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Book Reviews 

Pattern Classification and Scene Analysis-Richard 0. Duda  and  Peter 
E. Hart (New York: W iley-Interscience, 1973,  482  pp., $22.50).  

Introduction to Statistical Pattern Recognit ion-Keinosuke Fukunaga 
(New York: Academic Press, 1972,  369  pp., $18.50).  

Fundamentals of Pattern Recognit ion-Edward A. Patrick (Englewood 
Cliffs, N.J.: Prentice-Hall, 1972,  504  pp., $18.00).  

Introduction to Mathematical Techniques in Pattern Recognition- 
Harry C. Andrews (New York: W iley-Ipterscience, 1972,  242  pp., 
$11.50).  

Computer-Oriented Approaches to Pattern Recognition-Will iam S. 
Meisel (New York: Academic Press, 1972,  250  pp., $15.00).  

THOMAS M. COVER 

$85.50 is the price for the 1,847 pages  of reading in pattern recogni- 
tion contained in the books  under  re;iew. Except for collections of 
papers  and  a  book  of solicited chapters edited by  Mendel  and  Fu, these 
are the first texts in statistical and  geometr ic pattein recognit ion since 
Nilsson’s book  Learning Machines, publ ished in 1965.  So it is with some 
ihterest and  concern that we examine this multiple offering. 

Work  on  pattern recognit ion properly got its start in the late 1950’s, 
primarily due  to the work of Rosenblatt  and  Block on  the Perceptron 
at Cornell University and  Selfridge and  col !eagues at M.I.T. There 
followed a  book  by  Sebestyen and  an  influential paper  by  Highley- 
man. The  first book  on  the general  subject of pattern recognit ion 
appeared in 1965.  This was Nilsson’s book,  Learning Muchines. The 
primary emphasis in this book  was on  discriminant functions and  
the Perceptron, Adaline, linear threshold device approach.  This 
simple but comprehensive book  made  clear some of the fundamental  
ideas that had  arisen in pattern recognit ion in the preceding years. 
While it cannot  be  said that any  of these techniques al lowed the 
solution of the pattern recognit ion problem, it was clear that the 
general  problem of recognizing patterns had  inspired new approaches 
to some old mathematical problems in hypothesis testing and  statistics. 
In 1969,  the book  Perceptrons by Minsky and  Papert appeared.  The  
book  is by  far the deepest  and  most entertaining entry in the field of 
pattern recognit ion to date. However,  it deals specifically with linear 
threshold devices and  what the authors call the emerging field of 
computat ional geometry.  This book  should be  part of the cultural 
background of any  serious researcher in pattern recognition, but I 
seriously doubt  whether it will be  of any  direct utility. What  Minsky 
and  Papert succeeded in emphasiz ing was that given a  device, say the 
Perceptron, one  should find the natural family of problems for which 
it is suited. Somehow in the previous years, it had  been  assumed that 
ad  hoc  devices were somehow universally good,  and  no  attempt was 
made  to del ineate the natural family of problems for which they were 
suited. Thus the change  in phi losophy was extremely important. 

In any  case, except  for the book  by  Minsky and  Papert, the book  by  
Nilsson, an  excellent text by  Rosenfeld on  pictorial pattern recognition, 
there has  been  little except  for volumes of collected papers  publ ished in 
pattern recognition. Now we find that five books  have  simultaneously 
come upon  the scene. These books  will be  reviewed here. 

PREVIEW 

It is fairly clear what the words “pattern” and  “recognit ion” mean  
and  therefore what the central aim of pattern recognit ion is-namely, 
a  systematic theoretical and  expprimental attempt to develop simple 
computat ional means  for placing abstract objects into categories, with 
the eye-brain computer  as  one  (is yet unsurpassed)  model. 

The  books  under  review have  personalit ies. The  overwhelming 
impression gathered from Duda  and  Hart’s book  is that it is a  work of 
careful scholarship. Chapters end  with a  dense  raisin-cake of references, 

dates, and  cross-references. The  history of the subject is gathered 
together in a  manner  that would do  justice to a  good  current review 
article on  the subject. I am reminded in particular of the review article 
of Nagy in 1968,  “State of the Art in Pattern Recognit ion.” 

An illusory feeling of well-being comes from reading Andrews’ book.  
It is literate and  interestingly written and  is also the beneficiary of a  
very good  layout, but the treatment is not deep.  Andrew’s book  is 
more like an  outline for a  short course than a  serious mathematical 
development of the subject. 

The  book  by  Meisel has  much in common with that of Andrews, 
both in subject matter and  style. Even some of the problems are the 
same. This may be  because Meisel originated a  course at U.S.C. which 
Andrews subsequent ly  became involved in. Although Andrews had  
the second crack at the subject, Meisel’s book  seems to be  the more 
ambit ious and  successful effort. 

The  exposit ion in Patrick’s book  is almost unreadable,  and  the 
notation is awful. But Patrick’s book  is an  honest  effort, a l though 
careless and  somewhat  lacking in discrimination. Patrick is locked in a  
losing struggle with notation and  clarity. But, while Fukunaga and  
Duda  and  Hart have  succeeded in this struggle to some extent, Andrews 
and  Meisel have  avoided it almost entirely. Thus Patrick earns my 
admiration because,  above  all, he  loves the subject, and  his effort shows. 

Fukunaga has  a  nice feeling for the subject, but is very heavy  on  
classical multivariate techniques and  tends not to view pattern recogni- 
tion as  a  unique area, but primarily as  a  domain of classical statistics. 
The  book  is good  in pattern recognit ion but f lawed according to its 
own standards by  the shaky statistical exposit ion. 

Pattern Classification and Scene Analysis-Richard 0. Duda  and  
Peter E. Hart. 

