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Abstract—This correspondence presents an optimal soft-in soft-out
(SISO) decoding algorithm for the binary image of Reed–Solomon (RS)
codes that is based on Vardy and Be’ery’s optimal soft-in hard-out algo-
rithm. A novel suboptimal list-based SISO decoder that exploits Vardy and
Be’ery’s decomposition is also presented. For those codes with very high
rate, which allows practical decoding with the proposed algorithms, the
proposed suboptimal SISO significantly outperforms standard list-based
decoding techniques in iteratively decoded systems.

Index Terms—Graphical models, Reed–Solomon (RS) codes, soft-in
soft-out (SISO) decoding.

I. INTRODUCTION

T THE ubiquity and utility of Reed–Solomon (RS) codes are well
established (see, for example, [3]). It has been shown that soft-

decision decoding (SDD) algorithms can achieve as much as 3 dB of
additional coding gain on the additive white Gaussian noise (AWGN)
channel in comparison to hard-decision decoding algorithms; however,
SDD algorithms are often much more complex [4]. There has thus been
a great deal of recent interest in SDD algorithms for RS codes with
practically realizable complexity.

Koetter and Vardy recently presented a soft-in hard-out (SIHO) RS
decoder that achieves coding gains on the order of 1 dB compared to
the Berlekamp–Massey algorithm with a moderate complexity increase
[5]. Extensions of Koetter and Vardy’s algorithm proposed by Par-
varesh and Vardy [6] and El-Khamy, McEliece, and Harel [7] improve
upon these results. Liu and Lin recently presented a SIHO decoder for
self-concatenated RS codes based on their binary image [8]. SIHO de-
coding algorithms are not suitable for iterative decoding, however, and
soft-in soft-out (SISO) decoders for RS codes are often desired.

Due to their nonbinary nature, trellis representations of RS codes are
in general prohibitively complex [9]. In this correspondence, an optimal
SISO decoder for the binary image of RS codes is presented based on
the SIHO decoding algorithms of Vardy and Be’ery [10] and Ponnam-
palam and Vucetic [11]. It is shown that Vardy and Be’ery’s decompo-
sition implies a cycle-free factor graph and thus an optimal SISO de-
coding algorithm [12]. As predicted by the Cut-Set Bound [13], [14],
the proposed optimal algorithm is necessarily prohibitively complex
for large codes; however, for small, high-rate RS codes the proposed
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Fig. 1. Structure of the generator matrix of the binary image of C whereB
generates C .

algorithm has reasonable complexity. This proposed optimal SISO de-
coder was described independently by Ponnampalam and Grant [1] and
Halford [2].

Several authors have considered supoptimal SISO RS decoding algo-
rithms. Fossorier and Lin’s ordered statistics approach realizes a subop-
timal SISO decoding algorithm for the binary image of RS codes [15].
Jiang and Narayan recently presented a suboptimal SISO decoding al-
gorithm for the binary image of RS codes [16]; however, although their
algorithm provides soft outputs, there is no indication that these soft
outputs are good in an iterative context. The present correspondence
proposes a suboptimal list-based SISO decoding algorithm based on
Vardy and Be’ery’s decomposition. It is shown that for very high-rate
RS codes, the proposed algorithm compares favorably to standard list
decoding schemes in both complexity and performance.

The remainder of this correspondence is organized as follows. Sec-
tion II reviews Vardy and Be’ery’s decomposition and presents the pro-
posed optimal SISO decoding algorithm. Section III presents the pro-
posed suboptimal list-based SISO decoding algorithm and investigates
its performance as a stand-alone decoder and as a constituent decoder
in a turbo product code [17]. Section IV gives conclusions and suggests
directions for future work.

II. OPTIMAL SISO DECODING OF RS CODES

A. The Vardy–Be’ery Decomposition

Let CRS be an (n = 2m � 1; k; d = n � k + 1) RS code defined
over GF(2m) with roots f�; �2; . . . ; �d�1g, where � is primitive
in GF(2m). Associated with CRS is the (n; k0 � k; d0 � d) bi-
nary Bose–Chaudhuri–Hocquenghem (BCH) code CBCH with roots
f�; �2; . . . ; �d�1g and their cyclotomic conjugates over GF(2).
Let � : GF(2m) ! (GF(2))m be a GF(2)-linear map with basis
f
1; 
2; . . . ; 
mg. Any element ci 2 GF(2m) can be written

