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Comments and Corrections

Corrections to “Hash Property and Fixed-Rate
Universal Coding Theorems”

Jun Muramatsu, Member, IEEE, and Shigeki Miyake, Member, IEEE

There are flaws in the proof of [1, Ths. 1 and 3]. More precisely,
inequalities
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which appears in [1, eq. (37)] and [1, p. 2695], respectively, do not
imply the existence of desired functions �, �, and a vector . To cor-
rect the flaws, we have to revise the statement of [1, Ths. 1 and 3, Corol-
lary 2] as follows. Let �	�� � �	
��� 	� as defined in [1, eq. (2)] and
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It should be noted that ��, ��, and �� depend on �, where �� �
��	��� ������ �� as defined in [1, eq. (1)]. Furthermore, we can as-
sume that �� 
 � without loss of generality because [1, eq. (H4)] still
holds when �� is replaced by �����.

Theorem 1: For a given fixed rate�, assume that ��� ��� satisfies
[1, eq. (H4)]. Then, for a given � � �, there is a function (matrix)
� � � such that

���������

� �� � �� ���� ������ � �	
 ���� � � �� ��

for all stationary memoryless sources � , where ��� � �� represents
the upper bound of the failure probability of selecting an appropriate
function � � �. Since
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then the error probability goes to zero as �� for all � satisfying
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by assuming that � is a constant and
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Corollary 2: Let � be a set of linear functions and assume that
��� ��� satisfies [1, eq. (H4)] for a fixed rate�. Then for a given � � �
there is a (sparse) matrix � � � such that
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for all stationary memoryless channels with additive noise � , where
the error probability goes to zero as �� for all � satisfying

��� �� � �� � ����� � � ��� �� � �����

by assuming (1) and (2) and that � is a constant.

Theorem 3: For given ��, �� � �, assume that ��� ��� (re-
spectively, �� � �� ����) satisfies [1, eq. (H4)] with ���� ��� (re-
spectively, ���� � ����). For given input distribution �� , � � �, and
� satisfying
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there are functions (matrices) � � �, � � �, and a vector � ���
such that

�����
 ������� �

� �� � �� ��� � � �
��� � �

�

� � ���� �� ���� � �	
 ���� ��� ��� ��

(3)

for all stationary memoryless channels �
 �� , where ��� � �� rep-
resents the upper bound of failure probability of selecting appropriate
functions � � �, � � �, and a vector � ���. Since
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then the right-hand side of (3) goes to zero as � �  for all �
 ��
satisfying
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by assuming that � is a constant and
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where � denotes ����.
Remark 1: By tracing the proof of [3, Lemma 18, eqs. (66)

and (70)], we can confirm that the ensemble of sparse matrices
introduced in [1, Sec. III-B] and [3, Sec. IV] satisfies (2) by defining
� � � �� � ����� and letting the constant � � be sufficiently large
depending on �� �.

Remark 2: The existence of a sequence � satisfying
(4)–(7) can be shown similar to [1, eq. (29)] by assuming
������ ���� �������� 	 
�

Corrections of the proof of theorems are presented in the following.
The proof is analogous to [2].

Proof of [1, Th. 1]: Instead of [1, eq. (37)], we use the following
inequality:
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Then, by using the Markov inequality, we have the fact that for a given
 � 
, there is a function (matrix) 	 such that
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for any type � . Then, we have
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for any �� .
Proof of [1, Th. 3]: Assume that � � �� satisfies [1, eq. (40)].

Similarly to the proof of [1, eq. (42)], we have
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Next, by using
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we have
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which is the replacement of [1, eq. (43)]. Then, by using the Markov
inequality, we have the fact that for a given  � 
 there are functions
(matrices) 	 � �, � � �, and a vector � ��� satisfying
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and
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for every � �	 . Finally, we define ��
� as [1, eqs. (UC1) and (UC2)]
and

	� 
 �� � � � �����

(there is a typo in [1, def. of 	�]. Then, we have
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and (13), shown at the bottom of the previous page, and is the replace-
ment of [1, eq. (44)], for every 
 � . Then, we have (3) from the fact
that
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(there is a typo in [1, eq. (41)]).
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