The  482-page text by  Duda  and  Hart is a  dense  and  scholarly treat- 
ment of major advances in pattern recognit ion that have  taken place 
over the last ten years. In addition, it gives a  very thorough summary of 
the work presented in Nilsson’s 1965  book,  Learning Machines, as 
well as  some of the new material appear ing in Rosenfeld’s book  on  
pictorial pattern recognition. While the other books  are primarily 
statistical in nature, this book  splits nicely into two parts: first, a  part 
primarily written by  Duda  that treats statistical pattern recognition; 
and  the second part, primarily written by  Hart, that treats computer  
and  pictorial pattern recognit ion techniques, The  subjects include Bayes 
decision theory, parameter estimation and  supervised learning, non-  
parametric techniques, density estimation, linear discriminant func- 
tions, unsuperv ised learning and  clustering, scene analysis, f requency 
domain approach,  descriptions of line and  shape,  perspect ive trans- 
formations, projective invariants, and  descriptive methods in scene 
analysis. 

Duda  and  Hart give a  very thorough list of references and  biblio- 
graphy and,  in addition, draw the reader’s attention to many  fine 
survey articles in the field. The  Bayes decision theory is well known but 
is thoroughly and  cleanly developed by  the authors. In addition, the 
authors prove that independent  binary features in the two category 
problem result in a  Bayes decision surface which is a  linear hyperplane 
-one of the basic motivating results for linear threshold devices when  
they were in vogue  several years ago.  This simple result is also given a  
good  treatment in Fukunaga and  in Minsky and  Papert. 

Dimensionality 
Duda and  Hart’s discussion of problems of dimensionality is 

excellent and  contains many  refreshing ideas. The  authors first discuss 
fitting polynomials to points and  the tradeoff between fitting an  mth 
degree polynomial to n  points (m > n) with subsequent  good  fit but 
poor  generalization, versus poorly fitting a  lower degree polynomial to 
the n  points, hopeful ly with subsequent  better prediction of function 
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values on new points. They go on to find the capacity of a hyperplane; 
namely, two patterns per degree of freedom of the hyperplane. They 
then go on to give a brilliantly clear description of G. F. Hughes’ 
result that the average probability of error when one divides an 
arbitrary feature space into m  cells and has n samples, decreases to a 
minimum as m  increases and then ascends to one half as the feature 
partitioning m  goes to infinity. This is directly related to the difficulties 
inherent in classification when the feature set is too large for a fixed 
sample size. Although Hughes’ discussion is clear, I believe the 
presentation in Duda and Hart is more succinct and has more impact. 

Finally, in a short section on estimating the error rate, the authors 
restrict themselves to a discussion of estimating the error rate of a given 
rule on a separate test &t-a much simpler problem than estimating 
the performance of a decision rule without the aid of additional test 
samples. Here they bring in confidence intervals (Highleyman, 1962), 
in what is a very useful presentation that should aid practicing 
statistical pattern recognizers in establishing confidence intervals for the 
error rates of their procedures. The references for this section do a fine 
job in attributing credit and characterizing the efforts of other workers 
in this area, including Chandrasekaran, Kanal, Lachenbruck, Fukunaga, 
Kessell, and Mickey. 

Density Estimation 
In density estimation, Duda and Hart discuss Loftsgaarden and 

Quesenberry’s nearest-neighbor approach, and the Parzen-Rosenblatt 
estimators. Here we have a proof of the convergence of the Parzen 
estimate. The authors find and exhibit the correct conditions on the 
size of the window functions sufficient for convergence. The proof is 
somewhat heuristic but satisfying. 

Some graphs illustrate the difference between the Parzen estimates 
and the Loftsgaarden-Quesenberry estimates; but, since they are on a 
log-density scale, the comparisons are of little value. The log density 
tends to infinity, and in the regions of low density for finite sample size 
the approximations will be very poor. As far as pattern-classification 
use is concerned, it is the behavior of the density estimates in the region 
of high probability density that is usually the most important. 

However, the ultimate use of density estimation procedures in 
classification is not adequately exposed. The authors fail to mention 
the work of Van Ryzin and others showing that the Bayes decision rule 
with respect to consistent estimators (like the Parzen estimator) will 
yield a sequence of probabilities of error converging to the Bayes risk 
in the limit as n tends to infinity. 

The proof that the nearest neighbor rule has a risk bounded above 
by twice the Bayes risk in the large-sample case again appeals to 6- 
function intuition. Although this is satisfying and certainly (with the 
exception of Fukunaga and Patrick) better than the nothing we find 
from the other authors, one cannot tell what the necessary conditions 
are for convergence. Nonetheless, Duda and Hart are extremely careful 
in delineating the nonrigorous sections of their presentation and no 
fair-minded reviewer can quibble with the patent simplicity of the 
presentation and its consequent pedagogical value. 

Further novelties with respect to the existing pattern recognition 
literature are presented in the Rademacher-Walsh expansion, a full 
discussion of probability distributions on the binary n-cube, and the 
Bahadur-Lazarsfeld expansion. Finally the authors discuss the Chow 
expansion for probability distributions, in which first-order Markov- 
type tree dependence is assumed to exist among the variables. 

To show the care of Duda and Hart, consider the bibliographical and 
historical remarks at the end of Chapter 4. The authors say: 

Our treatment of the Parzen window method is a slight generaliza- 
tion of the univariate formulation by Rosenblatt, 1956. Rosenblatt’s 
work actually preceded that of Parzen, 1962, but Parzen had previ- 
ously employed similar methods for the estimation of spectra, and 
the phrase, “Parzen window,” is now well established. 

This fair discussion of the past of the subject returns to Rosenblatt 
some of the needed credit for this nice density-estimation scheme. 

Throughout the book, the historical discussions are excellent and 
scholarly. 

