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TABLE I 
NUMBER OF KTH-ORDER ZERO-DISPARITY CODEWO&S 

VERSUS CODEWORD LENGTH n AND K 

K 
n 1 2 3 4 

4 2 0 0 0 
8 8 2 0 0 

12 58 2 0 0 
16 526 14 2 0 
20 5448 48 0 0 
24 61108 592 16 0 
28 723354 2886 0 0 
32 8908546 34888 78 2 
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Fig, 1. Power density functions of codes with K = 0, 1, and 2 with rate 0.5. 

proximately l/2. Fig. 1 shows the spectra of these codes. Notice 
that for increasing values of K we obtain a more severe suppres- 
sion of the power at very low frequencies. 

III. THE MINIMUM DISTANCE OF HIGHER ORDER 
CONSTRAINED CODES 

Higher order constrained codes can also be used for error-cor- 
recting and -detecting purposes. In particular we will show that 
the minimum distance of a binary Kth-order zero-disparity code 
is at least 2( K + 1). To that end let S be the set of all codewords 
of a binary Kth-order zero-disparity code of length n (n has to 
be a multiple of four, because otherwise S is empty). Let x and 
y be two different elements in S. Let e be given by 

e=y-x. (11) 
Then it is easily seen that e, E { - 2,0,2} for all 1 5 i I n. As 
both x and y satisfy (5), it readily follows that 

n 
C ike, = 0, k E {0,1,2;.., K}. 
i=l 

In particular it follows that the number of occurrences of - 2 in 
the vector e equals the number of occurrences of +2. Let 
i,; . ., i be the indices i for which e, = - 2 and let j,, . . . , & be 
the indces i for which e, = +2. Then we have to show that 
4 2 K + 1. From (12), it follows that 

4 4 
CC= Cj/“, k E {0,1,2;.., K}. (13) 
I=1 I=1 

It is not difficult to show that for q I K it follows that 
{i,; . ., iq) = {A,..., jq } [ll, ch. 211. However, since the two 
sets must be disjoint, we have shown that q 2 K + 1. Hence the 
minimum distance of a Kth-order zero-disparity code is at least 
2(K + 1). 

In particular, the properties of the K = 1, n = 16 code com- 
pare favorably with earlier codes. Ferreira [12] showed on an 
ad hoc basis the feasibility of a rate 9/16, minimum distance 
d = 4 dc-balanced code. From Table I we conclude that there are 
526 first-order zero-disparity codewords, sufficient for a rate 
9/16. Moreover, it is straightforward to show that if we omit 
from this code the lexicographically smallest and largest code- 
word, we obtain a first-order zero-disparity code that has maxi- 
mum runlength (i.e., the maximum number of consecutive like 
symbols) equal to six. The cardinality of the new set is 524. In [8], 
a simple coding and decoding method for first-order zero-dispar- 
ity codewords is presented. 

IV. CONCLUSION 

A new class of dc-constrained channel codes having higher 
order spectral zeros at dc was presented. The power spectral 
density function of these codes has, besides zero power at zero 
frequency, all low-order derivatives up to 2 K + 1 equal to zero at 
w = 0. The additional constraints result in a higher rejection of 
the components in the low-frequency range than is possible with 
classical dc-balanced codes. Moreover, we have shown that the 
minimum distance of a Kth-order zero-disparity code is at least 
2(K + 1). 
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I. CORRECTIONS 

In the above paper,’ Section II, the reduction of the error state 
diagram is incorrect. The algebraic expressions G(z) and G’(z) 
are for code 1 while the diagram in Fig. 1 is for code 2. The 
correct probability transfer function can be shown by both 
Mason’s gain formula [l] and by brute matrix reduction to be 

TABLE III 
TRANSITION PROBABILITIES, NEXT DECODER STATE GIVEN AN 

ERROR STATE AND A FOLLOWING CODEWORD, CODE 1 

Codeword 
Code Error States 

Probability 10 0 1 

G(z) = [71z3 - 65022 + 700z]/11[112* - 1002 + loo]. 

The probability of eventual synchronization, G(l), is still 1.0. The 
derivative of the correct probability generating function is 

01 0.4 1 1 S 
00 0.2 0 0 S 
11 0.2 1 1 1 
10 0.1 S S S 
101 0.1 S S S 

G’(z) = [ 781~~ - 14200~~ + 78600~’ - 1300002 + 70000] 

/11[1122 - 1ooz + loo]*, 
TABLE IV 

TRANSITION PROBABILITY MATRIX FOR CODE 1 

therefore, the expected span of errors, Es = G’(1) = 471/121 = 
3.8926 which is agreement with Maxted and Robinson’s Table 
VI, code 2. 

