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Comments and Corrections

Corrections to “Hash Property and Fixed-Rate
Universal Coding Theorems”

Jun Muramatsu, Member, IEEE, and Shigeki Miyake, Member, IEEE

There are flaws in the proof of [1, Ths. 1 and 3]. More precisely,
inequalities
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which appears in [1, eq. (37)] and [1, p. 2695], respectively, do not
imply the existence of desired functions 4, B, and a vector ¢. To cor-
rect the flaws, we have to revise the statement of [1, Ths. 1 and 3, Corol-
lary 2] as follows. Let |#|T = max{0, 6} as defined in [1, eq. (2)] and
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It should be noted that @4, 34, and Ay depend on n, where Ay =
[[t/|/n]log(n + 1) as defined in [1, eq. (1)]. Furthermore, we can as-
sume that 54 > 0 without loss of generality because [1, eq. (H4)] still
holds when 34 is replaced by |3 ™.

Theorem I: For a given fixed rate IR, assume that (A, p 4 ) satisfies
[1, eq. (H4)]. Then, for a given £ > 0, there is a function (matrix)
A € A such that
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for all stationary memoryless sources X, where 1/[1 + £] represents

the upper bound of the failure probability of selecting an appropriate
function A € A. Since

inf Fx(R)>0
X:H(X)<R

then the error probability goes to zero as n — oo for all X satisfying
H(X)<R

by assuming that ¢ is a constant and
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Corollary 2: Let A be a set of linear functions and assume that
(A, pa) satisfies [1, eq. (H4)] for a fixed rate R. Then for a given £ > 0
there is a (sparse) matrix A € A such that

Errory|x(A)
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for all stationary memoryless channels with additive noise Z, where
the error probability goes to zero as n — oo for all X satisfying

log|X| — R < I(X;Y) =log |X| — H(Z)

by assuming (1) and (2) and that ¢ is a constant.

Theorem 3: For given R4, R > 0, assume that (A, pa) (re-
spectively, (A x B,pap)) satisfies [1, eq. (H4)] with (4, 35) (re-
spectively, (aas, Sag)). For given input distribution px, £ > 0, and
~ satistying
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there are functions (matrices) A € A, B € BB, and a vector ¢ € IinA
such that
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for all stationary memoryless channels piy-|x, where 1/[1 + £] rep-
resents the upper bound of failure probability of selecting appropriate
functions 4 € A, B € B, and a vector ¢ € Im.A. Since

inf F§,'|/\'(RA) > 0
py | x HX|Y)<R 4

then the right-hand side of (3) goes to zero as n — oo for all j1y|x
satisfying

H(X|Y) < Ra

by assuming that ¢ is a constant and
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where x denotes r(n).

Remark 1: By tracing the proof of [3, Lemma 18, eqgs. (66)
and (70)], we can confirm that the ensemble of sparse matrices
introduced in [1, Sec. III-B] and [3, Sec. IV] satisfies (2) by defining
7 = 2[7'logn] and letting the constant 7 be sufficiently large
depending on |.X|.

Remark 2: The existence of a sequence &
(4)~(7) can be shown similar to [I,
lim,, o 222290 3, (n) = 0.

Corrections of the proof of theorems are presented in the following.
The proof is analogous to [2].

Proof of [1, Th. 1]: Instead of [1, eq. (37)], we use the following

inequality:

satisfying
eq. (29)] by assuming
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Then, by using the Markov inequality, we have the fact that for a given
& > 0, there is a function (matrix) A such that
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for any g x. |
Proof of [1, Th. 3]: Assume that 7 C 7 satisfies [1, eq. (40)].
Similarly to the proof of [1, eq. (42)], we have
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which is the replacement of [1, eq. (43)]. Then, by using the Markov
inequality, we have the fact that for a given £ > 0 there are functions
(matrices) A € A, B € B, and a vector ¢ € Im.A satisfying
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and
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