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Book Reviews 

Communication Theory: Transmission of Waveforms and Digital 
Information-D. J. Sakrison (New York: Wiley, 1968, 369 pp., 
$12.95). 

The author of an introductory book has an obligation to do more 
than just present a specified set of material to the student. He 
must develop a rapport with the reader and give him the feeling 
that this is “where the action is.” Sakrison has done an admirable 
job in this introductory survey of modulation and reception systems 
covering AM, FM, PM, PPM, PCM, and phase-locked loop per- 
formance in the presence of additive noise. The material in the book 
can be easily read and understood by engineering students at the 
senior level. Forming an integral part of the text are the exercises, 
which are placed with the pertinent material rather than at the end 
of the chapter. These exercises are chosen to be easily solved if the 
material is well understood. By looking at specific systems, important 
concepts such as trading bandwidth for signal-to-noise ratio, the 
threshold effect, and the capability of digital coding arise in an 
intelligible and intuitive manner. Although most of the material is 
available in much greater detail in other books, it could not be read 
with clarity by students uninitiated in communicat ion theory. 

Since the book is intended to be self-contained, the first part 
consists of a terse and highly specific development of Fourier trans- 
forms, Laplace transforms, and probability theory. Some of the 
effort required in the development from first principles seems unnec- 
essary since, for a student to readily comprehend the book, his 
background should already include most. of this material. The second 
part of the book depends heavily upon the works of Davenport and 
Root for the treatment of random processes, Abramson for FM, 
Wozencraft and Jacobs for digital data and nonlinear modulation, 
and Viterbi for phase-locked loops. 

The book is almost error free. Three minor exceptions are the 
following. The discussion on page 258 gives the impression that AM 
modulation is completely general for the phase incoherent channel, 
which it is not; the claim on page 255 that the simplex signals have 
been proved opt imum is incorrect; finally, the graphs on pages 253 
and 265 should have the parameter log, p substituted for y. On the 
whole, the book provides the student with a background of con- 
siderable depth, which no amount of formula manipulation could 
accomplish. The style, careful attention to clarity, and mathematical 
level make this book excellent for use as either a course text or for 
self-teaching. 

STEVEN M. FARBER 

Information Sciences Lab. 
Boeing Scientific Research Lab. 
Seattle, Wash. 98124 

Perceptrons : An Introduction to Computational Geometry-M. 
Minsky and S. Papert (Cambridge, Mass: M.I.T. Press, 1969, 
258 pp., $12.00 hard cover, $4.95 paper). 

This book has been widely hailed as an exciting new chapter in 
the theory of pattern recognition, but it will be of interest to also 
view it in another context-as a contribution to the chapter on the 
complexity of computation by finite networks in the theory of 
automata. 

First, let us recall the idea of a Perceptron. We  are to imagine a 
network made of elements that have a unit delay in their operation 
and that compute any Boolean function; in other words, given any 
configuration of O’s and l’s on their inputs, one moment of time later 

they produce a 0 or 1. (They may  be threshold elements, for which 
each input line has some associated weight Wi, and the overall 
element has some associated threshold 0. At any moment of time 
we take the weighted sum c WiXi of the input values to determine 
whether the output should be 1 or 0 one moment of time later deter- 
mined by whether or not that sum exceeds 0.) Later we shall assign 
other tasks to such networks, but for now let us consider pattern 
recognition, and consider the input to be a spatially arrayed collec- 
tion of squares rather than to be a collection of lines. The idea is, 
then, that we can put a two-dimensional pattern upon this array 
and it will be quantized so that each square either records a 1, if 
it is relatively bright, or a 0, if it is relatively dark. Then there is a 
layer of components that can compute arbitrary Boolean functions, 
each one connecting to some subset of the squares on the “retina” 
above. This single layer of associator elements is to be read out by 
a single threshold element. This structure is the “one-layer” Percep- 
tron studied by Minsky and Papert. (Other authors have studied the 
effects of interposing more complex networks between the retina and 
the output element.) In any case, a Perceptron may  be used to 
classify patterns on the retina into those that yield an output 1 and 
those which yield an output 0. 

The question asked by Rosenblatt and answered by many others 
since’ is the following. “Given a network, can we ‘train’ it to recog- 
nize a given set of patterns by using feedback, on whether or not the 
network classifies a pattern correctly, to adjust the ‘weights’ on 
various interconnections?” The answers have mostly been of the 
type, “Well, if a setting exists that will give you your desired classifi- 
cation, I guarantee that my  scheme will eventually yield a satis- 
factory setting of the weights.” 

