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Abstract—In this correspondence, we investigate the effect of channel es-
timation error on the capacity of multiple-input–multiple-output (MIMO)
fading channels. We study lower and upper bounds of mutual informa-
tion under channel estimation error, and show that the two bounds are
tight for Gaussian inputs. Assuming Gaussian inputs we also derive tight
lower bounds of ergodic and outage capacities and optimal transmitter
power allocation strategies that achieve the bounds under perfect feedback.
For the ergodic capacity, the optimal strategy is a modified waterfilling
over the spatial (antenna) and temporal (fading) domains. This strategy is
close to optimum under small feedback delays, but when the delay is large,
equal powers should be allocated across spatial dimensions. For the outage
capacity, the optimal scheme is a spatial waterfilling and temporal trun-
cated channel inversion. Numerical results show that some capacity gain is
obtained by spatial power allocation. Temporal power adaptation, on the
other hand, gives negligible gain in terms of ergodic capacity, but greatly
enhances outage performance.

Index Terms—Capacity, channel estimation error, feedback delay,
multiple-input–multiple-output (MIMO), mutual information, outage
capacity, power allocation, waterfilling.

I. INTRODUCTION

Multiple-input–multiple-output (MIMO) systems provide dramatic
capacity gain through an increased spatial dimension [1], [2]. However,
the capacity gain is reduced if the channel state information (CSI) is not
perfect. Since perfect CSI is difficult to obtain in MIMO systems due
to an increased number of channel parameters to estimate at the re-
ceiver and to be fed back to the transmitter, the channel capacity with
imperfect CSI is an important problem to investigate. There have been
several approaches in this area. In [3], [4], Lapidoth, et al. show that
in the absence of CSI the MIMO capacity only grows double-logarith-
mically as a function of signal-to-noise ratio (SNR), and we do not
benefit from the increased spatial dimensions. However, under certain
conditions, MIMO systems with a reasonable channel estimation accu-
racy can achieve linear increase of capacity at practical SNR values [5].
For example, in [6], [7], the authors study capacity of MIMO channels
under a block fading assumption and show that the capacity increases
logarithmically in the SNR but with a reduced slope. Thus, it is impor-
tant to specify the channel fading condition since it affects the accuracy
of CSI and the way CSI is obtained. CSI at the receiver (CSIR) is typ-
ically obtained via channel estimation. Pilot or training based channel
estimation schemes are studied in [7]–[9] for block fading channels and
channels with a band-limited Doppler spectrum, respectively, and their
achievable rates are derived. It is seen that the capacity is decreased by
the reduced SNR due to the channel estimation error and by the loss of
available dimensions used for channel estimation.

In this correspondence, we assume that channel estimation is done
in a separate background channel and does not consume any dimen-

Manuscript received August 1, 2004; revised December 13, 2005. This work
was supported in part by the National Science Foundation (NSF) under Grant
CCR-0325639-001 and by LG electronics. The material in this correspondence
was presented in part at the IEEE International Conference on Communications
(ICC), Paris, France, June 2004.

The authors are with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA (e-mail: yoots@wsl.stanford.edu; an-
drea@wsl.stanford.edu).

Communicated by M. Médard, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2006.872984

sion, i.e., partial CSI is provided by a genie at the receiver. Then, we
concentrate on the effect of channel estimation error on the capacity
of MIMO fading channels. This approach is taken in [10], where the
author derives a lower bound of mutual information with channel es-
timation error for single-input–single-output (SISO) channels. In our
work, we extend this result to MIMO channels and derive a lower and
upper bound of mutual information. Since MIMO channels provide
spatial dimensions, an appropriate spatial filter should be designed to
shape the input distribution to maximize mutual information. Fading
channels provide another degree of freedom for the transmitter opti-
mization; transmit power can be adapted to the channel variation to
increase the capacity. In SISO channels, the optimal power adaptation
that maximizes the ergodic capacity is given by waterfilling over the
channel fading [11]. This optimal power adaptation, however, should
be modified when we have channel estimation error; in [12], the author
revises the optimal power adaptation based on the mutual information
lower bound in [10]. In this correspondence, these results are extended
to MIMO channels. Specifically, we study lower and upper bounds of
mutual information for a Rayleigh flat fading channel with a genie-pro-
vided MMSE channel estimate at the receiver. Then, assuming a per-
fect and instantaneous feedback, we derive optimal transmitter strate-
gies that maximize the lower bound of mutual information to obtain the
corresponding lower bounds of ergodic and outage capacities. The op-
timal transmitter strategies involve power allocations over both spatial
(antenna) and temporal (fading) domains. We derive those strategies for
both ergodic and outage capacities. We also consider the effect of feed-
back delay and show that the strategies designed for perfect feedback
are still applicable with little capacity loss when the delay is small.

The rest of this correspondence is organized as follows. In Section II,
our system model is introduced. In Section III, lower and upper bounds
of mutual information under channel estimation error are derived. The
capacity bounds are also derived subject to an average power constraint.
In Section IV, optimal power allocation strategies are determined for
both ergodic and outage capacities. Finally, numerical results are pre-
sented in Section V.

II. SYSTEM MODEL

Consider a MIMO system with t transmit and r receive antennas.
The discrete-time channel at time n is modeled as yn = Hnxn + zn,
whereyn is an r�1 channel output,Hn is an r�t channel transfer ma-
trix, xn is a t� 1 channel input, and zn is an r � 1 vector of additive
white Gaussian noise (AWGN). Throughout this correspondence, we
will use upper case boldface letters for matrices and lower case bold-
face for vectors. We assume bothHn and zn are ergodic and stationary,
and their entries are independent, identically distributed (i.i.d.) and
zero-mean circularly symmetric complex Gaussian (ZMCSCG). We
normalize the channel and noise variance such that the entries of Hn

and zn have unit variance. By properly scaling the transmit power, this
normalization does not change the mutual information of the channel.
In such a system, if the fading process fHng is perfectly known to the
receiver, the mutual information between the channel input and output
is given by [1]

I(x;y) = E flog
2
jI+H

�

n
HnQnjg (1)

where Qn is the input covariance matrix Qn = E(xnx
�

n
), and Ef�g

is an expectation operator.H�

n
denotes the conjugate transpose ofHn.