ci =

m

j=1


jc
(j)
i ; where c(j)i 2 GF(2) (1)

and � thus defines the binary image of CRS.
The SIHO algorithms of [10] and [11] were motivated by structural

properties of the generator matrix of the binary image of CRS. Vardy
and Be’ery proved in [10] that a generator matrix of the binary image
of CRS can be found with the structure shown in Fig. 1 where B is
k0 � n and generates CBCH. The first mk0 rows of this structure are
block diagonal. The last m(k � k0) rows of this structure are denoted
glue vectors in [10]. The code generated by the glue vectors is denoted
the glue code.

The structure of Fig. 1 implies that a codeword in the binary image
of CRS is formed by interleaving m codewords drawn from CBCH and
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adding a glue code codeword. Formally, define codes B and L over
GF(2m)1

B = bbb(X) bbb(X) =

m

j=1


jccc
(j)(X); ccc

(j)(X) 2 CBCH (2)

L = lll(X) lll(X) =

m

j=1


jlll
(j)(X); lll(j)(X) 2 E

and lll(�) = 0 for � 2 f�; . . . ; �d�1g (3)

where E is the set of coset leaders of CBCH. The diagonal blocks of
Fig. 1 correspond to the binary image of B; codewords belonging to B
are formed by interleaving BCH codewords. The glue vectors of Fig. 1
correspond to the binary image of L; codewords belonging to L are
formed by interleaving some combination of coset representatives of
CBCH. The RS code CRS is a binary linear combination of B and L.

Example: (7; 5; 3) RS Code: Let C(7;5;3) be the (7; 5; 3) RS code
defined over GF(8) with generator polynomial

ggg(7;5;3)(X) = (X + �)(X + �
2)

and let � : GF(8)! GF(2)3 have basis f1; �; �2g. Specifically, with
this basis: 1 ! 100; � ! 010; and �2 ! 001. The associated BCH
code C(7;4;3) has roots�; �2; and�4 and thus has dimension 4 and min-
imum distance 3. A generator matrix for the binary image of C(7;5;3)
with the structure shown in Fig. 1 is as shown in (4) at the bottom of
the page. If the coset leaders of C(7;4;3) are labeled

���0 = (0; 0; 0; 0; 0; 0; 0) ���4 = (0; 0; 1; 0; 0; 0; 0)

���1 = (1; 0; 0; 0; 0; 0; 0) ���5 = (0; 0; 0; 0; 0; 0; 1)

���2 = (0; 1; 0; 0; 0; 0; 0) ���6 = (0; 0; 0; 0; 1; 0; 0)

���3 = (0; 0; 0; 1; 0; 0; 0) ���7 = (0; 0; 0; 0; 0; 1; 0) (5)

then the coset configurations that satify (3) are

(���0; ���0; ���0); (���1; ���6; ���4); (���2; ���7; ���3); (���3; ���1; ���7);

(���4; ���5; ���6); (���5; ���3; ���2); (���6; ���2; ���5); (���7; ���4; ���1): (6)

1Throughout this correspondence, codewords are described interchangeably
as n-tuples: ccc = (c ; c ; . . . ; c ), and as polynomials in an indeterminant
X : ccc(X) = c X .

To illustrate that the glue vectors of (4) generate the coset configu-
rations of (6), consider the binary sum of the three glue vectors

(1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 0; 0; 1; 1; 1; 0; 0)

and note that

(1; 1; 1; 0; 0; 0; 0) 2 C(7;4;3) + ���7

(0; 0; 0; 0; 1; 1; 1) 2 C(7;4;3) + ���4

(0; 0; 1; 1; 1; 0; 0) 2 C(7;4;3) + ���1: (7)

The coset configuration corresponding to the sum of the glue vectors
is thus (���7; ���4; ���1).

B. An Alternate Definition of the Glue Code

Let f���0; ���1; . . . ; ���jEj�1g = E be the set of coset leaders of CBCH and
let fsss0; sss1; . . . ; sssjEj�1g = S be the corresponding set of syndromes
where jEj = 2n�k . The map between coset leaders and syndromes is
defined by

sssi = ���iHHH
>
BCH (8)

where HHHBCH is an n � k0 � n parity-check matrix for CBCH and >
denotes matrix transposition.