Linear Discriminant Functions 
The chapter on linear discriminant functions is also excellent. Fully 

eight descent procedures for obtaining optimal linear discriminant 
functions are discussed, ranging from the fixed-increment (Perceptron) 
procedure to relaxation, stochastic approximation, Ho-Kashyap 
procedures, and linear programming. The amount of work involved in 
isolating the essence of each of these procedures is extraordinary. My 
only quibble is that the stochastic approximation procedure, while 
updating the parameter of the discriminant function, does not selec- 
tively choose arguments of the function to be evaluated and thereby 
does not require the full power of stochastic approximation. 

The discussion of decomposition of mixtures of distributions and 
clustering is properly combined in Chapter 6 of Duda and Hart. The 
authors neglect measure-zero distinctions in defining identifiability. 
Patrick is more thorough here, and Fukunaga’s section on clustering is 
equally comprehensive. Clustering is one of the fine contributions of 
pattern recognition, and I am not surprised to see that Duda and Hart, 
Patrick, and Fukunaga have all done an excellent job on it. 

The discussion of unsupervised Bayesian learning is very nice in 
Duda and Hart. Finally, the discussion of graph-theoretic techniques 
and mean-squared-error criteria for clustering in the absence of any 
statistical information whatsoever is very good, and is replete with 
algorithms for which convergence to local minima can be established. 

Incidentally, at about the time of the publication of these books, 
there appeared a book on clustering methods (Mathematical Tuxo- 
nomics by Jardine and Sibson) which is entirely devoted to clustering 
but does not contain some of the material in these five books under 
review. However, an understanding of clustering would be incomplete 
without reference to Jardine and Sibson. 

Pictorial Pattern Recognition 
The second half of Duda and Hart enters an area which is not 

covered in the other four books under review; namely, that of pictorial 
pattern processing as opposed to statistical data processing. Here 
questions of spatial smoothing, edge detection, the determination of 
texture, template match, identification of picture components (is there 
a chair in the picture?), are considered. In some cases statistical 
analyses are given of the ad-hoc picture processing procedures, such 
as an analysis of template matching under a maximum-likelihood 
criterion. A discussion of normalized color coordinates is given. 

At one point, the authors show “A Simple Scene” which consists of 
a photograph of a desk with a telephone on it and a picture behind it 
which is a picture of a desk with a telephone on it. It takes a few 
seconds to discover where to look to find out whether this is indeed an 
infinite regress. 

There is a section on the spatial frequency domain that draws on the 
work of Papoulis, Bracewell, and an earlier book by Andrews, 
Computer Techniques in Image Processing (Academic Press, 1970). 
Here, sampling theorems and a discussion of template matching of the 
convolution theorem are given in a very readable discussion. 

While none of the other books treat Minsky and Papert’s beautiful 
results on the complexity of geometrical predicates as looked at by 
perceptrons, this book at least makes a preliminary presentation of 
these results-first showing the difficulty of various geometrical 
predicates for diameter-limited perceptrons and then going on to 
order-limited perceptrons. Most of the results are stated without proof. 

There is a section on integral geometric descriptions. Most of the 
results are given without proof and the discussion of Bertrand’s 
paradox is not illuminating. 

The section on perspective transformations is very good and is also 
not presented in any of the other books. Much of this is needed back- 
ground for any TV-monitored pattern recognition problems. And if 
stereo perception is needed, the material is essential. The cross ratio is 
introduced in the section on projective invariants. Finally some 
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descriptive formalisms and  picture grammars are developed.  Special 
applications to analyses of polyhedra are given and  Huffman’s nice 
analytical results on  impossible objects are presented. Finally, there is 
a  good  presentat ion of Guzman’s 1968  work on  grouping picture regions 
into objects. 

In summary,  the book  by  Duda  and  Hart is an  extremely scholarly 
and  solid work, comprehensive in detail. It covers both statistical and  
pictorial techniques but does  not skimp on  effort in making the 
mathematical details lucid and  precise. 

Introduction to Statistical Pattern Recognit ion-Keinosuke Fukunaga.  

At the time I taught my class this winter (1973), Duda  and  Hart’s 
book  was not yet out, nor  was its applicability to the course yet clear in 
my mind, so  Fukunaga became my selection for a  reference for the 
course. W e  found the book  to be  stimulating and  thorough. 

Fukunaga concerns himself primarily with those aspects of pattern 
recognit ion that can  be  character ized as  waveform classification or 
classification of geometr ic figures. This, of course, covers a  lot of 
territory. 

Probability Background 
Chapter 2  of Fukunaga concerns random vectors and  their propert ies 

and  is basically a  quick run-through of probability ideas at a  level 
somewhat  lower than Parzen’s elementary text. There are some 
annoying errors. For example, the components  of the covar iance 
matrix are expressed as  oI,* in three places on  page  17  and  once  on  18, 
thereby more than strongly suggest ing that all of the terms are 
nonnegat ive.  

Also ambiguous is Fukunaga’s notation on  page  26, “If P(X,) -+ 
P(Z) as  N -+ co, we say that XN tends to Z  in distribution.” Here P is a  
distribution function, X,, 2  are real numbers,  and  X,, Z  are random 
variables. The  definition makes little sense.  On  the same page  the 
author states the central limit theorem as an  example of convergence in 
distribution, but unfortunately normalizes c:= 1  X, by  l/n instead of 
l/J;, thereby yielding a  degenerate and  distinctly nonnormal  limit. 

Fukunaga’s discussion of the Neyman-Pearson test omits proof of 
the Neyman-Pearson lemma, does  not discuss necessary randomizat ion 
when  the distributions have  atoms, and,  in fact, uses a  Lagrange 
multiplier minimization approach which, strictly speaking, fails 
because the minimum is achieved at the boundary  of the set of all 
decision rules. The  needed  Kuhn-Tucker theorem justification is 
simply the Neyman-Pearson lemma itself in this context. In general  
this treatment is unnecessari ly murky. 