Now, consider the situation where fHng is imperfectly known to
the receiver, i.e., the receiver is provided with some partial informa-
tion f ~Hng of the channel, with which the receiver performs minimum
mean square error (MMSE) estimation of fHng. We assume fHng
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Fig. 1. Lower and upper bounds of mutual information under Gaussian inputs for 4� 4 MIMO channel versus SNR (P ) for several channel estimation accuracies
� .

and f ~Hng are jointly ergodic and stationary Gaussian processes, and
the entries of ~Hn are independent. Denote the MMSE estimation as
Ĥn = E(Hnj ~Hn; ~Hn�1; . . .), and the estimation error as En =
Hn � Ĥn. Then, by the property of MMSE estimation, Ĥn and En
are uncorrelated, and the entries of En are ZMCSCG with variance
�2

E = MMSE = E(jHn;ij j
2)�E(jĤn;ijj

2), whereHn;ij and Ĥn;ij

represent the (i; j)th elements ofHn and Ĥn, respectively. The entries
of Ĥn are also i.i.d. ZMCSCG with variance 1��2

E. Note that �2

E is a
parameter that captures the quality of the channel estimation and is as-
sumed to be known to both the transmitter and the receiver. �2

E can be
appropriately chosen depending on the channel dynamics and channel
estimation schemes. Some examples are as follows.

1) In [8], the authors consider a block Rayleigh fading channel of
coherence time T and use orthonormal training signals which
is optimal for spatially white inputs. With this setting they ob-
tain �2

E = 1= 1 + T

t
P� , where T� is the training interval

length and P� is the transmit power (average received SNR) of
the training symbols.

2) In [9], the authors consider a continuously time-varying
Rayleigh-fading channel with a bandlimited lowpass spectrum
with the cutoff frequency F . Using pilot symbols with a sam-
pling rate 1=L � 2F , they show that �2

E = 1= 1 + 1

2FL
P� .

3) In [5], the channel is modeled as a Gauss-Markov process. The
authors propose a decision-oriented training scheme which gives
an upper bound �2

E � t2t� + t= �P , where � is a parameter re-
lated to the channel coherence time and �P is the average transmit
power. The mean square error (MSE) resulting from practical
MIMO channel estimators can often be approximated in the
form �2

E = �u + �2

n= �P , e.g., [13].
In practice, the channel estimation process itself may incur loss of
bandwidth and energy. However, since the focus of this correspondence
is to study the effect of channel estimation error, we assume that Ĥn

and �2

E are given a priori, through, for example, channel estimation
in a separate background channel, and we concentrate on analyzing its
effect on capacity. See [8] for the discussion regarding trade-offs be-
tween channel estimation accuracy and bandwidth/energy loss due to
channel estimation in training based systems.

The transmitter typically obtains CSI via channel feedback. To sim-
plify analysis, we assume that the feedback is instantaneous and error-
free as in [12], which implies that whatever CSI the receiver has is
also available at the transmitter. This analysis could serve as a basis for
more practical situations where the feedback is imperfect or limited as
in Section IV-D, where we consider the case that CSIT is different from
CSIR. This situation can arise either due to feedback delays or in time
division duplex (TDD) systems where CSIT can be obtained directly
using the reciprocity of the channel. We will assume that the transmitter
is constrained in its total power Pn, and it can adapt its power to the
channel fading to maximize capacity, i.e., E(Pn) = E (Tr(Qn)) � �P ,
where Tr(�) stands for trace. Under Qn = ( �P=t)I, �P is equal to the
average SNR at each receive antenna [14]. Therefore, we will simply
refer to �P as the average SNR. In the remainder of this correspondence,
we will often omit the time index n when it is obvious from the con-
text1 and use the subscript for other indexing purposes; Mij and vk
represent the (i; j)th element of the matrix M and the kth element of
the vector v, respectively. This use of subscript should not be confused
with the time indices and will be obvious from the context.

III. CAPACITY BOUNDS WITH CHANNEL ESTIMATION ERROR

A. Lower and Upper Bounds of Mutual Information

In this section, we develop lower and upper bounds of mutual infor-
mation I(x;yjĤ) given an estimated channel knowledge Ĥ.
Lemma 1: A lower bound of mutual information is given by

[8]–[10]

Ilower(x;yjĤ) = E log
2
I+

1

1 + �2

E
P
Ĥ
�

ĤQ : (2)

Proof: See Appendix I.
Comparing (2) to (1), we observe that the channel estimation error

results in an SNR loss factor of at most � = (1��2

E)=(1+�2

EP ) [9].

1This is possible because the random processes we are dealing with are sta-
tionary.
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Fig. 2. Lower and upper bounds of mutual information for several antenna configurations versus SNR (P ) for � = 0:1.

Lemma 2: An upper bound of mutual information is given by [9]

Iupper(x;yjĤ) = Ilower(x; yjĤ) + r E log2
1 + �2

EP

1 + �2
E
kxk2 (3)

where the expectation is taken over the joint distribution of x.
Proof: See Appendix II.

Note that the second term in (3) is nonnegative by Jensen’s inequality
with E(kxk2) � P . Also note that we have not restricted the input dis-
tribution p(x) to be Gaussian in deriving the upper bound (3). However,
the upper bound (3), which we need to maximize over p(x), is quite
loose for certain non-Gaussian input distributions and thus may not be
useful. Therefore, we are more interested in evaluating the performance
of Gaussian inputs, although not optimal, when used under channel es-
timation error. The following lemma shows that the gap between the
lower (2) and the upper (3) bounds is usually small for a Gaussian input
unless r � t. In other words, the two bounds are approximately equal
to the exact mutual information under Gaussian inputs.
Lemma 3: In the limit of high SNR and a large number of antennas,

the second term in (3) approaches (r=t) log2
p
e � 0:72(r=t) for

Gaussian inputs.
Proof: See Appendix III.

In Figs. 1 and 2 we plot the lower (2) and upper (3) bounds of mutual
information. The plots not only confirm Lemma 3 but also show that
the gap is small for any SNR values.