Let T be the code obtained from L by replacing each coset leader
lll
(j) by the corresponding syndrome ttt(j) = lll

(j)
HHH>

BCH

T = ttt(X) ttt(X) =

m

j=1


jttt
(j)(X); ttt(j)(X) 2 S

and ttt(�)=0 for � 2 f�; . . . ; �d�1g (9)

where f
1; 
2; . . . ; 
mg defines the mapping � : GF(2m) !
(GF(2))m and is a subset of a basis for the mapping

�
0 : GF(2n�k )! (GF(2))n�k

:

Codewords in T are thus formed by interleaving m binary syndrome
vectors to form an m-tuple of symbols drawn from GF(2n�k ).

The code defined by (9) has lengthm and is defined over GF(2n�k ).
The codes L and T are clearly closely related; the term glue code is

GGG(7;5;3) =

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

(4)
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used to denote L and T interchangeably throughout this correspon-
dence. Codewords lll(X) 2 L and ttt(X) 2 T must both satisfy lll(�) =
ttt(�) = 0 for � 2 f�; . . . ; �d�1g. When considering the generation or
encoding of a codeword, the L representation of the glue code is more
useful as was demonstrated in the example of Section II-A. As will be
seen in Section II-C and Section III, however, when considering the
decoding of a codeword, the T representation of the glue code is more
useful.

Example: (7; 5; 3) RS Code: The glue code T of the (7; 5; 3) RS
code is defined over GF(2n�k ) = GF(8), has roots f�; �2g, and is
thus the (7; 5; 3) RS code shortened to length 3 with generator matrix

GGGT = [�3 �4 1 ] (10)

over GF(8). The columns of the binary image ofGGGT can be rearranged
so that the bits from each syndrome are grouped together yielding a
generator matrix for the resulting binary code T 0 that is systematic in
ttt(1)(X)

t
(1)
0 t

(1)
1 t

(1)
2 t

(2)
0 t

(2)
1 t

(2)
2 t

(3)
0 t

(3)
1 t

(3)
2

GGGT =

1 0 0 0 1 1 0 0 1

0 1 0 1 1 1 1 1 0

0 0 1 1 0 1 0 1 1

: (11)

Eight syndrome 3-tuples, or syndrome configurations, are generated
by GGGT

(sss0; sss0; sss0); (sss1; sss6; sss4); (sss2; sss7; sss3); (sss3; sss1; sss7);

(sss4; sss5; sss6); (sss5; sss3; sss2); (sss6; sss2; sss5); (sss7; sss4; sss1): (12)

The set of syndrome configurations in (12) are in one-to-one correspon-
dence with the set of coset configurations in (6) via (8). Note that not
every syndrome 3-tuple corresponds to a codeword in T . For example,
(sss1; sss1; sss1) =2 T . Syndrome configurations in T are denoted valid syn-
drome configurations. The corresponding coset configurations in L are
denoted valid coset configurations.

C. RS Code Factor Graph

The generator matrix structure seen in Fig. 1 implies a cycle-free
factor graph for RS codes. The RS factor graph consists of m parallel
n-stage binary trellises and an additional glue node as illustrated in
Fig. 2, where variables are represented by circular vertices, state vari-
ables by double circles, and local constraints by square vertices. The
binary trellises correspond to CBCH and are constructed using the Wolf
method [18]. The final trellis stage is a 2n�k -ary variable node corre-
sponding to the cosets, or equivalently the syndromes, of CBCH. The
node connecting the final trellis stages corresponds to the glue code.

Coded bits are labeled fc
(j)
i gi=0;...;n�1;j=1;...;m and uncoded bits

are similarly labeled fa(j)i gi=0;...;k�1;j=1;...;m. If there is no a priori
soft information on uncoded bits then the corresponding sections of the
factor graph are ignored. If there is a priori soft information on uncoded
bits and if a systematic encoder is used then the equality constraints in
the corresponding sections of the factor graph enforce a(j)i = c

(j)
i for

i = 0; . . . ; k � 1 and j = 1; . . . ;m.
In [10], Vardy and Be’ery noted that generator matrices with the

structure shown in Fig. 1 can be found for any code containing a
subfield subcode. Accordingly, there exist factor graph representations
similar to that shown in Fig. 2 for codes containing subfield subcodes.
Specifically, such factor graphs can be found for shortened and
extended RS codes [19].