Fukunaga gives the Ho-Kashyap algorithm and  convergence proof 
for finding a  separat ing hyperplane when  the patterns are linearly 
separable. This is a  gradient descent  method. He also provides a  
proof, in a  different chapter, of the convergence of the fixed increment 
algorithm. Finally, a l though Fukunaga’s treatment of l inear classifiers 
is not as  complete as  Nilsson, Duda  and  Hart, Andrews, and  Meisel, 
he  includes the important observat ion that many  seemingly nonl inear 
discriminant functions can be  considered to be  linear in their co- 
efficients and  therefore linear discriminant functions in some space into 
which all the patterns have  been  mapped.  This observat ion allows 
linear techniques to be  used for polynomial discrimination problems. 

Fukunaga’s discussion of the sufficient statistic involves first a  
Bayesian characterization in terms of a  posteriori distributions on  the 
parameter,  an  unnecessari ly restrictive point of view. Later, on  page  
130,  he  proves the factorization criterion for a  sufficient statistic but 
does  not discuss the concept  of minimal sufficient statistic. Thus the 
discussion is needlessly incomplete and  references to standard texts 
like Ferguson and  Blackwell and  Girshick are not provided. 

Error Estimation 
Fukunaga provides a  nice treatment of estimation of the probability 

of error of a  given decision rule based  on  independent,  unlabel led test 

samples. He then goes  on  to discuss what happens  when  one  designs the 
classifier on  the training set and  then uses the training set to estimate 
the probability of error of the classifier. This involves some sophist icated 
jack-knifing procedures;  among  them, the procedures of Hills and  
Lachenbruck.  This area is of intense current interest. Fukunaga is one  
of the primary contributors in this area. 

Density Estimation 
In Chapter 6  Fukunaga,  in the manner  of Andrews and  Meisel, 

considers estimation of density functions-but this is mostly a  summary 
with proofs omitted. Unlike Andrews and  Meisel, Fukunaga gets the 
details scrupulously correct and  puts condit ions on  the kernel estima- 
tion procedures of Parzen and  Rosenblatt  which guarantee convergence 
in probability. In addition, Fukunaga proves Bochner’s theorem, which 
is the underlying theorem for the establ ishment of consistency of 
Parzen-type estimators. He cont inues with material from Parzen’s 1962  
paper  by  proving uniform consistency of the estimation of the mode  of 
an  unknown density function-a very important procedure for pattern 
recognition. Condit ions for convergence of the Lof tsgaarden and  
Quesenberry  procedure are provided. 

Fukunaga’s proof of the convergence of the risk of the nearest  
neighbor rule is given in outline form. Exchanges of limits and  expecta- 
tions are not justified (in this case by  dominated convergence),  while 
in the somewhat  more rigorous, equally intuitive proof of Duda  and  
Hart, this condit ion is mentioned. While I do  not bel ieve that simple 
theorems like Fubini’s theorem need  be  invoked in a  discussion at this 
level, dominated convergence is less often satisfied. For example, 
unawareness of this condit ion would have  one  assume that the same 
sorts of bounds  hold for nearest-neighbor estimation procedures 
without additional conditions. This has  proved not to be  the case. 
Incidentally, only Patrick and,  to some extent, Duda  and  Hart extend 
the classification procedures of the nearest  neighbor rule to estimation 
procedures,  even  though everyone knows that classification is a  special 
case of estimation; and  many  pattern recognit ion problems are really 
parameter estimation problems, as  the authors amply imply by  covering 
estimation material without except ion in the books  under  review. 

Stochastic Approximation 
Fukunaga gives an  interesting discussion of stochastic approximation 

at the outline level. In his development of the proof of the convergence 
of stochastic approximation, he  states the weird implicit condition, 
p. 207,  “W e  assume the regression function is also bounded  in the 
region of our  interest as  E{f(B,)‘} 5  M.” If we are trying to prove 
some good  propert ies of our  sequence of estimates of roots &, this 
constraint seems to me  to be  begging the quest ion in an  important way. 
On  page  207  and  again on  208,  with respect to stochastic approxima- 
tion, Fukunaga makes a  nonsense statement about  convergence with 
probability one,  by  implying that Bi --f 0, wpl, if lim,, m  Pr {or =  0) =  1. 
This is not even  convergence in probability. In fact, for t$ cont inuous 
r.v.‘s, Pr {0, =  0) =  0, Vi. 

On  page  222,  Fukunaga makes an  incisive comment  about  the 
distinction or lack thereof between unsuperv ised Bayesian learning and  
supervised Bayesian learning: 

Therefore, as  a  concept,  successive unsuperv ised estimation . . . 
is the same as successive supervised estimation. . . . But because of 
the summation involved in the calculation of a  priori density func- 
tion, the reproducing property is lost for all density functions listed 
previously, including the normal distribution. This means  that we 
cannot  easily estimate a  set of parameters so that we have  to deal 
with the recursive estimation of multivariate functions. 

In other words, as  noted by  Spragins, finite-dimensional sufficient 
statistics are not preserved in unsuperv ised estimation problems, 
because mixtures of distributions do  not preserve the finite-dimen- 
sional sufficient statistics of the component  distributions. 

Feature Selection 
In Chapter 8, Fukunaga discusses feature selection using linear 

mappings.  This is essentially a  statistical approach putting emphasis 
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on the Karhunen-Lo&e expansion. The primary idea here is to re- example without labeling it as an example; continues on in 2.10 with a 
represent the data in a one-to-one way in some other space, hopefully continuation of that example where he adds some ad hoc clustering 
a space in which the subsequent operations will be simple. This puts considerations on growing clusters’and then goes into an extended 
off the question of whether this preliminary data processing is indeed discussion of reproducing distributions (primarily of interest with 
necessary. respect to learning or updating schemes for pattern recognition). 

Concerning feature selection, Fukunaga says : Then in Section 2.12 he goes on to “Stochastic Approximation.” 