B. Lower Bound of Ergodic Capacity

The ergodic capacity of the fading channel model in Section II with
an estimated channel Ĥ known at the transmitter and the receiver is
given by [15]

C = E max
p(xjĤ)

I(x;yjĤ) (4)

where p(xjĤ) is the probability distribution of x given Ĥ.2 In this
section, we obtain a lower bound of (4) by finding the optimal input

2Note that (4) should more precisely be written as C =
E[max I(x;yjĤ = Ĥ )] but we used a simplified notation
to keep subsequent notations simple.

distribution p(xjĤ) that maximizes (2). Since the lower bound (2)
of I(x;yjĤ) depends on p(xjĤ) only through Q, it remains to find
the optimal Q as a function of Ĥ. Let the singular value decomposi-
tion (SVD) of the estimated channel matrix be Ĥ = UDV�, whereU
andV are unitary andD is diagonal, and let us define two quantities,
~Q = V�QV and �D�D. Then

Ilower(x; yjĤ) = E log2 I+
1

1 + �2
E
P
� ~Q : (5)

Under an average power constraint E(P ) = E (Tr(Q)) � �P , ob-
serving that Tr(Q) = Tr( ~Q), (5) is maximized with ~Q a diagonal
matrix, ~Q = diag(P1; . . . ; Pt), with an optimal power distribution
fPig such that t

i=1 Pi = P . Thus, the lower bound of ergodic ca-
pacity is given by

Clower = E max
fP g

t

i=1

log2 1 +
Pi�i

1 + �2
E
P

subject to E(P ) = E
t

i=1

Pi � �P (6)

where �i is the (i; i)th element of � and thus the ith eigenvalue of
Ĥ�Ĥ. The above expectations are performed over the joint distribu-
tion of (�1; . . . ; �t). The input to the channel that achieves the ca-
pacity has covariance matrix of the formQ = Vdiag(P1; . . . ; Pt)V

�

whose optimal subchannel powers fPig are determined as functions of
(�1; . . . ; �t). Finding the Pi’s will be the main topic of Section IV.

The capacity lower bound (6) can be achieved by the following. First,
SVD is performed on the estimated channel, Ĥ = UDV�, which
would diagonalize the MIMO channel if the channel estimation were
correct. However, with Ĥ different fromH, the channel is not fully de-
composed into independent SISO links. To see this, let ~E = U�EV.
Then we haveH = Ĥ+E = U(D+~E)V�. Thus, transmit precoding
and receiver shaping byV andU� will produce an equivalent channel
matrix D + ~E. It can be easily verified that ~E is zero mean with un-
correlated entries with variance �2

E. Hence, the decomposed channel,
D+ ~E, is not diagonal. After all, as a result of using imperfect channel
information Ĥ to construct a precoding and receiver shaping matrices,
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we have obtained subchannels that are not independent, but instead be-
have like an interference channel with ~E representing channel gains
from interferers. Specifically, the ith SISO link is described by

~yi = Dii~xi + ~Eii~xi +

t

j=1;j 6=i

~Eij~xj + ~zi (7)

where Dii can be interpreted as an estimated subchannel gain, ~Eii as
its channel estimation error, and the third and the last term together are
viewed as an additive non-Gaussian noise with an average power of
Ni = 1+ �2E(P � Pi). The mutual information I(~xi; ~yijDii) of this
channel is in general difficult to compute because of the non-Gaussian
nature of the noise plus interference, but the generalized mutual infor-
mation (GMI), which is the achievable rate under an i.i.d. Gaussian
input distribution and nearest neighbor decoding rule, is known in this
case and given by [3]

I(~xi; ~yijDii) = log2 1 +
PiD

2
ii

Ni + �2
E
Pi

(8)

= log2 1 +
Pi�i

1 + �2
E
P

: (9)

Summing over m = minfr; tg subchannels and using the optimal
power allocation, we obtain the capacity lower bound in (6). Thus, the
lower bound can be interpreted as the maximum achievable data rate
of communication systems that are designed to perform optimally with
perfect channel knowledge but ignore channel estimation error. Those
systems will typically use SVD, Gaussian inputs, and nearest neighbor
decoders to achieve capacity, but fail to give optimal performance in
the presence of channel estimation error, and only achieve the lower
bound.

IV. OPTIMAL POWER ALLOCATION AND CAPACITY LOWER BOUNDS

As we have seen, Clower is the supremum of achievable data rates
in practical transmission systems that employ Gaussian codebooks and
nearest neighbor decoders. Moreover, we have seen that the difference
between Clower and the exact Gaussian capacity is small unless r �
t. Hence, in this section, we treat Clower as a performance measure
and concentrate on deriving the optimal power allocation strategy to
achieve it for each of the following cases.

A. Rayleigh Fading Channels, No CSIT

In Rayleigh fading channels, Ĥ is ZMCSCG with i.i.d. entries as is
stated in Section II. Without CSIT, the optimal Q that maximizes (6)
is spatially white, i.e., Q = (P=t)I. Moreover, it can be verified by
using Jensen’s inequality that the temporal power adaptation does not
increase the capacity, i.e., P = �P . Therefore, the capacity lower bound
is given by

Clower; NP =

t

i=1

E log2 1 +
�P=t

1 + �2
E
�P
�i : (10)

B. CSIT, Spatio–Temporal Power Allocation for Ergodic Capacity

In this section, we derive the optimal spatio–temporal power
allocation that maximizes ergodic capacity in (6) when the
transmitter knows Ĥ through feedback. Note that the func-

tion t

i=1 log2 1 + P �

1+� P
in (6) is not concave in

[P1; . . . ; Pt]
T for �2E > 0, due to the presence of Pk in the denom-

inator. Hence it cannot be directly optimized. However, for a fixed
P = t

j=1 Pj , the function becomes concave. This suggests a way to

find the optimal spatio-temporal power allocation for (6) by a two-step
approach as follows.

Let us define a temporal power adaptation policyP (Ĥ) as the choice
of a transmit power at the transmitter with estimated channel knowl-
edge Ĥ. The power adaptation policy shall be called valid if it satisfies
an average power constraint, E [P (Ĥ)] � �P . Let us denote the set of

all valid power adaptation policies as P = P (Ĥ) j E [P (Ĥ)] � �P .