Fig. 2. RS code factor graph based on the Vardy–Be’ery decomposition.

D. Optimal SISO Decoding

Using the factor graph shown in Fig. 2, the following (nonunique)
message-passing schedule ensures optimal SISO decoding. An inward
recursion is performed on each trellis in parallel corresponding to the
forward recursion of the standard forward–backward algorithm (FBA)
on a trellis. The forward state messages for the the final state then act as
soft input to an optimal SISO decoding of the glue code. The backward
state metrics of the trellises are initialized with the soft output of the
glue code SISO decoder. The outward recursion on each trellis is then
performed in parallel corresponding to the backward recursion of the
standard FBA. After the forward and backward metrics are computed at
each trellis state, soft-out information on coded (and possibly uncoded)
bits is obtained as per the FBA.

Optimal SISO decoding of CRS requires optimal SISO decoding of
the glue code. One such optimal SISO decoder uses a trellis. When
jT j is small, a trellis need not be used and the SISO decoding of the
glue code proceeds as follows. The metric associated with each valid
syndrome configuration ttt 2 T is computed by combining soft-input
information on the individual syndromes. The soft output on each syn-
drome is then found by marginalizing over all configurations consistent
with that syndrome. This process is denoted exhaustive combination
and marginalization.

E. Complexity of the Optimal SISO

The complexity of SISO decoding of RS codes using a Wolf trellis
grows as the number of trellis states [20]

O(2m(n�k)):

For most RS codes, the complexity of the proposed optimal SISO
decoder is dominated by the complexity of the glue code SISO
decoder. If the glue code is decoded via exhaustive combination and
marginaliza-tion, then the complexity of the glue code SISO grows as
the number of glue codewords 2m(k�k ). If the glue code is decoded
with a trellis then the complexity of the glue code SISO grows as the
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TABLE I
COMPLEXITY COMPARISON OF PROPOSED OPTIMAL SISO AND WOLF TRELLIS

DECODERS FOR VARIOUS REED-SOLOMON CODES. COMPLEXITY IS MEASURED

BY THE BASE-2 LOGARITHM OF REAL OPERATIONS PER CODEWORD

number of states in the glue code trellis representation 2m(n�k). The
complexity of the proposed optimal SISO decoder thus grows as

O(min(2m(n�k); 2m(k�k ))):

For RS codes where k � k0 � n � k, the proposed op-
timal SISO decoder is much less complex than trellis decoding.
This set includes the (7; 3; 5); (7; 5; 3); (15; 9; 7); (15;11; 5);
and (15; 13; 3) codes. For larger RS codes, the complexity
of the Wolf trellis and proposed SISO decoders both grow as
O(2m(n�k)) and neither decoder is practically realizable in
accordance with the Cut-Set Bound [13], [14]. Moreover, the
Cut-Set Bound precludes the existence of any practically realizable op-
timal SISO decoding algorithms for large RS codes.

A more specific complexity comparison is made by first estimating
the number of real operations required by the FBA on an N -stage,
S-state Wolf trellis. The forward and backward recursions each require
1 add–compare–select operation, or three real operations, per state, per
stage [11]. The completion step requires 2 log2 S real operations per
stage. Exhaustive combination and marginalization of a length-m code
requires 2m real operations per codeword. Table I compares the com-
plexity of the proposed optimal SISO and Wolf trellis decoders for a
number of RS codes. Complexity is given as the base-2 logarithm of
real operations per codeword.

III. SUBOPTIMAL SISO DECODING OF RS CODES

For high-rate RS codes, the complexity of the proposed optimal
SISO decoder is dominated by the complexity of the optimal glue
code SISO decoder. Practically realizable suboptimal SISO decoding
algorithms for high-rate RS codes can be developed by replacing the
optimal glue code SISO decoder by a suboptimal glue code SISO
decoder. This correspondence proposes such a decoder that uses a
list-based glue code SISO decoder.

List-based SISO decoders for linear block codes have been examined
extensively in the literature (see, for example, [21] and the references
therein). List-based SISO decoders first produce a list of likely code-
words K � C and then perform the marginalization described in Sec-
tion II-D over K rather than all codewords C. The complexity of list-
based SISO decoders depends on K = jKj and can thus be controlled.

A. Generic Glue Code List Generation

The generation of K is the most difficult design aspect of list-based
SISO decoders [21]. The following presents a generic approach to list
generation for the glue code.