I find a certain pleasant irony in the fact that Marvin Minsky 
and Seymour Papert, long vocal as vigorous opponents of the 
Perceptron approach to building “intelligent machines,” have given 
the concept a new interest and vigor by giving their essay on com- 
putational geometry the title “Perceptrons.” In any case, they have 
now turned the negative comment “Perceptrons are no good for A 
orBor . ..” into a mathematical examination of the natural class 
of problems for which Perceptrons are suited. We  may  say that 
Minsky and Papert have responded to the questions and answers 
of earlier workers with the question “OK, you’ve proved your 
scheme works when a weighting scheme exists, but when does there 
exist such a setting of the weights?” In other words, they ask, 
“Given a pattern recognition problem, how much of the retina must 
each associator unit ‘see’ if the network is to do its job?” They 
analyze this question both for “order-limited Perceptrons,” in 
which the “how much” is the number of retinal units to which an 
associator unit may  be connected, and for “diameter-limited Per- 
ceptrons,” in which “how much” is specified in terms of the largest 
diameter of any retinal region to which an associator unit may  be 
connected. 

Let us now place this work in the context of complexity of com- 
putation, an exciting young branch of automata theory, by first 
recalling some work of S. Winograd and P. M. Spira, and contrasting 
it with an example of the group invariance procedure used by 
Minsky and Papert. 

Winograd made a very simple observation that, surprisingly, has 
most powerful consequences. Suppose that we are using networks 
made of arbitrary Boolean elements and we look at a box that has 
two sets of input lines coming in and a set of output lines coming 
out. We  imagine that on the first set of input lines we code the 
members of some set X1, on the second set of input lines we code 
the members of set X2, and on the output lines we code the members 

1 An excellent review is in N’ii Niisson’s monograph, “Lmrning Machines.” 
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of some set Y. The idea then is that we represent some element ~1 
in Xt on the first set of lines, x2 in Xz on the second set, and we hold 
that configuration of inputs over a period of t,ime. We  want the 
network to be such that after this period the encoding of some func- 
tion (o(zrl, 52) will appear on the output. Then the question we might 
ask is, “How long must it take for this to happen?” It is pretty 
clear that if we allow arbitrarily complicated elements in our net- 
work, there will be no problem; but suppose we limit the elements 
to be such that only have two inputs, and suppose we know that one 
output line depends on the values of eight input lines (i.e., one of 
those input lines could not be destroyed without leading to an 
occasional miscomputation). It is pretty clear that the output line 
comes from a neuron that can only be affected by at most two 
inputs and, similarly, each of those two input neurons can only be 
affected by at most two inputs; so, working back in this way, we 
see that the computation time required to compute the output 
cannot be less than three simply because of the problems of fan-in. 
In fact, if the function is even more complicated, we might well 
expect more time is required for various things to be moved back 
and forth. 

Winograd was able to show for Abelian groups and Spira was 
able to show for arbitrary groups that not only did such considera- 
tions yield a lower bound on the time required for group multiplica- 
tion, but, in fact, they could build networks (wit,h elements of the 
specified complexity, e.g., two input lines per component) that would 
multiply within one unit of time of that lower bound. 

Interestingly, to get, this fast computation requires a very redun- 
dant encoding of t,he inputs. In other words, to get the fastest 
computation in such a network, the input coding is changed in such 
a way as to spread the information around so that the right informa- 
tion is in the right place at the right time. A simple example of how 
computation time depends upon encoding is that of multiplying 
two numbers together. If we multiply numbers in the ordinary 
decimal notation, all the inputs have to interact. However, if we 
multiply toget)her numbers that are expressed simply as a string 
of numbers, with the jth number in the string being the exponent 
of the jth prime in the prime decomposit ion of the encoded number, 
then multiplication becomes much easier. We  simply add the expo- 
nents. The operation is very fast. However, the encoding is very 
long, since, if you take a number at random, most primes in a 
suitable range do not divide it. We  thus conclude that there is a 
big tradeoff between the number of components in each layer and 
the number of layers or time of computation. 