Now consider a fixed power adaptation policy P (Ĥ) 2 P . It can be
easily shown that the optimal spatial power allocation for a given es-
timated channel Ĥ under the fixed power adaptation policy P (Ĥ) is
given by a water-filling over subchannels with the subchannel gains
scaled by �2E as

Pi(P (Ĥ); Ĥ) = �(P (Ĥ); Ĥ)�
1 + �2EP (Ĥ)

�i

+

(11)

and the (instantaneous) capacity lower bound is

Clower(P (Ĥ); Ĥ) =

m

i=1

log2
�(P (Ĥ); Ĥ)�i

1 + �2
E
P (Ĥ)

+

(12)

where �(P (Ĥ); Ĥ) represents the local water-level associated with
P (Ĥ) and Ĥ, and is chosen to satisfy t

i=1 Pi(P (Ĥ); Ĥ) = P (Ĥ).
Then, it remains to find the optimal temporal power adaptation policy
P (Ĥ) 2 P that maximizes the expected value of (12)

Clower = max
P (Ĥ)2P

E Clower(P (Ĥ); Ĥ) : (13)

An interesting suboptimal choice is P (Ĥ) = �P , which corresponds
to the case with only spatial power allocation and gives the following
capacity lower bound:

Clower; SP = E

m

i=1

log2
�( �P ; Ĥ)�i

1 + �2
E
�P

+

: (14)

The optimal solution to (13) can be found using a Lagrangian
method. Forming Lagrange multipliers and differentiating both sides
with respect to P (Ĥ), we get the following condition:

@Clower(P (Ĥ); Ĥ)

@P (Ĥ)
=

1

� ln 2
(15)

where � is a constant that represents the global water level. In Ap-
pendix IV, we show that the partial derivative in the LHS of (15) is
given by

@Clower(P (Ĥ); Ĥ)

@P (Ĥ)
=

1

ln 2

1

�(P (Ĥ); Ĥ) 1 + �2
E
P (Ĥ)

(16)

which is a decreasing function of P (Ĥ), implying that
Clower(P (Ĥ); Ĥ) is concave in P (Ĥ). Thus, (15) becomes both
necessary and sufficient, and achieves the global maximum of (13).

Equations (15)–(16) suggest that the marginal capacity gain for a
specific channel realization Ĥ always decreases as we assign more
power, and that the optimal temporal power adaptation strategy P (Ĥ)
is to pour power until the marginal capacity gain for each channel re-
alization drops to a constant value 1=(� ln 2) that is determined by the
average available transmit power �P . These facts are illustrated in Fig. 3.
The following theorem gives the closed-form expression for the op-
timal transmitter power adaptation policy as a function of channel es-
timate Ĥ.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 5, MAY 2006 2207

Fig. 3. Marginal capacity gains at three different Ĥ. The horizontal line represents 1=(� ln 2) for �P = 6 dB and � = 0:1. For each Ĥ the transmit power is
determined at the point where the marginal capacity gain intersects this horizontal line.

Fig. 4. Global (�) and local (�) water levels. These two levels coincide when � = 0.

Theorem 1: The optimal temporal power adaptation policy is given
as

P (Ĥ)=

�(�0+2�2E)+ �20+ 4k(Ĥ)��0�2E(�0+�2
E
)

2�2
E
(�0 + �2

E
)

+

(17)

where k(Ĥ) is the number of subchannels that have positive powers,

i.e., k(Ĥ) = t

i=1 I Pi(Ĥ) > 0 , I(�) is an indicator function, and
�0, which is a scalar value that represents the matrix channel, satisfies
��10 = k(Ĥ)

i=1 ��1
i

.
Proof: See Appendix V.

Equation (17) is a direct extension of the similar result for SISO
channels in [12]. Practical systems could use either (17) or an iter-
ative algorithm based on (15)–(16) [16]. The iterative algorithm will
always converge due to the concavity of (12). Note that as �2E ! 0,
�(P (Ĥ); Ĥ) ! � and thus (11) and (17) become a two-dimensional
water-filling with a single water level �. When �2E > 0, however, we
need two levels of power allocation as is shown in Fig. 4; the global
water-level � determines how much power to use through (17) given
the channel estimation Ĥ, and the localwater-level �(Ĥ) dictates how
to distribute the power to the subchannels through (11). Then the ca-
pacity is given by (12)–(13), and is achieved using input covariance
Q = Vdiag(P1; . . . ; Pt)V

�.
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To gain further intuition, we examine special cases and asymptotic
behaviors of the optimal power allocation and capacity lower bounds.
1) MISO and SIMO Channels: In multiple-input–single-output

(MISO) and single-input–multiple-output (SIMO) channels where
there is only one spatial dimension, the optimal power allocation in
(17) simplifies to

P (�) =
�(�+ 2�2E) + �2 + 4���2

E
(�+ �2

E
)

2�2
E
(�+ �2

E
)

+

(18)

where � = kĤk2 is the squared norm of the channel estimation
vector Ĥ. This formula is the same as the SISO result in [12] except
that � is redefined as an effective scalar gain of the MISO (SIMO)
channel. For MISO channels, the optimal input covariance matrix that
achieves Clower is Q = P (�)Ĥ�Ĥ=kĤk2, which means that the
optimal transmission scheme employs both a beamforming3 along the
direction given by Ĥ�=kĤk and a power adaptation P (�) over time.
The power adaptation modulates the transmit power in time; whereas
the beamformer allocates the given power at any time instant over the
transmit antennas to maximize the instantaneous rate.
2) Low SNR or Large Estimation Error Regime: When Pi�i �

1 + �2EP , we can approximate (6) and (13) as

Clower max
P (Ĥ)2P

E max
fP g

1

ln 2

t

i=1 Pi�i

1 + �2
E
P (Ĥ)

; (19)

where the approximation symbol denotes that the ratio of its two
sides converges to one as (Pi�i)=(1 + �2EP ) ! 0. The inner maxi-
mization is achieved by assigning all the power to the subchannel with
the highest gain. Therefore, we have

Clower max
P (Ĥ)2P

E 1

ln 2

P (Ĥ)�max

1 + �2
E
P (Ĥ)

(20)

where�max = max f�1; . . . ; �tg. This means that beamforming is the
asymptotically optimal spatial power allocation at low SNR or large
estimation error. Intuitively, this is because the effective subchannel
gains �i=(1 + �2EP ) are so low in this region that the waterfill covers
only the strongest subchannel. Using Lagrange multipliers, the optimal
temporal power adaptation policy is found to be

P (Ĥ) =

p
��max � 1

�2
E

+

: (21)

3) High SNR and Small Estimation Error Regime: When Pi�i �
1+ �2EP , it can be shown that the uniform power allocation over both
spatial subchannels and time domain is asymptotically optimal. Thus,
(6) and (13) can be approximated as

Clower m log2
�P

m 1 + �2
E
�P

+ E(log2 jWj) (22)

where m = minfr; tg, the number of spatial subchannels, and the
m � m Wishart matrixW is defined as W = ĤĤ� if t > r, and
W = Ĥ�Ĥ if t � r [17]. The symbol means that the difference of
its two sides vanishes as (Pi�i)=(1 + �2EP ) ! 1. An analytical ex-
pression for (22) can be obtained by noting that Ĥ is complex Gaussian.
Following similar steps as in [18], we have

Clower m log2
(1� �2E) �P

m(1 + �2
E
�P )

+
1

ln 2

m

j=1

n�j

k=1

1

k
� 
m (23)

where m = minfr; tg, n = maxfr; tg, and 
 � 0:577 denotes
Euler’s constant.

