal) eigenvalues. The
equal eigenvalue component has a spherical distribution, cor-
responding to the well-known i.i.d. channel case.
It was shown that receive-end correlated channels exhibit a

linear growth in (effective) channel capacity with respect to the
rank of the correlationmatrix. The proportionality of this growth
is a function of the variance of the eigenvalues of the correlation
matrix. In the case where the correlation matrix is full rank, and
the number of transmitters is large, this corresponds to a linear
growth with respect to number of receivers.
Where the variance of the eigenvalues of the receive covari-

ance matrix are small, it was shown that the capacity of cor-
related MIMO channel becomes close to the i.i.d. case. It was
also shown that there are some regions (where the ratio of cor-
relation matrix eigenvalues is large) for which the rate of linear
growth in capacity is extremely small. The i.i.d. channel is op-
timal in terms of linear growth, giving the greatest increase in
channel capacity, for each additional receiver.
Finally, it was noted that for high- and low-SNR levels, the

correlation of the channel does not play a significant role in
the capacity: only the most extreme (near-singular) correlation
matrices result in a significant loss in capacity.

APPENDIX A
PROOFS

Proof of Lemma 1: For unitary , the distribution of is
the same as . Fixing , apply the result preceding [2, Th.
1] which ensures that diagonal is sufficient. Since

is strictly convex on positive definite matrices [87], [89]
use [2] to note that

(47)

where the sum is over all permutation matrices . The in-
equality of (47) is an equality for , and thus
is capacity achieving.5

5We thank I. E. Telatar for this observation.

Proof of Lemma 2: The proof results from a series of mu-
tual information preserving transformations and the isotropic
property of the normal distribution. Let denote “has same dis-
tribution as.” Then, for and singular value de-
compositions ,

Now the capacity-achieving input distribution is Gaussian with
a certain covariance . The unitary matrix may
be absorbed into the transmit covariance since multiplication by
a unitary matrix will not affect the trace constraint.

Proof of Theorem 1: From [2] and [81], the optimal input
distribution for a Gaussian fading channel, with exact knowl-
edge of the channel realization at the receiver, is Gaussian.
From [25], [82], and [84], it is already known that the eigenvec-
tors of the optimizing input covariance diagonalize . This
means that the optimal transmit strategy is to transmit indepen-
dent symbols in the direction of the eigenvectors of . For this
reason, and with recourse to Lemma 2, it suffices to consider
only diagonal and , in which case is also diagonal.
The goal is to find the optimal covariance

subject to and
, which maximizes

for the channel (2) with , and
. It will be assumed that .

The objective function we wish to maximize is

(48)

(49)

where . Equation (49) is known to be concave on
positive definite matrices , [2], [87], [89]. The conditions for
optimality are [90, p. 87]

The partial differentiation may be taken inside the expecta-
tion, and using and the chain rule
of calculus results in

(50)

(51)

(52)

(53)

where is an all-zero matrix apart from entry , , which
is 1.
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Proof of Theorem 2: The basic quantity of interest is the

mutual information of the channel (1) with “white”
Gaussian input distribution, . The capacity
is found by then substituting with given by
Theorem 1.
From [11, p. 79], the density of is

(54)

where denotes (see, for example, [11]).
Then, the mutual information of interest is

(55)

Two transformations will be applied to obtain the result. First,
the (singular value decomposition) transformation
with , unitary, and diagonal with the nonzero
singular values of , in descending order, and second
. The Jacobians are [71], [91]

(56)

(57)

where , are invariant Haar measures on the Stiefel man-
ifold. The result of [91] has been modified to account for com-
plex variables, transcribing the result of [92, Th. 3.2].
Applying gives

(58)

The integrals with respect to and in (58) are over all unitary
matrices. Repeated application of (73) gives

(59)

Now applying the second transformation, where
the matrix is diagonal with entries ( th largest eigenvalue
of ) and

Finally, noting gives the desired result.

Alternate Proof: The previous proof takes care of possible
problems due to through use of the singular value decom-
position. For the case , the following calculation applies.
The quantity of interest is

(60)

where from Theorem 1, , and
. The variable has den-

sity [71, eq. (7.2.5)]

(61)

Using the change of variables (eigenvalue decom-
position) with Jacobian [92, p. 33]

and integrating over gives the above result. Generalizing
(61) for requires similar effort as the previous proof.

Proof of Theorem 3: If either or then
where, according to the notation

of [71, eq. (7.2.5)] , where .
In the case of (where is optimal), . For

, then . The remainder of the proof will be
carried through for . Change of variables may be used to
obtain the result.
The strategy of the proof is to obtain the density of an un-

ordered eigenvalue of . Now from (62).
Let with , and

with . From [83, eq.
(4.6)]

...
...

(62)
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where is the scalar hypergeometric function. Note that
for scalar . By repeated application of

l’Hôpital’s rule, the limits and
may be taken to generalize (62) to the case ,
and . This allows padding either of the
matrices with zero eigenvalues to ensure equal dimension,
and reduces to in the case that

. See, for example, [93].
From (62), we may write

(63)

Combining (61) and (63), the density for the ordered eigen-
values is

(64)

where the constant is

Now the expression (64) is invariant to permutations
of the eigenvalues , and thus the unordered density

.
Note also that the expression in (64) may be

written as a Vandermonde determinant

which means

(65)

for permutations and . From [86, 3.381.4], for and

Making the substitution and , the
may be integrated out to give the probability density

of a randomly chosen eigenvalue

For permutations , , and , the identities are used to obtain
the final results:

(66)

(67)

where (66) arises by noting , and denotes the
Kronecker delta in (67).
Substituting

results in

(68)

The result of (68) gives the density for a randomly chosen
eigenvalue which can be used to calculate the expectation of

.
The expectation of interest is with

given by (68). This integral has the same form as [2, Ex-
ample 3], i.e., the capacity of a Gaussian random channel with

transmitters and receivers. Denote the integral as

(69)
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A change of variables gives

(70)

Substituting (70) into (68) gives the desired result.

APPENDIX B
PROPERTIES OF THE HYPERGEOMETRIC FUNCTION

This section briefly outlines some properties of the hyperge-
ometric function and zonal polynomials of matrix arguments.
Many of these properties may be found in [11], [71], [83], and
[94]–[97]
Let be a symmetric matrix, and be the subspace

of polynomials of degree in distinct elements of

(71)

The zonal polynomial is the component of in the
subspace , and denotes summation over all partitions .
The hypergeometric function of matrix arguments

, where each is a symmetric
matrix, is given by

(72)
where .
The order of matrix arguments is unimportant. If any ,

the hypergeometric function reduces to an equivalent func-
tion with arguments, i.e.,

. The function is generated by
simple extension of the hypergeometric function of two matrix
arguments [71, definition 1.6.2]. It can be found by integrating a
hypergeometric function of one matrix argument over multiple
Stiefel manifolds:

(73)

where are normalized invariant Haar measures on the
orthogonal group , [71]. This extends the normal
two-matrix argument hypergeometric function, by noting that
for nonequal dimension

(74)

with , so we may pad each symmetric matrix
with zeros. Repeated integration over the (larger) mani-
fold may be performed, noting that the “additional” terms (due
to ) result in a volume discrepancy of for each in-
tegral.

The normalized Haar measure is related to the nonnormalized
Haar measure by

(75)

The hypergeometric function of matrix argument is
an extension of the scalar hypergeometric function

.
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