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Book Reviews 

Theory and Practice of Error Control Codes, R. E. Blahut (Reading, MA: 
Addison-Wesley, 1983, xi + 500 pp., $40.00). 

JAMES L. MASSEY, FELLOW, IEEE 

The 85 percent of this book that deals with block codes is always solid, 
and frequently creative enough to merit the description revolutionary. The 
15 percent that deals with convolutional codes and with the connection 
between coding and modulation is, by contrast, shaky and sometimes 
inept. 

The revolutionary core of this book is the spectral theory of cyclic codes 
that occupies Chapters 8-11 and part of Chapter 13-a full third of the 
book. Much of this material is entirely new and all of it must be read and 
understood by any serious future researcher in algebraic coding theory. It 
establishes the discrete Fourier transform (DFT) as the central tool in the 
study of cyclic codes. Although the relation of the DFT to cyclic codes 
was earlier recognized in varying degrees of explicitness by Reed and 
Solomon, Mattson and Solomon, Gore, Chien and Choy, and Lempel and 
Winograd, it is fair to say that Blahut was the first to appreciate the 
enormous untapped potential of the DFT in coding theory and he was 
certainly the pioneer in reconstructing (and enlarging) the theory of cyclic 
codes from the DFT standpoint [l]. In this view, a cyclic code is just the 
set of time-domain sequences whose spectra vanish over a specified set of 
frequencies. The coding engineer is forever liberated from the algebraic 
strait-jacket of ideals in polynomial rings, and algebraic coding theory is 
given a mighty shove toward its natural position among signal processing 
techniques. 

These chapters should be read as avidly by researchers in other branches 
of signal processing as by coding theorists. Not only does the DFT free 
coding theory from much arcane algebra, but coding theory frees the DFT 
from the strictures of the complex field. Blahut makes this point re- 
peatedly: take your transforms or perform your convolutions in the most 
convenient field! 

There is much to admire in this part of the book. Helgert’s alternant 
codes and the Goppa codes, both previously mysteries to this reviewer, 
are given eloquently simple formulations via the clever use of time-do- 
main and frequency-domain “ templates” combined with the convolution 
theorem for the DFT. Idempotents, too, arise to a new and simpler life in 
the frequency domain. And, of course, as is now generally well known 
from [l], the Reed-Solomon (RS) and BCH codes have beautiful frequency 
domain descriptions. All of this, and much more besides, can be found in 
Chapter 8. 

Chapter 9 deals with decoding from the DFT viewpoint, and includes 
Blahut’s own cunning simplification of the errors-and-erasures correction 
algorithm for RS and BCH codes. But the pinnacle of this chapter is its 
closing discussion on the computation of the DFT in finite fields. The 
Bluestein chirp algorithm, the Rader prime algorithm, and the Goertzel 
algorithm (all previously developed only for the complex field) are suc- 
cinctly and masterfully developed. 

Chapter 10 is a highly original treatment of multidimensional transform 
techniques for cyclic codes and their products. Much of this chapter is 
new, and so different from the past approaches in coding theory that it is 
difficult to summarize here; it must be read. 

Chapter 11 treats fast algorithms both for transform evaluation and for 
convolution. It is hard to say who will find this of greater interest, the 
coding theorist or the signal processing specialist. The Winograd convolu- 
tion algorithm, the Cooley-Tukey FFT, the Good-Thomas FFT, the 
Agarwal-Cooley convolution algorithm, and the Winograd FFT are all 
treated with elegance and ingenuity. Of perhaps understandably particular 
interest to this reviewer were two algorithms newly devised by Blahut, an 
“accelerated Berlekamp-Massey algorithm” and a “recursive 
Berlekamp-Massey algorithm”; the latter reduces the computational work 
from 0( n2) to just about O(n log n) but is practical only for rather large n. 

Our only regret about the coverage of the DFT was the omission of an 
explicit statement of what, since the appearance of [l], we have called 
“Blahut’s theorem” in our lectures and writing. Blah&s theorem applies 
to DFT’s over any fields and states that the Hamming weight of the 
sequence in one domain (time or frequency) equals the length of the 
shortest linear feedback shift register that can generate the periodic 
continuation of the sequence in the other domain. This result strikes us as 
an important addition to the list of useful DFT properties, and its absence 
from the book is mystifying. 

Chapters l-7 and parts of Chapters 13 and 14 contain the standard 
theory of linear block codes. This material is written with thoroughness 
and flair. We particularly admired the treatment of finite field algebra. It 
has the best selection of topics and proofs of any coding text. But we must 
say that we found distasteful the practice of writing, say, GF(24) as 
GF (16), and even calling GF(16) the “hexadecimal field” and labelling 
its elements as 0, 1,2, 9, A, B, t F; at the least, 2 ought to mean 
1 + 1 in any field. 

The treatment of block codes is not entirely without blemishes. One 
such is the assertion on page 431 that “no binary code is a maximum-dis- 
tance [-separable] code” which ignores the “simple parity-check codes” 
and “simple repetition codes” of Section 1.1. Gilbert bounds occasion 
many further blemishes. It is asserted on page 233 that a Gilbert-type 
inequality for alternant codes is in the “wrong direction” to permit use of 
Lemma 7.9.2. But in fact the inequality should have been written in the 
opposite direction after replacing d - 1 by d, just as was correctly done 
in the Gilbert bound for convolutional codes on page 455. The expression 
on page 455, which now begs for the application of Lemma 7.9.2, is, 
however, handled by a weaker and more awkward bound. The net result 
of all these machinations is that the very useful Gilbert relation, d/n > 
H-‘(1 - R), which holds for all n, is never stated as other than an 
asymptotic bound. Perhaps more deplorably, the Gilbert bound is never 
shown to hold for linear block codes, although the rather elegant argu- 
ment used to prove the bound for general codes (cf. pp. 446-447) could 
easily have been adapted to linear codes. In fact, the last sentence of page 
453 could be read as suggesting that the Gilbert bound cannot be proved 
for linear block codes. 