3Beamforming in this correspondence is defined as the use of a single spatial
subchannel along one eigen-direction.

4) High SNR and Non-Vanishing Estimation Error Regime: 4When
�P ! 1 and lim �P!1 �2E �2u > 0, as in the example (3) in Sec-
tion II, it can be shown that the uniform power allocation over time
domain is asymptotically optimal, and that (13) becomes

lim
�P!1

Clower = E
k(Ĥ)

i=1

log2
�0(Ĥ)�i

�2u
(24)

where �0(Ĥ) is a water level that determines subchannel powers as

Pi
�P

= �0(Ĥ)� �2u
�i

+

: (25)

Thus, as �P ! 1, the capacity lower bound does not go to infinity
but approaches a finite rate. However, some caution is required in in-
terpreting this result. In particular, Lapidoth et al. in [3], [4] show that
the true Shannon capacity without any input restriction grows double-
logarithmically in the SNR. However, they also point out that under
Gaussian inputs the mutual information in the high SNR regime is
bounded by the channel uncertainty and becomes independent of SNR.
This explains whyClower, which is based on a Gaussian input, is upper
bounded as (24) at high SNR. Second, note that here we have assumed
that �2E does not vanish as SNR increases. The result, however, be-
comes entirely different when the channel estimation improves pro-
portionally to SNR, which is the case in [7]–[9] where it is shown that
the noncoherent capacity of block fading channels and the capacity of
pilot-based schemes still have a logarithmic dependence on the SNR.
This fact can also be confirmed from (22) by using �2E in the examples
(1) or (2) in Section II. Thus, assumptions on channel estimation error
greatly impact the high SNR behavior of capacity lower bounds.

C. CSIT, Spatio–Temporal Power Allocation for Outage Capacity

In the previous sections, we have derived the optimal spatio–tem-
poral power allocation to maximize the ergodic capacity of the
channel. In this section, we use the transmitter channel knowledge Ĥ
to obtain a full spatio–temporal power allocation that maximizes the
outage capacity. We declare an outage if for a given channel estimation
Ĥ, a power adaptation policy P (Ĥ) cannot support a specified rate
threshold R0

out. Note that the optimal spatial power allocation in
(11) is still applied to the outage capacity, since it maximizes the
instantaneous data rate for a given Ĥ and P (Ĥ). Therefore, an outage
will be declared if and only if Clower(P (Ĥ); Ĥ) < R0

out, where
Clower(P (Ĥ); Ĥ) is as defined in (12), and the outage probability is
given by

q = Pr Clower(P (Ĥ); Ĥ) < R0
out : (26)

Our objective is to find P (Ĥ) 2 P that minimizes this outage.
Since Clower in (12) is a strictly increasing function of P for a given
Ĥ, an inverse function exists

P = f(Clower; Ĥ) (27)

that gives the minimum required transmit power to achieve the capacity
lower bound Clower for a given channel estimation Ĥ. Thus, for the
outage rate R0

out, we need a transmit power of Pmin = f(R0
out; Ĥ).

This is the minimum transmit power to avoid an outage with Ĥ. Let us
now define the set of channel estimation matricesH(Pcuto� ; R

0
out) for

which Pmin is less than a certain threshold Pcuto�

H(Pcuto� ; R
0
out) = Ĥ f(R0

out; Ĥ) < Pcuto� : (28)

4Note that the regimes 3) and 4) overlap.
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Roughly,H represents the set of good channels. Then, the power adap-
tation policy that minimizes the outage probability is given by

P (Ĥ) =
f(R0

out; Ĥ) if Ĥ 2 H

0 if Ĥ 62 H
(29)

with Pcuto� chosen to satisfy

H

f(R0
out; Ĥ)p(Ĥ)dĤ = �P : (30)

This form of power adaptation is a truncated channel inversion. This
minimizes the average transmit power for a given outage rate R0

out by
turning the transmitter off while the channel is in a deep fade and using
just enough power to avoid outage when the channel is in a good state.
Since this minimizes the transmit power, it makes the setH the largest
possible (Pcuto� is maximized) and thus yields minimum outage prob-
ability q = Pr Ĥ 62 H .

A lower bound of outage capacity,Coutage, for a given outage proba-
bility q0, can be obtained by numerically findingRout such that q = q0.

D. Effect of Feedback Delay

The developments so far have assumed an instantaneous and
error-free feedback. With feedback delay, however, blindly adapting
the transmit power using (11) and/or (17) may hurt the data rate when
the feedback delay is significant, since the channel has changed to a
new state by the time the transmitter has the channel estimate. Clearly,
the power allocation policies should be modified accordingly. Let
d denote the feedback delay in number of symbols and define the
correlation coefficient � between CSIT and CSIR as

� =
E(ĤnĤn�d)

E(jĤnj2)E(jĤn�dj2)
=
E(ĤnĤn�d)

1� �2
E

: (31)

The transmitter best estimatesHn from Ĥn�d in a MMSE sense as

�Hn = E(HnjĤn�d) (32)

= E(Ĥn +EnjĤn�d) (33)

= E(ĤnjĤn�d) (34)

= �Ĥn�d: (35)

Thus, the channel is decomposed as Hn = �Hn + Gn + En where
Gn = Ĥn � �Ĥn�d is the channel estimation error at the transmitter
additionally incurred due to the delay. In fact, this formulation is valid
not only for the systems where CSIT is a delayed version of CSIR, but
also for the general cases where CSIT can be obtained independently
from CSIR, such as in TDD systems, with an appropriate definition of
�. Note that �Hn is known to both the transmitter and the receiver, while
Ĥn, or equivalently,Gn, is available only at the receiver. In this case,
the ergodic capacity lower bound is obtained by

C
(�)
lower = E max

p(xj �H)
Ilower(x;yjĤ) (36)

= E max
Q

log2 I+
( �H+G)Q( �H+G)�

1 + �2
EP ( �H)

(37)

whereQ is now a function of �H, and P ( �H) = Tr(Q). Unfortunately,
there is no known closed-form solution to the above problem. However,
the following theorem shows that the optimalQ has a simple structure,
and the optimal power allocation therein can be determined numeri-
cally.