As described in Section II-B, codewords of T are BCH syndrome
m-tuples (or configurations). Specifically, let www be the syndrome con-
figuration

www = sss
(1)
www ; . . . ; sss(m)www 2 Sm (13)

Algorithm 1. Generic glue code list generation.

where S is the set of BCH syndromes. Associated with www is the syn-
drome configuration metric

M[www] =

m

i=1

MI sss
(i)
www (14)

where MI[sss
(i)
www ] is the final state metric corresponding to the syndrome

sss
(i)
www in the ith parallel BCH trellis.2 Recall from Section II-B that the

set of all syndrome configurations is a superset of the glue code T .
Algorithm 1 generates a list of likely codewords by generating a list of
likely syndrome configurations and throwing out those configurations
not contained in T . The next shortest path algorithm described in [23]
is used to obtain the likely syndrome configurations; this algorithm was
used successfully for list detection in multiple-access channels in [24].

B. Glue Code List Generation for (n; n � 2; 3) RS Codes

Algorithm 1 is inefficient because in order to generate a list of K
codewords, many more than K syndrome configurations must be gen-
erated. The following presents a reduced-complexity list generation al-
gorithm for the glue codes corresponding to the (n; n�2; 3) RS codes
that exploits the algebraic structure of T . The authors have developed
similar reduced-complexity glue code list generation algorithms for
the glue codes corresponding to the (n; n � 4; 5) RS codes and the
(15;9; 7) code [19]; these are omitted for the sake of brevity.

Let CRS be an (n = 2m � 1; n � 2; 3) RS code with roots � and
�2 where � is primitive in GF(2m). Since �2 = � in GF(2m), the
union of the sets of cyclotomic conjugates of � and �2 over GF(2)
is f�; �2; . . . ; �2 �1g. The associated BCH code CBCH thus has
dimension

k
0 = k � (m+ 2) = n�m: (15)

For the (n; n � 2; 3) RS codes, the glue code T is, therefore, a
length-m code defined over GF(2m) with roots f�; �2g. Since
jT j = 2m(k�k ) = 2m(m�2), the dimension of the glue code is m� 2
and T is a shortened (n; n � 2; 3) RS code.

As per the example of Section II-B, letGGGT generate T over GF(2m)
and letGGGT be the binary image ofGGGT with columns reordered sothat
bits from each syndrome are grouped together. For the specific
(n; n � 2; 3) RS codes considered in this correspondence, binary
generators matrices that are systematic in the bits corresponding to
ttt(1); . . . ; ttt(m�2) were obtained.

2Note that min-sum or min -sum processing is assumed and combination
is achieved via addition of metrics rather than multiplication of probabilities.
Metrics are negative logartithms of probabilities [22].
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Algorithm 2. List generation for (n; n� 2; 3) RS codes.

Define a syndrome subconfiguration,wwwjm�2, as the first m� 2 ele-
ments of a syndrome configuration www 2 S

m

wwwjm�2 = sss
(1)
www ; . . . ; sss(m�2)

www 2 S
m�2 (16)

Associated with wwwm�2 is the syndrome subconfiguration metric:

M[wwwjm�2] =

m�2

i=1

MI sss
(i)
www (17)

where MI[sss
(i)
www ] is defined as per Section III-A. Algorithm 2 generates

a list of likely codewords by generating a list of likely syndrome sub-
configurations and exploits the structure of T to determine a glue code
codeword corresponding to each subconfiguration. Note that only K
subconfigurations need be generated since each subconfiguration gen-
erates a single codeword. Also note that the lists of codewords pro-
duced by Algorithms 1 and 2 may not be identical since Algorithm 2
uses metrics from only m� 2 trellises in its shortest path search.

Since RS codes are maximum distance separable (MDS) over
GF(2m), Algorithm 2 can readily be adapted to generate a list of likely
RS codewords by considering configurations of GF(2m) symbols
and the corresponding symbol-level soft information. The resulting
list-based SISO decoder is denoted the standard list-based SISO
in the following section since it does not exploit the Vardy–Be’ery
decomposition.

C. Simulation Results and Discussion

In this subsection, the performance of the proposed suboptimal SISO
decoder is compared to that of both the proposed optimal SISO decoder
and the standard list-based SISO decoder. Note that the list genera-
tion algorithms described in Section III-B are used rather than Algo-
rithm 1. Binary antipodal signaling over AWGN channels is assumed
throughout.