When one distribution is studied, there are no classification 
problems-only representation problems. It is assumed that features 
which represent individual distributions should lead us to good 
features for classifying these distributions. Feature selection for one 
distribution is a mapping from the original n-dimensional space to 
an m-dimensional space (m << n) which does not distort the repre- 
sentation of a given distribution. If the classification probltm is not 
explicitly considered, we have no way to determine what kind of 
properties of a given distribution should be preserved. 

This perhaps explains Chy so many authors have concerned themselves 
with the problem of re-representing a pattern in another space without 
loss of information. The Karhunen-Lokve expansion for stochastic 
processes is most commonly used. However, it is rare in pattern 
recognition that the features that describe most of the pattern are 
most effective in discriminating between two patterns. Of this, 
Fukunaga is well aware. Moreover, a mapping from m-space into 
n-space usually involves measurement of all it of the variables on the 
pattern itself and thus does not save measurements, but simply 
computes a hopefully sufficient statistic for the discrimination problem. 
Fukunaga goes on in Chapter 9 to look at feature selection for two 
distributions. There he brings into account these distinctions- 
distinctions which I feel are not given full treatment in Andrews and 
Meisel. Patrick, on the other hand, has a great deal to offer about all of 
these subjects. 

In Chapter 10, Fukunaga discusses nonlinear mappings. Here, on 
page 289, another trap opens up. The author says: 

The minimum number of parameters required to account for the 
observed properties of the data is called the intrinsic dimensionality 
of the data set, or, equivalently, the data-generating process. 

This is clearly incorrect, since any finite number of real numbers can be 
mapped l-to-l into the unit interval by interleaving the decimal 
expansions, thereby reducing a finite-dimensional vector space to a 
one-dimensional unit interval. Some properties like preservation of 
linear vector spaces must be posed in order to make this definition 
meaningful. Perhaps the concept of Hausdorff dimension is what is 
needed. Fukunaga goes on to discuss some multidimensional scaling 
procedures in a fairly interesting way and then gives separability 
enhancement by nonlinear mapping-another interesting topic. 

Finally, in Chapter 11, Fukunaga discusses clustering procedures- 
both parametric and nonparametric. Here the discussion is quite nice. 

Despite the cited errors, Fukunaga’s book leaves me with a good 
feeling. Many topics are covered with dispatch. Also the book shows 
hints of the author’s own careful and valuable research. It is too bad 
that Fukunaga’s recent work on error estimation was not ready for 
inclusion when his book was published. 

Fundamentals of Pattern Recognition-Edward A. Patrick. 

Patrick’s book is almost entirely statistical in nature with an over- 
whelming emphasis on the Bayesian approach. He explicitly develops 
the a posteriori distribution for many families of distributions and 
proves the convergence of the risks to zero in those cases where the 
underlying distributions are identifiable. The novelty of Patrick’s 
approach is that he puts emphasis on the decomposition of mixtures. 
However, in this he still is less successful, both in developing the 
subject and in his results, than are Duda and Hart. 

The author seems to get sidetracked at times. For example, in 
Chapter 2, “Maximum A Posteriori Estimator Versus Bayes 
Estimator,” he develops some properties of Bayes estimators under 
squared-error loss criteria. Then in Section 2.9, he goes into a Gaussian 

The discussion is very rambling and at no point is it clear that 
stochastic approximation is what is needed here. For example, when the 
author considers the decomposition of Gaussian mixtures by observa- 
tions of random variables drawn according to a mixture distribution, 
it is clear that a standard maximization over the conditional distribu- 
tion of the data given the parameter will yield the maximum-likelihood 
estimate without any recourse to stochastic approximation, because of 
the known functional form of the distributions. Moreover, no essential 
characteristic of the stochastic approximation problem is used by 
Patrick. For example, although Patrick updates his estimates by means 
of the stochastic approximation algorithm, he does not update the 
value of the argument at which he will attempt to measure the new 
value. It is only when the observation random variable depends 
critically on the choice of the argument that stochastic approximation 
theory is needed to guarantee convergence. Thus the developed relation 
between the mixture decomposition problem and stochastic approx- 
imation is superficial and misleading. 

Abstract Ideas 
Patrick’s first chapter goes into a number of background concepts in 

topology and topological spaces and is full of omissions and errors. 
For example, the author says, “Every continuous function can be 
approximated by a polynomial, thus the set of polynomials is dense in 
the set of continuous functions.” This example is untrue except for 
functions restricted to a compact set. For example, eX does not have an 
s-approximation by a polynomial of finite degree except of course when 
restricted to a compact set. Of course, focusing attention on this section 
ignores the primary issue of why the section should be included at all. 
As far as I can see this section is not integrated into the rest of the book 
and could easily be eliminated. Since the section is so sloppy, its loss 
would be a gain. 

Patrick, as he has frequently pointed out in the literature, was the 
first to use the idea of mixtures and identifiability of mixtures in the 
pattern recognition context. These ideas were substantially developed 
at the time by Teicher and subsequent work was done by Yakowitz and 
Spragins. The author gives a nice proof of the necessary and sufficient 
conditions for the identifiability of finite mixtures, namely that the 
family of distribution functions must be linearly independent over the 
reals. This waS proved by Teicher, and the author follows the proof of 
Yakowitz and Spragins. This section does not have as satisfactory 
notation nor is it as clear an exposition as that given in the paper by 
Yakowitz and Spragins. 

Patrick’s discussion of distribution-free tolerance regions is quite 
good. The basic idea is given by the following example. Let x1,x2, . . , 
x. be independent, identically distributed random variables drawn 
according to some unknown distribution function F(x). Then these 
points partition the real line into n + 1 regions. It can be shown that 
the probability that a new sample will fall in the ith region is precisely 
l/(n + 1) for i = 1,2,. . ,n + 1, In many dimensions, the possibilities 
for creating tolerance regions becomes much greater, and Patrick 
discusses them fully. 