Theorem 2: Without loss of generality, (37) is maximized by the
covariance matrixQ = V ~QV�, whereV is a unitary matrix obtained
from the SVD of �H = UDV�, and ~Q is a diagonal matrix whose
entries can be determined by solving the following convex optimization
problem:

C
(�)
lower(P ( �H); �H)=max

~Q
E log2 I+

(D+ ~G) ~Q(D+ ~G)�

1 + �2
EP ( �H)

subject to ~Q � 0; Tr( ~Q) � P ( �H); ~Q is diagonal (38)

where ~G is a random matrix with the same distribution as G, i.e., the
entries of ~G are independently generated from ZMCSCG distribution
with variance (1� �2

E)(1� �2). The above expectation is taken over
~G. Once C(�)

lower(P ( �H); �H) is found, C(�)
lower is obtained by optimizing

it over feasible P ( �H) as

C
(�)
lower = max

P ( �H):E[P ( �H)��P ]
E C

(�)
lower(P ( �H); �H) : (39)

Proof: The essential part of the proof is to observe that (37) is
equivalent to the capacity of a MIMO channel with an AWGN vari-
ance 1 + �2

EP ( �H) and a mean feedback (or a Rician component) �H.
This problem has recently been solved in [19], [20], where the authors
show that the optimal transmitter strategy is the eigenmode transmis-
sion along the eigenvectors of �H� �H.

However, finding the optimal P ( �H) is computationally intensive.
Therefore, in the numerical discussion in Section V, we consider a sub-
optimal lower bound, C(�)

lower; SP = E [C
(�)
lower(

�P ; �H)], obtained using a

constant transmit power P ( �H) = �P . Even finding C
(�)
lower; SP requires

the optimization in (38) to be performed at each symbol time, i.e., for
each realization of �H, and thus may not be realizable in practice. More
discussion on this will follow in the next section with a numerical ex-
ample.

V. NUMERICAL RESULTS

In this section, simulation results are presented for 4 � 4 MIMO
channels. Throughout this section, we use two different models for the
channel estimation error: a) �2

E is independent of the SNR �P , and b)
�2
E is a decreasing function of �P . In the latter case we use a simple

model �2
E = �2

u + �2
n= �P , where �2

u can be interpreted as a prediction
error caused by the time-varying nature of the channel, and �2

n= �P as
a measurement error caused by AWGN. Thus, �2

u does not depend on
the SNR �P , while �2

n= �P improves with �P .5 This model appears, for
example, in [5] where the authors show that the channel estimation
error of their decision-oriented training scheme is upper bounded by
�2
E � �2

u + �2
n= �P = t2t� + t= �P , where � is a constant that is related

to the Doppler shift of the fading channel.
In Fig. 5, we compare capacity lower bounds using three different

power allocation strategies; no CSIT (Clower; NP), spatial power al-
location (Clower; SP), and spatio-temporal power allocation (Clower).
The calculation is performed for three channel estimation error values;
�2
E = 0, �2

E = 0:1, and �2
E = 0:03 + 0:8= �P . In the figure we ob-

serve that the difference between Clower; SP and Clower is negligible,
which implies that temporal power adaptation gives little capacity gain,
as has been shown in the literature [11], [15] for a single antenna case.
Comparing the performance ofClower; NP andClower; SP, however, we
observe that spatial power allocation does help. Moreover, the capacity
gain of spatial power allocation becomes more pronounced as �2

E in-
creases. Typically, when �2

E = 0, the capacity gain of knowing the

5Ideally, � would be zero if the Doppler spectrum is strictly bandlimited and
a perfect noncausal filter is used for MMSE estimation.
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Fig. 5. Ergodic capacity for 4 � 4 MIMO channel with different power allocation strategies for � = 0, � = 0:1, and � = 0:03 + 0:8= �P .

Fig. 6. Outage probability for 4 � 4 MIMO channel with different power allocation strategies for � = 0 and � = 0:1. R = 5:5 bps=Hz.

channel at the transmitter decreases as SNR increases [14]. This is be-
cause when �2E = 0 and as �P ! 1, the optimal spatial power allo-
cation policy given by (11) approaches the uniform power allocation
Pi = �P=t, which is also the optimal solution to the case of no CSIT.
Therefore, when �2E = 0, transmitter channel knowledge becomes
unimportant at high SNR, and consequently, the spatial power alloca-
tion is only useful at low and medium SNR values. When �2E > 0,
however, the figure shows that the capacity gain of spatial power allo-
cation does not reduce much at high SNRs. This is because the channel
estimation error causes saturation in the effective subchannel SNR,
Pi�i=(1 + �2EP ), thereby eliminating the high SNR capacity region
where transmitter channel knowledge becomes unimportant.

Fig. 6 shows outage probabilities using three different power al-
location strategies; no CSIT (Pi = �P=t), spatial power allocation

(P (Ĥ) = �P and (11)), and spatio-temporal power allocation ((29)
and (11)). We observe that CSIT greatly reduces outage probability.
Spatial power allocation seems to give a constant SNR improvement,
and temporal power adaptation additionally provides significant im-
provement in outage probability. Similar observations appear in [21]
for MISO systems with perfect channel estimation. Thus, additional
degrees of freedom in adapting transmit power over the time domain
seems to provide diversity gain and improves the outage slope. Also
note that with �2E = 0:1 channel estimation error produces an irre-
ducible error floor, i.e., the outage probability cannot be further re-
duced by increasing SNR. This is because the performance in the high
SNR region is limited by channel estimation error. In Fig. 7 we plot
corresponding outage capacities using the three different power allo-
cations. We note that the effect of temporal power adaptation (29) on
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Fig. 7. Outage capacity for 4 � 4 MIMO channel with different power allocation strategies for � = 0 and � = 0:1 with an outage probability q = 5%.

Fig. 8. Ergodic capacity for 4 � 4 MIMO channel with different power allocation strategies for combined channel estimation error and feedback delay.

the outage capacity is rather large. This is in contrast to the ergodic
capacity where we obtain little gain by adapting the transmit power to
the channel fading. Thus, the temporal power adaptation may be es-
pecially important for delay-constrained traffic, where the outage rate
is the most useful performance measure [22]. Spatial power allocation
seems to give a moderate increase to both the outage and ergodic ca-
pacity. Similarly, the channel estimation error severely limits the outage
performance and causes saturation at high SNR if lim�P!1 �2E > 0.