Fig. 3 compares the performance of the three algorithms when used
as stand-alone decoders for the (15; 13; 3) and (15;11; 5) codes. The
glue codes of the (15;13; 3) and (15;11; 5) contain 256 and 65 536
codewords, respectively. A negligible performance loss is incurred by
the proposed suboptimal decoders when respective glue code list sizes
of 32 and 1024 are used. Observe that the standard list-based SISO
decoder with list size 1024 incurs a 0.5-dB loss with respect to the
proposed algorithms. Generating 1024 codewords of the (15;11; 5)
glue code, which is a length–4 code over GF(256), is substantially less
complex than generating 1024 codewords of the (15;11; 5) code over
GF(16).

The proposed suboptimal SISO was also compared to the proposed
optimal SISO for the (31; 29; 3) and (63;61; 3) codes. It was found

Fig. 3. Codeword error rate performance comparison of the proposed
optimal SISO, proposed suboptimal SISO and standard list-based SISO for the
(15; 13;3) and (15;11;5) RS codes. List sizes appear in parentheses.

Fig. 4. Bit-error rate performance comparison of the proposed optimal
SISO, proposed suboptimal SISO, and standard list-based SISO for the rate

(15;13;3) � (15;13;3) RS turbo product code. Ten decoding iterations
were performed. List sizes appear in parentheses.

that respective glue code list sizes of 64 and 128 were required in order
to approximate optimal performance for these codes.

In order to investigate the quality of soft-out information produced
by the proposed suboptimal SISO decoder, its performance was
compared to that of the proposed optimal and standard list-based
SISO decoders in an iteratively decoded system. Specifically, a rate
13
17

(15;13; 3) � (15;13; 3) RS turbo product code was considered
with input block length 2704 bits. A high-spread pseudorandom
bit-level interleaver was constructed using the real-relaxation opti-
mization method described in [25].

Fig. 4 illustrates the performance of the iterative turbo product de-
coder after ten iterations using five different RS SISO decoders: the
proposed optimal SISO, the proposed suboptimal SISO with glue code
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list sizes 32 and 64 and the standard list-based SISO with list sizes 256
and 1024. With a list size of 64, the decoder employing the suboptimal
SISO incurs a negligible loss with respect to the decoder employing
the optimal SISO. With a list size of 256, the decoder employing the
standard list-based SISO performs approximately 0.3 dB worse than
the decoder employing the optimal SISO at a bit-error rate of 10�4;
increasing the list size to 1024 narrows, but does not close, this per-
formance gap. Generating 64 codewords of the (15; 13; 3) codeword,
which is a length4 code defined over GF(16), is much less complex
than generating 1024 codewords of the (15;13; 5) code over GF(16).

IV. CONCLUSION AND FUTURE WORK

In this correspondence, an optimal SISO decoding algorithm for RS
codes has been proposed. The proposed optimal SISO decoder em-
ploys a cycle-free graphical representation that is an alternative to con-
ventional trellis-based decoding. As predicted by the Cut-Set Bound,
the proposed optimal SISO is of reasonable complexity only for small,
high-rate codes. Suboptimal SISO decoding algorithms for RS codes
were thus motivated.

A suboptimal SISO decoder for high-rate RS codes that exploits
Vardy and Be’ery’s decomposition of the binary image of RS codes
[10] was also proposed. This suboptimal SISO was found to outper-
form a standard list-based SISO decoding algorithm as a stand-alone
decoder and as a constituent SISO decoder in a turbo product code.
Furthermore, the complexity of glue code list generation is less than
that of standard list generation for the RS code because the glue codes
have length m whereas the full RS codes have length 2m � 1. An in-
teresting area for future work is to investigate the use of SISO ordered
statistics decoding [15] of the glue code and to compare the resulting
suboptimal SISO with a SISO employing ordered statistics decoding
of the full RS code.

The proposed suboptimal algorithm is of practically realizable com-
plexity only for very high-rate codes. However, very high-rate RS codes
are highly relevant as component codes in iteratively decodable sys-
tems. Generating 64 codewords of the (15; 13; 3) glue code, which is
a length-4 code defined over GF(16), is much less complex than gen-
erating 1024 codewords of the full (15;13; 3) code over GF(16).
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