Patrick’s presentation of reproducing densities and Bayes estimates 
on pages 85-107 is quite interesting and utilizes the concept of 
sufficient statistic in a very nice way to achieve an agreeable and useful 
generality in the discussion. This work was started by Raiffa and 
Schlaifer and was introduced into the pattern recognition literature by 
Spragins. 

Probability and Statistics 
The errors in Patrick’s definitions of convergence are astounding. 

For example, on pages 56, 57, Patrick says, “or, put in terms of the 
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relative f requency concept  of probability, the latter requirement is 
that the relative f requency of experiments producing a  converging 
sequence is close to 1.” The  author goes  on  to say: 

Convergence w.p.1 will be  denoted,  for any  E > 0  and  S > 0, 
p{ft: IIY” - YII <  El >  1  - 6, n  z no, 

p{q: lim y” = y} =  1  
n+m 

. . where the probability distribution is understood to be  over the 
possible experiments or sequences  q, i.e., the number  of experiments 
for which jl y. - ~11  > E can be  made  small. 

The  verbal description is complete nonsense and  shows a  lack of 
understanding of probability theory. The  notions of relative f requency 
and  measure are confused. Also, the first definition is convergence in 
probability rather than convergence with probability 1  and  certainly 
is not equivalent to the condit ion given in the second equation. As if 
to emphasize this, the author goes  on  at the bottom of page  57  to give 
the definition of convergence in probability by  copying precisely the 
first equat ion in the aforement ioned quotation. 

The  author considers the concept  of consistent estimation with some 
success but comes to grief in Section 2.4 on  sufficient statistics. Here 
Patrick says : 

The  author bel ieves that the concept  of sufficiency should be  
def ined as  what is sufficient to represent the a  posteriori density 
f(b 1  R,) of the parameter vector b  characterizing the sample 
probability density h(x).” 

This is the restricted Bayesian viewpoint shared in Fukunaga’s exposi- 
tion, but nicely d iscussed by  Duda  and  Hart. Finally we have,  “The  
following definition of a  sufficient statistic is the statistician’s definition 
formulated before mixture densit ies were studied . . ..” Little need  be  
added  to the case made  by these quotat ions other than to remark on  the 
particularly parochial point of view taken by  the author that the concept  
of sufficient statistic is somehow changed  when  mixture densit ies are 
taken into account.  Moreover,  it is clear that the author is not making 
effective use  of his notation and  that despite its complexity, dozens  of 
undef ined concepts float though his definitions. 

Introduction to Mathematical Techniques in Pattern Recognit ion- 
Harry C. Andrews. 

Andrew? book  is as  inviting as  Patrick’s is formidable. The  printing 
is large and  the layout spacious. An idea of the density of the print in 
Andrews’ book  can be  gotten by  noting that there are only 12  references 
printed per  page  in the reference section at the end  of each  chapter. 
There are 8  pages  of references following the first chapter alone. But 
the content of the book  does  not do  justice to the subject. 

Feature Selection 
The  author makes a  convincing case for breaking up  the classifica- 

tion problem into a  pattern space,  feature space,  and  classification 
space.  He then errs by  saying that the classification space is k-dimen- 
sional in the k-category problem. What  he  means  to say, of course, is 
that the classification space has  k points. 

Andrews’ approach to feature selection is almost entirely of the 
transformation from n-space to m-space variety. This approach largely 
ignores the fact that the original n  measurements have  to be  made  in 
order to calculate the transformation y =  Ax. Thus this is not so  
much feature selection as  it is data reduction, and  of course in terms of 
the cardinality of the space,  both Eucl idean m-space and  n-space have  
the cardinality of the real line. 

I like Andrews’ inclusion of a  discussion of intrinsic dimensionality 
and  multidimensional scaling. This work of Sheppard and  Bennett  in 
psychology seems to be  very appropriate for the data analysis of pattern 
recognition. The  quest ion is how to take a  collection of points in 
n-space and  find the intrinsic dimensionality of it. In other words, 
how to find a  manifold of low dimension, roughly linear, that 
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approximates the points suitably. The  discussion here seems thorough 
and  interesting. 

In Chapter 3, on  “Distribution Free Classification,” Andrews follows 
the classical lines of Nilsson’s development in his book,  Learning 
Machines, 1965.  He discusses linear separabil ity algorithms for deter- 
mining separabil ity by  polynomial discriminant functions. Andrews 
does  not discuss the capacity of a  linear threshold device. 

I am afraid that Andrews has  fallen into the temptation of putting 
into the book  what he  knows rather than what he  knows that is associ- 
ated with pattern recognition. It certainly is fair to put in an  army of 
techniques that seem to be  related to the problems of statistical pattern 
processing, such as  multivariate analysis, information theory, and  so on. 
But some of it must fall together, some of it must be  anchored in the 
reality of the problem-and in a  book,  at least, these techniques 
cannot  be  al lowed to languish in isolation. Otherwise we have  a  
collection of classical topics unchanged  by their associat ion with the 
subject. A list of references would do  as  well. 

For example, Andrews introduces the rate-distortion concept  to 
pattern recognit ion by  saying: 

In 

Appendix B . . is introduced as a  possible tool in the feature 
selection task. The  ideas are purely conjectural but appear  well- 
founded in the information-theoretic context of the book.  

Appendix B, the author says : 

Traditionally the fidelity criterion has  been  a  mean  square error 
estimate or other function estimating type of process typically useful 
for waveform analysis. However,  in the context of the pattern 
recognit ion environment, if the fidelity criterion is misclassification 
error rate, then the rate-distortion function will provide a  lower 
bound  on  the dimensionality (bits) necessary to achieve a  particular 
distortion (misclassification error). 