Fig. 8 shows the combined effect of channel estimation error and
feedback delay on the ergodic capacities, and the performance of
various power allocation strategies: (A) equal power allocation over
space and time in case of no CSIT, (B) blind spatio–temporal power
allocation using (11) and (17) ignoring the delay, and (C) the optimal
spatial power allocation considering the delay, i.e., C

(�)
lower; SP in

Section IV-D.6 In the figure, it is seen that at high � or low delay
(� = 0:9) the performance of the blind power allocation is similar to
that of the optimal spatial power allocation in C

(�)
lower; SP, meaning

that the power allocations in (11) and (17) are still applicable with
little capacity loss when the delay is small. To see how much delay is
tolerable, assume a uniform scattering environment. The correlation
is given by � = J0(2�fD� ), where J0 is a Bessel function of the
first kind of order 0, fD is the maximum Doppler shift, and � is the
feedback delay measured in seconds. Then, � = 0:9 translates to

6We consider only the spatial power allocation, since the optimal spatio–tem-
poral power allocation is difficult to compute. However, we expect the perfor-
mance of the two to be very close to each other, because we have seen in other
contexts that temporal power adaptation does not significantly increase capacity
[11], [12], [23].



2212 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 5, MAY 2006

fD� � 0:1, and under carrier frequency of 2.4 GHz and a pedestrian
speed of 4.5 Km/h, this corresponds to a delay of � � 10 ms, which
can be achieved in practical systems. At larger delay, however, the
blind scheme begins to perform poorly, and as is shown in the figure,
it performs even worse than equal power allocation at � = 0:5, at
which value the equal power allocation performs nearly as well as the
optimal scheme. As mentioned in Section IV-D, the optimal power
allocation requires a large amount of computation. The numerical
results presented here suggest that a much simpler yet suboptimal
scheme that uses the blind scheme at high � and the equal power
allocation at low � can perform nearly as well as the optimal power
allocation.

VI. CONCLUSION

We have investigated the effect of channel estimation error in mul-
tiple antenna fading channels. We have developed lower and upper
bounds of mutual information for systems with MMSE channel esti-
mation, and have shown that these bounds are close to the exact mu-
tual information for Gaussian inputs. The lower bound is the maximum
achievable data rate of communication systems that ignore channel es-
timation error and use Gaussian inputs and nearest neighbor decoders.
Despite the channel estimation error, the lower bound increases linearly
with the number of antennas, but it approaches a certain limit (24) as
SNR goes to infinity unless the channel estimation error vanishes and
thus cannot achieve a double-logarithmic increase in the SNR. This
is the price of using Gaussian inputs and having channel estimation
quality that does not improve with SNR.

When the channel estimate is available at the transmitter through per-
fect and instantaneous feedback, the transmitter can adapt its strategy
to the current channel estimate to maximize the lower bound of mutual
information, thereby achieving the capacity lower bound. The optimal
transmitter strategy for the capacity lower bound employs spatial fil-
ters resulting from singular value decomposition (SVD) of the channel
estimate as well as appropriate power allocations over space and time.
For the ergodic capacity maximization, the optimal power allocation
is a modified waterfilling (11) over the spatial domain and a temporal
power adaptation (17). For the outage capacity, the optimal scheme is a
spatial modified waterfilling (11) and a temporal truncated channel in-
version (29). When feedback delay is present, the optimal spatial beam
directions are unchanged, but the power allocations along the spatial
channels no longer have a closed form formula, and have to be deter-
mined numerically (38). At small delays, however, the modified water-
filling scheme (11) is close to optimum. Numerical results show that
spatial power allocation becomes more important under channel esti-
mation error and helps even at high SNR. Temporal power adaptation
mainly increases outage capacity, but has little effect on ergodic ca-
pacity. Overall, the numerical results show that feedback of imperfect
CSI is still useful in enhancing the MIMO system performance.

APPENDIX I
PROOF OF LEMMA 1

To obtain a lower bound, we expand the mutual information into
differential entropies as

I(x;yjĤ) = h(xjĤ)� h(xjy; Ĥ): (40)

Denoting asQ the covariance matrix of x given Ĥ, and choosing xjĤ
to be Gaussian (which is not necessarily the capacity achieving distri-
bution when the CSIR is not perfect [3], [10]), the first term on the RHS
becomes E [log

2
j�eQj]. The second term, on the other hand, is upper

bounded by the entropy of a Gaussian random variable whose variance

is equal to the mean square error of the linear MMSE estimate of x
given y and Ĥ as

h(xjy; Ĥ) � E log
2

�e Q�QĤ
�

� ĤQĤ
� + �Ex + I

�1

ĤQ (41)

where �v denotes the covariance matrix of a random vector v. Com-
bining (40) – (41) we arrive at the following lower bound of mutual
information:

I(x;yjĤ) � E log
2
I+ Ĥ

�
(I+�Ex)

�1
ĤQ : (42)

Since the entries of H are i.i.d., we have that the entries of the
channel estimation error matrix E are also i.i.d., i.e., E(EijEmn) =
�2E�i�m;j�n. Therefore, �Ex = E (Exx�E�) = �2EP I, and thus (2)
follows.

A more elegant proof appears in [8], based on the worst case noise in-
terpretation of the additive noise plus residual channel estimation error.

APPENDIX II
PROOF OF LEMMA 2

To obtain an upper bound, we expand the mutual information (40)
in an alternate way

I(x;yjĤ) = h(yjĤ)� h(yjx; Ĥ): (43)

Using the fact that the Gaussian distribution maximizes the entropy
over all distributions with the same covariance, we obtain an upper
bound of the first term on the RHS as

h(yjĤ) �E log
2
�e�yjĤ (44)

= E log
2
�e ĤQĤ

� + 1 + �
2

EP I : (45)

SinceE is complex Gaussian, (yjx; Ĥ) is also complex Gaussian with
mean Ĥx and variance �Exjx + I. Thus, the second term on the RHS
in (43) becomes

h(yjx; Ĥ) = E [h(Ex+ zjx)] (46)

= E log
2
�e(�Exjx + I) (47)

= E log
2
�e 1 + �

2

Ekxk
2
I : (48)

Combining (43)–(48), we have (3).