It seems to us a shame that a standard algebraic proof of the MacWil- 
l iams’ identities was used in Section 14.1 rather than the recent proof of 
Chang and Wolf [2], which is based on two ways of calculating the 
probability of undetected error when a linear block code is used only for 
error detection. This latter proof contains much engineering insight, 
something that the author is elsewhere careful to cultivate. 

This reviewer has never understood why most coding textbooks are 
written as if nothing less than a surgeon’s scalpel would suffice to dissect 
block codes, while nothing more than a woodman’s axe is needed for 
convolutional codes. This book is a paradigm of this double standard. 
Chapter 12 and parts of Chapters 13-15 treat convolutional codes with 
impatience and imprecision; definitions are often bungled and logical 
reasoning abused. 

As with other coding books, this one makes no distinction between the 
convolutional code itself, i.e., the set of all possible encoded sequences, 
and the particular encoder that might be chosen for that code. One of the 
most interesting contrasts between linear block codes and convolutional 
codes is that the choice of a linear encoder for the former is of minor 
importance, but for the latter it is of crucial importance. For instance, 
every convolutional code has “catastrophic encoders” whose use would be 
disastrous in practice, as well as non-catastrophic encoders. In any case, 
this book simply equates a linear encoder and the resulting convolutional 
code (cf. pp. 349-350). That having been done, the subsequent discussions 
of “catastrophic convolutional codes” and “equivalent codes” could not 
be logically consistent. 

Forney’s seminal work on the complexity of convolutional encoders [3] 
is mostly ignored. An unfortunate exception is the footnote on page 355, 
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which incorrectly asserts that the constraint length as defined in Defini- 
tion 12.2.1 is the minimum number of storage cells needed in the encoder. 
(The (12,9) Wyner-Ash code has constraint length 5, but in fact 2 storage 
cells suffice in the encoder if these are used to store the parity bits, rather 
than to store the information bits as is done in the encoder of Fig. 12.12). 
This is a serious misunderstanding because the minimum number of 
storage cells determines the number of states in the trellis of the code, and 
hence the complexity of the corresponding Viterbi decoder. 

A positive feature of Chapter 12 is the attention (cf. page 357) given to 
systematic convolutional encoders with feedback in the encoding circuit, 
the first such attention in a coding textbook. This type of encoder has 
already proved to be of considerable practical importance. 

The parity-check-polynomial matrix of a convolutional code is so 
carelessly defined on page 356 that the all-zero matrix qualifies. “Distance 
notions” fare no better. Definition 12.3.1 of the various “minimum 
distances” (usually called “column distances” in the literature) tacitly 
assumes that G, has mnk k, so that the “initial information frames” 
differ for the input sequences. The meaning of these distances is not 
pursued. Because d,* = 4 and dt = 5 for the (6,3) encoder of Fig. 12.3, 
one sees that this code is not double-error-correcting over a decoding 
constraint span of five frames-six frames are needed. But Fig. 12.16 
purports to give a double-error-correcting decoder over a span of five 
frames (and the accompanying text even says that the code is double-er- 
ror-correcting over a span of three frames!). The reader can easily check 
that this decoder will incorrectly decode. a double error pattern with an 
error in the first bit of the first and fourth frames. The problem is that the 
author has not bothered to distinguish between the encoding and decod- 
ing constraint length, another distinction that is crucial for convolutional 
codes but of minor import in block coding. 

The discussions of Viterbi decoding and the Fano sequential decoding 
algorithm that conclude Chapter 12 are superficial and often misleading. 
For instance, one does not need to rely on “computer simulation” to 
choose the decoding delay for a Viterbi decoder or to choose the metric 
for a sequential decoder, as is asserted. 

The climactic gaffe about convolutional codes occurs when the author 
asserts in his “proof” of Theorem 14.6.1 that “any upper bound on the 
minimum distance of the block code [obtained by truncating the convolu- 
tional code after m frames]” is also an upper bound on the minimum 
distance of the convolutional code.” This assertion blithely ignores the 
fact that distance “counts” only between encoded sequences that differ in 
the first information frame. 

On page 3, the author states that the book will deal only with coder and 
decoder design and not with that of the modulator and demodulator. 
Unfortunately, he breaks his promise. The result is Chapter 15, the final 
chapter, which was obviously written in haste. The last paragraph on page 
482 gives the appropriate credits for some bounds and examples that in 
fact appear nowhere in the chapter. Except for the standard treatment of 
Forney’s generalized minimum distance decoding, this chapter is a weakly 
reasoned and imprecise discussion of the interplay between coding and 
modulation. For instance, Ungerboeck’s coded octal-phase-modulation 
schemes are erroneously described on page 473 as “convolutional codes 
over the complex field.” They are not such by the author’s own definition, 
because the “encoder” is not linear over the complex field. Ungerboeck’s 
schemes actually use a conventional binary convolutional encoder fol- 
lowed by a modulation mapping from triplets of binary digits to the eight 
phases. 

It would be unjust to end this review on a sour note. In our view, this 
book has a Queen Anne front and a Mary Ann back. But Queen Anne 
reigns much the longer, and makes this an outstanding and revolutionary 
book on coding. 
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