This certainly does  not apply to the two-class problem and  the 
author does  not provide any  examples where it does  apply. For 
example, in the two-class problem, no  matter how many  patterns there 
are and  no  matter what the nature of the pattern space is, it requires 
only one  bit of information to achieve theminimum classification error. 
Namely, one  needs  to know whether a  given point does  or does  not lie 
in a  certain designated subset  of the pattern space (for the statistical 
formulation of the problem, this is simply the partition induced by 
the Bayes decision rule). Thus when  the author goes  on  to say: 

This, then, may provide a  guide to the best feature selection 
possible for a  given misclassification error in terms of dimensionality 
of bits of encoding (storage). Toward obtaining this bound,  the 
following section investigates the rate-distortion function. 

W e  see that the effort, so  directed, will come to naught.  In fact rate- 
distortion theory has  to do  with a  growing number  of “quantization 
points” as  the number  of samples increases. 

In the section on  nonparametr ic classification, Andrews incorrectly 
states that the Parzen estimator of the density function will converge 
to zero if the window size h(n) converges to 0  in the limit as  n  tends to 
infinity. While that is necessary,  it is also necessary that n/r(n) tend to 
infinity in the limit. Thus, not only does  Andrews not give the proof of 
the convergence of the Parzen estimator as  is given in Fukunaga,  
Patrick, and  Duda  and  Hart, but he  omits the crucial condit ions for 
the convergence.  

In Chapter 5, under  the title “Nonsuperv ised Learning,” Andrews 
treats clustering procedures and  considers chaining methods, the 
potential method, mode  estimation, and  minimal spanning trees. 
Inexplicably the author fails to give any  propert ies of the minimal 
spanning tree. The  definition he  gives is, “The  minimal spanning tree 
is def ined to be  that tree or connect ion of all points in the set to their 
closest neighbors such that the entire tree is minimum,” page  150.  
He later gives another definition almost as  poor. It is well known 
(Kruskal) that the following algorithm results in a  minimal spanning 
tree for a  graph with weighted edges:  form a  graph consisting of the 
edge  of lowest weight, next lowest weight, etc., rejecting any  edges  
forming loops. This process terminates with a  minimal spanning tree. 
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Andrews goes on to say: labeled samples are randomly thrown down according to uniform 

Because the minimum spanning tree is unique to a set of points 
in terms of a minimum total weight, it is possible to use the tree as a 
basis for certain cluster detection techniques combining both distance 
properties and density properties described below. 

Actually, the total weight is unique-but the tree is not. Having all 
edge weights different guarantees a unique tree, however. 

Polynomial Discriminant Functions 
Most of the authors have, with the exception of Meisel, in my 

opinion, incorrectly perceived the strength and weaknesses of the 
polynomial discriminant function approach of Specht. In this ap- 
proach, one first approximates the probability density functions for 
classes 1 and 2. Each probability density is written as the sum of normal 
distributions centered at the various sample points, the variance of 
which is some fixed constant 6’. Obviously one could then find the 
likelihood ratio with respect to these two empirical density estimates 
and use the Bayes rule with respect to it. However, this is considered to 
be too complex in that it uses all of the samples. Specht proposed that 
each of the normal distributions be expanded in a truncated Taylor 
series and that the sums of these truncated Taylor series expansions 
would then be a good estimate of the underlying density. The trouble 
with all of this is that each truncated Taylor series is good in a region 
around its particular sample and in fact blows up elsewhere. Thus the 
sum of these Taylor series expansions will be a poor approximation 
everywhere. Not only that, but if we fix the polynomial expansion to 
the degree k, the sum of these polynomial expansions will also have 
degree k. Thus we find ourselves in the curious position of estimating 
an underlying density by a polynomial of degree k. But, of course, a 
polynomial of degree k has an infinite integral that either diverges to 
plus infinity or minus infinity depending on the oddness or evenness of 
the degree of the polynomial. It is conceivable, I suppose, for a large 
enough sample size and for a clever enough choice of the smoothing 
parameter u*, that this polynomial estimate would be a reasonable fit 
to the density-but there is no general guarantee of this and certainly 
no proof in the literature. 

Andrews looks at the polynomial discriminant function technique 
of Specht and says on page 129 : 

Also by increasing the smoothing parameter Q, the number and 
order of coefficients necessary for a given accuracy become drasti- 
cally reduced. As 0 becomes small, the true J-function distribution 
will result in a point of probability at each prototype. This results in 
‘nearest neighbor’ classification. 

distribution in the unit n-cube, then a certain optimal linear trans- 
formation seems to indicate that the categories are widely separated 
unless m/n is approximately 4 or more. Since the patterns from both 
sets are drawn according to the same distribution, this would lead the 
experimenter to a spurious conclusion. However, Meisel then goes on 
to give an incorrect example. He says: 

Consider, for example, a hypothetical situation: Suppose the 
designer is presented with a hundred labelled 2-dimensional samples 
from each of two classes and suppose a linear hyperplane exists 
which separates the samples with 100% accuracy. Since m/n is 50, 
the designer may be confident he can achieve a high accuracy on 
unlabelled samples. 

Meisel then adds 98 features to each sample chosen from “a source 
of random noise.” Now m/n is only 1. Then: 

. if he proceeds (with a resigned sigh) to obtain a perfect separating 
hyperplane by methods such as described in Chapter IV, it must 
intersect the original two-dimensional plane in a two-dimensional 
hyperplane which separates the two-dimensional samples with 100 %  
accuracy. 

This last statement, of course, is false. There is no reason why a 
separating hyperplane for the 100 samples in lOO-dimensional space 
need separate the projections of these samples in a given 2-dimensional 
subspace. In fact, it would be very unlikely to have this property. 
Throughout this discussion, Meisel seems unaware of any work done 
on the capacity for linear threshold systems. This result says that the 
probability is precisely one-half that a random dichotomy of 2n points 
in general position in Euclidean n-space is linearly separable. A dis- 
cussion of intrinsic dimensionality and generalizability should treat this. 