APPENDIX III
PROOF OF LEMMA 3

At high SNRs, the second term � in (3) is approximated as

lim
P!1

� = lim
P!1

rE log
2

1 + �2EP

1 + �2Ekxk
2

(49)

= lim
P!1

r log
2
P � E log

2
kxk2 : (50)

The expected logarithm of the chi-square distributed random variable
kxk2 with E kxk2 = P is given by

E log
2
kxk2 = log

2

P

t
+

1

ln 2
�
 +

t�1

i=1

1

i
(51)
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where 
 = limn!1

n

k=1
1=k � lnn � 0:577 is Euler’s constant.

Therefore, the limiting value of � becomes

lim
P!1

� =
r

ln 2
ln t+ 
 �

t�1

i=1

1

i
: (52)

The difference between tth convergent t

i=1
1=i and 
 is bounded by

[24]

1

2(t+ 1)
<

t

i=1

1

i
� ln t� 
 <

1

2t
: (53)

Using this bound, (52) in the limit of a large number of antennas be-
comes

lim
t;r!1

lim
P!1

� =
r

t
log

2

p
e (54)

which proves the lemma.

APPENDIX IV
PROOF OF (16)

We first differentiate (12) with respect to P (Ĥ). Using the chain
rule, we obtain

@Clower

@P
=

1

ln 2

k

i=1

1

�

@�

@P
� �2E

1 + �2
E
P

(55)

where k is the number of subchannels with nonzero power allocation,
i.e., k = t

i=1
I (Pi > 0), where I(�) is an indicator function. From

(11), the water-level � can be expressed in terms of P (Ĥ) and sub-
channel gains as

� =
1

k
P + (1 + �2EP )

k

i=1

1

�i
(56)

and

@�

@P
=

1

k
1 + �2E

k

i=1

1

�i
: (57)

Defining ��1
0

= k

i=1
��1i and substituting (56), (57) into (55) we

have

@Clower

@P
=

1

ln 2

k

i=1

1 + ��1
0

�2E
P+��1

0
(1+�2

E
P )
� �2E
1+�2

E
P

(58)

=
1

ln 2

1

�(1 + �2
E
P )

(59)

which proves (16).

APPENDIX V
PROOF OF THEOREM 1

From (15)–(16), we have

� 1 + �2EP = �: (60)

Substituting � with (56) we obtain a quadratic equation of P as

P + (1 + �2EP )
1

�0
1 + �2EP = k� (61)

which has two solutions given as

P =
�(�0 + 2�2E)� �2

0
+ 4k��0�2E(�0 + �2

E
)

2�2
E
(�0 + �2

E
)

: (62)

The solution in (17) follows from (62), after applying the nonnegativity
of the transmit power and the Kuhn–Tucker condition.
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On Efficient Balanced Codes Over the th Roots of Unity

Raffaele Mascella, Luca G. Tallini, Sulaiman Al-Bassam, and
Bella Bose, Fellow, IEEE

Abstract—Let� C be the set of all th roots of unity, IN.
A balanced code over� is a block code over the alphabet � such that
each code word is balanced; that is, the complex sum of its components (or
weight) is equal to 0. Let ( ) be the set of all balanced words of length

over � . In this correspondence, it is shown that when is a prime
number, the set ( ) is not empty if, and only if, divides . In this
case, the minimum redundancy for a balanced code over� of length is

( ( )) = log ( )

[( 1) 2] log (2 ) 2

On the other hand, it is shown that when = 4, the set ( ) is not
empty if, and only if, is even, and in this case, the minimum redundancy
for a balanced code over � of length is

( 4( )) = log
4 4( ) log

4
+ 0 326

Further, this correspondence completely solves the problem of designing
efficient coding methods for balanced codes over � , when = 4. In
fact, it reduces the problem of designing efficient coding schemes for bal-
anced codes over� to the design of efficient balanced codes over the usual
bipolar alphabet � = 1 +1 .
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I. INTRODUCTION

Let i =
p�1 2 C and consider the m-ary alphabet

�m
def
= fe2�ih=m : h = 0; 1; . . . ;m� 1g � C

given by the set of all mth roots of unity. For example, �4 =
f+1;+i;�1;�ig.

Given n 2 IN, the word Z = z1z2 . . . zn of length n over the
alphabet �m is called balanced (over the mth roots of unity, or over
�m) if, and only if, the weight of Z

w(Z)
def
=

n

j=1

zj = 0

where the sum is over the complex field. For example, the word

Z = (�i;+1;+i;+1;�1;�i;�1;+i)

(n = 8 and m = 4) is balanced over �4 because

w(X) = �i+ 1+ i+ 1� 1� i� 1 + i = 0:

Let Bm(n) denote the set of all balanced words over �m. Any subset
of Bm(n) is called a balanced code of length n over �m. In particular,
a code C is called balanced code over �m with k information digits
and r check digits (or briefly, DC(�m; k + r; k)) if, and only if

1) every codeword of C has length n = k + r;
2) C is a subset of Bm(n);
3) the code C contains j�mjk = mk codewords.

For example, when m= 4 (see the code C at the bottom of the page)
is a balanced code over �4 with k = 2 information digits and r = 2
check digits (or briefly, DC(�4; 4; 2) code).

Note that, in the binary case (m = 2), the above balanced code def-
inition coincides with the usual binary balanced codes over the bipolar
alphabet �2 = f�1;+1g [2], [5], [9]. The above generalization of
balanced codes to the m-ary alphabet �m given above, was recently
considered in [3] to achieve DC-free communication in communica-
tion systems where the signal set (i.e., the communication alphabet) is
given by the set of the mth roots of unity. Also in this case the problem
is to find a DC(�m; k + r; k) code C, and a one-to-one function (en-
coding function)

E : ZZk
m ! C � �k+r

m

which, together with its inverse (decoding function), is very easy to
compute. It is also desirable that the redundancy, r, of C be as small as
possible.

In [3] the authors propose to use a generalization of Knuth’s bal-
ancing method [7] and analyze some simple cases. In this correspon-
dence we show some combinatorial properties of the set Bm(n) and

C =

(+1;+1;�1;�1); (+i;+1;�i;�1); (�1;+1;+1;�1); (�i;+1;+i;�1);
(+1;+i;�1;�i); (+i;+i;�i;�i); (�1;+i;+1;�i); (�i;+i;+i;�i);
(+1;�1;�1;+1); (+i;�1;�i;+1); (�1;�1;+1;+1); (�i;�1;+i;+1);
(+1;�i;�1;+i); (+i;�i;�i;+i); (�1;�i;+1;+i); (�i;�i;+i;+i)
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