The probability generating function G(z) and probability gen- 
erating function’s derivative G’(z) presented by Maxted and 
Robinson are derived from the error state diagram for their code 
1. This is shown in Tables I-IV and Fig. 1 of this correspon- 
dence. 

A final correction to Maxted and Robinson may be offered. 
The expression for Es for the unstable family should have k 
replaced by k - 1 and should read 

Current 
State 

Next State 
S 0 1 10 

I 0.6364 0.0909 0.0909 0.1818 
0 0.2 0.2 0.2 0 
1 0.8 0 0.2 0 
10 0.2 0.2 0.6 0 
S 1.0 0 0 0 

TABLE V 
STANDARD DEVIATION OF THE RECOVERY SPAN ES 

FOR SINGLE BIT INVERSION FAULTS 

Zk-’ - [(k - 2)/2] - [ k/(2k+’ - 2)]. Code Complete Model Reduced Model Pr 
1 1.0955 1.2856 0.5000 
2 6.5655 5.8900 0.1258 

TABLE I 
INITIAL ENTRY PROBABILITIES FOR SINGLE BIT INVERSION ERROR, CODE 1 

Bit Resultant 
Codeword Inverted State Probability 

01 1 S 4/22 
01 2 S 4/22 
00 1 10 2/22 
00 2 2/22 
11 1 s  2/22 
11 2 10 2/22 
100 1 0 l/22 
loo 2 0 l/22 
loo 3 S l/22 
101 1 1 l/22 
101 2 1 l/22 
101 3 S l/22 

Initial Entry Probabilities 
P( I S) = 4/22 + 4/22 + 2/22 t 2/22 + l/22 + l/22 = 7/11 

P( I 10) = 2/22 + 2/22 = 2/11 
P(I 0) = l/22 + l/22 = l/11 
P( T 1) = l/22 + l/22 = l/11 

TABLE VI 
STANDARD DEVIATION OF THE RECOVERY SPAN Es 

FOR SINGLE BIT INVERSION FAULTS 
OF EQUIVALENT HUFFMAN CODES 

Code Comulete Model Reduced Model Pr 

13 0.6086 0.6085 0.9000 
14 5.8924 5.8610 0.1526 

TABLE II 
TRANSITION PROBABILITIES FOR STATE 10, CODE 1 

Error Codeword Resultant Decoded Symbol 
State Appended Bit String and Error State 

10 01 1001 D + 1 state 
10 00 1000 D + 0 state 
10 11 1011 E + 1 state 
10 100 10100 EB + S state 
10 101 10101 EA + S state 

El 

‘J. C. Maxted and J. P. Robinson, IEEE Trans. Inform. Theory, vol. IT-31, 
pp. 794-801, Nov. 1985. Fig. 1 
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II. ADDITIONS 

By using the properties of factorial moments [2], it is possible 
to derive the standard deviation (SD) of the expected span of 
errors: 

var(Es) = G"(z) + G'(z) - (G'(z))~; z = 1 

SD( Es) = [var( Es)]l'*. 

The second derivative of codes 1 and 2’s transfer functions are 

G”(z) = (1750 + 50502)/11(5 - z)~ 

and 

G"(z) = [3200z3 + 30000~~ - 360000~ + lOOOOOO] 

/ll(llz2 - 1ooz + 1oo)3, 

respectively. 
Evaluated at z = 1, these second derivatives equal 2.4148 and 

45.9805, respectively. The second derivative of Maxted and 
Robinson’s reduced model probability transfer function, 
evaluated at z = 1, is 

G”(1) = 2[1 - Ps]/PY*. 

By substituting into the above expression the Pr values for codes 
1 and 2 that are listed in Maxted and Robinson’s Table VIII, and 

by noting that Ps = 7/11 = 0.6364 for both codes, it can be 
shown that G”(1) = 2.9091 and 45.9334 for the reduced model of 
codes 1 and 2, respectively. 

With the values of G”(1) for the complete and reduced model, 
it is now possible to compute the standard deviation for Maxted 
and Robinson’s codes 1 and 2 (Table V of this correspondence). 
The standard deviation for Maxted and Robinson’s special case 
codes, when k is large, are 0.5 and 2kp’ for the stable and 
unstable codes, respectively. The usefulness of Maxted and 
Robinson’s reduced state model is very clear. By being able to 
derive Es and SD(Es) quickly it is possible to compare equiv- 
alent Huffman codes [3] for their error propagation properties. 
Table VI shows the results of comparing Maxted and Robinson’s 
codes 13 and 14. 
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