Linear Separation 
Meisel gives a good discussion of the simplex method approach for 

finding the best linear separating hyperplane and, in general, finding 
the best hyperplane when no linear separation is possible. Of the 
other books, only Duda and Hart treat the simplex method. In general, 
Meisel’s treatment of linear discriminant functions is not as good as 
Nilsson’s original treatment in his book nor does the author adequately 
acknowledge his debt to Nilsson. Also, as we have mentioned, although 
algorithms for determining the solution of the system of simultaneous 
linear inequalities are given, no statements about the probability of the 
solution are given even though these can be found in Nilsson’s 
treatment. 

The problem with this argument is that as g goes to 0, the region in 
which the approximation is good around the given sample point also 
tends to zero. Thus, while it is true that there is a peak of the poly- 
nomial at the data point, it is also true that the function blows up badly 
far from this point. Thus, instead of getting the nearest-neighbor 
classification, we will be getting the fart&st-neighbor classification, 
because a polynomial tends to infinity for values of x far from its 
zeroes. None of these complaints would apply if, in fact, the poly- 
nomial approximation to the Parzen windows had not been made- 
because in this case, the component density centered at the sample 
points tend to 0 in the limit as we retreat from the sample point. 

Nearest-Neighbor Rules 
On page 29, Meisel discusses nearest-neighbor classification. He 

mentions the following objections to it: 1) it assumes that the distance 
between points is a legitimate measure of the similarity of the patterns 
they represent, 2) the nearest-neighbor algorithm can be criticized for 
making poor use of all the information available, and 3) it is best for a 
small number of samples of reasonably low dimension. However, 
nowhere does he mention the known nonparametric bounds on the 
large sample risk of the single nearest-neighbor rule. Most of the more 
sophisticated procedures that the author discusses in this book cannot 
be shown to have any properties relative to the Bayes risk. Thus the 

Computer-Oriented Approaches to Pattern Recognition-William S. 
author’s omission is not easily dismissed. Also, convergence of the 

Meisel. 
Fix-Hodges classification procedure is not mentioned. 

The contents of this book include statistical and parametric methods, 
optimization techniques, linear programming, linear discriminant 
functions, probability density approximations, piecewise linear 
discriminant functions, cluster analysis and unsupervised learning, and 
feature selection. 

The book is easy to read and has a balanced perspective. 

Feature Selection 
Meisel gives an interesting discussion of dimensionality and discusses 

the up-to-date work of Foley in which Foley shows that if m  arbitrarily 

Density-Function Estimation 
The author devotes two chapters to the estimation of probability 

density functions. He omits showing the convergence of the histogram 
estimate to the best density approximate of the quantized histogram 
form even though this proof involves nothing more than the law of 
large numbers. Next, making the same mistake that Andrews makes in 
his book, Meisel states that the only condition on the Parzen estimates 
is that the window size h(n) tends to 0 in the limit as n tends to infinity. 
While this indeed gives an unbiased estimate of the underlying prob- 
ability density function, this in no way guarantees that the variance of 
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the estimate tends to 0. For this we need  the additional constraint that 
n/r(n) tends to 0  in the limit as  n  tends to infinity. Also no  proofs are 
given, a l though the proof follows in the few lines given Bochner’s 
theorem and,  in fact, Parzen proves convergence of his estimate in two 
pages  in the Ann. Math. Stat. I seriously disagree with the authors on  
their omission of proofs. The  inadequacy of the condit ions in their 
theorems amply attests to the lack of wisdom in not demonstrat ing 
how the condit ions relate to the statement of the theorem. 

The  author gives a  thorough treatment of Specht’s polynomial 
discriminant function technique and  in my opinion, gives the only 
adequate  warning about  the farthest-neighbor rule propert ies of this 
procedure.  After remarking that the individual expansions of the 
density kernels are good  only in hypersl ices through the origin, he  
goes  on  to say, “One  might ask, however,  if the particular approxima- 
tion chosen to x,y in the above  algorithm is the best realization of a  
good  idea.” Meisel goes  on  to modify Specht’s definition to given an  
approximation which is good  in the region of interest. 

The  index for Meisel is not as  good,  for example, as  Nagy’s 1968  
bibl iography for his survey paper  on  pattern recognition. Nor, for that 
matter, is Nagy’s survey paper  listed in the bibl iography. 

Meisel has  an  extensive chapter on  cluster analysis but does  not go  
into proofs. However,  his exposit ion is much better than Andrews’. 
For example, on  the subject of minimal spanning trees, Meisel says : 

A tree is a  connected graph with no  closed circuits. A spanning 
tree of a  connected graph G  is a  tree in G  which contains every node  
of G. The  weight of a  tree is the sum of the weights of its edges.  A 
minimal spanning tree is a  spanning tree of minimal weight. 

Inexplicably, Meisel does  not offer the easy algorithm for finding the 
minimal spanning tree. 

My overall criticism of Meisel’s book  is not that he  leaves out some 
topics, but that in the topics that he  treats he  leaves out the most 
important parts. Thus the book  superficially appears  to cover a  wide 
range of interesting topics. However,  the author has  not mastered the 
literature on  most of them. Nonetheless, the book  has  an  original point 
of view and  several nice results due  to the author including his extension 
of the polynomial discriminant function approach.  

In balance, Meisel’s book  seems to dominate Andrews’ both in the 
substantial areas in which they overlap (and even agree-many 
problems are precisely the same) and  in the point of view and  the 
selection of extra topics. 

CONCLUSIONS 

Pattern Recognit ion, like Artificial Intell igence and  Cybernetics, has  
caused profound frustration among  its devotees,  simply because of the 
softness of the subject and  the ambit ious goals. The  layman cont inues 

to shrug at modest  progress and  will not even  be  surprised when  
machines see, play chess, and  score basebal l  games from radio broad- 
casts. In W illiams’ “Cat on  a  Hot Tin Roof,” one  of the characters 
drank, he  said, until he  felt that “click” in the back of his head.  
Despite much solid progress no  one  has  heard the click yet in pattern 
recognition, and  we are all suffering in the meantime-the authors of 
these books  not the least. 
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