A big interest in the study of complexity of computation is thus 
to get more insight into the tradeoff between time and space in this 
way. The work of Winograd and Spira, which we studied, has 
stressed that, if we bound the number of inputs per component, we 
can then proceed to discover how many layers of components we 
require. Minsky and Papert have tackled the complementary prob- 
lem of asking, “If we fix the number of layers in the network, how 
complicated must the elements become in order to get a successful 
computation?” More specifically, rather than regard t.he sort of 
algebraic functions (e.g., group multiplication) we have just been 
talking about,, they looked to the problem of classifying patterns 
presented on the retina of a one-layer Perceptron and asked such 
questions as “How many inputs are required for the modules above?” 
Of course, we can always get away with using a single element 
computing an arbitrary Boolean function and connect it to all the 
squares. So the question that is really interesting is the following. 
“Can we get away with a small number of squares connected to 
each of the input neurons?” Minsky and Papert were able to show, 
suprisingly enough, that so simple a function as parity-i.e., “give 
output 1 if the number of squares illuminated is odd, and give 
output 0 if the number of squares illuminated is even”-requires at 
least one neuron that is connected to all of the inputs. However, 
recognition of lines presented on the retina requires associator 
neurons with only three input lines but very many neurons since 
we have a line for any three collinear retinal points; whenever two 
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are on, the third must also be on. The output neuron simply detects 
that no neuron is signalling a violation of this condition. 

I do not want to give the proof of the parity result or of other 
deep results in Minsky and Papert’s book, but I do want to prove 
a very simple result from their book that gives some idea of the 
flavor of the proof method used. Consider the simple Boolean opera- 
tion of addition mod 2. If we imagine the square with vertices (0, 0), 
(0, l), (1, l), (1, 0) in the Cartesian plane, with (51, 2%) being labelled 
by 21 @  22, we have O’s at one diagonally opposite pair of vertices 
and l’s at the other diagonally opposite pair of vertices. It is clear 
that there is no way of interposing a straight line such that the l’s 
lie on one side and the O’s lie on the other side. In ot.her words, 
it is clear in this case, from visual introspection, that no threshold 
element exists that can do the job of addition mod 2. However, let us 
prove it mathematically, because in doing so, we get insight into a 
general technique that Minsky and Papert use over and over again. 

Consider the claim that we wish to prove wrong: there actually 
exists a threshold element with, say, weights a: and ,3 such that 
21 @  x2 = 1 if and only if ~lzr + 0x2 exceeds 0. The crucial point 
is to notice that the function of mod 2 addition is symmetr ic and, 
therefore, it is clear that we must also have x1 @  x2 = 1 if and only if 
pzr + O~XZ exceeds 6; so, adding together the two terms we have 
written down, we see that z1 @  z2 = 1 if and only if [(a + p)/2]xl + 
[(a + p)/2]r.~ exceeds 0. Writing (01 + p)/2 as y  we see that, by 
using the symmetr ies of mod 2 addition, we reduce three putative 
parameters, 01, p, and 8, to a pair of parameters, y  and 8, such that 
z1 @x2 = 1 if and only if y(xl + z2) exceeds 8. So let us set t = z1 + 
x2 and look at the polynomial yt - 0. It is a degree 1 polynomial. Let 
us evaluate it at 0 where we see that we must get rt - 0 less than 0, 
evaluate it at 1 where we see that yt - 0 is greater than 0, and 
evaluate it at 2 where we must get a value less than 0. This, we see, 
is a contradiction. A polynomial of degree 1 cannot change sign from 
positive to negative more than once. We  thus conclude that, in fact, 
there is no such polynomial, and thus we must conclude that there is 
no threshold element that will add modulo 2. 

We  now understand a general method used again and again by 
Minsky and Papert: start with a pattern classification problem. 
Observe that certain symmetr ies leave it invariant. For instance, 
if it were the parity problem of the simple case of addit,ion mod 2, 
any permutation of the points of the retina would leave the classifi- 
cation unchanged. We  use this to cut down the number of param- 
eters that describe the circuit. We  then lump items together to get 
a polynomial and examine actual patterns to put a lower bound on 
the degree of the polynomial; we fix things so that this degree bounds 
the number of inputs to the first layer of the two-layer Perceptron. 

“Perceptrons: An essay in computational geometry” is thus a 
welcome new chapter in the study of pattern recognition. One regrets 
that this chapter has been presented as somewhat more of a de nor0 
contribution than it really is, and that the work was not related to 
other important studies such as those initiated by Novikoff on the 
use of integral geometry in pattern recognition. For instance, many 
contributions in Chapter III are unacknowledged (specifically 
Kesler’s proof of the Perceptron convergence algorithm for more 
than two categories) although Chapter III is primarily a summary 
of other work. 

But, caviling about history and related work aside, and noting 
that the book takes longer to make its pertinent points than the 
reader should be led to think it does, this book is fun to read, full 
of good ideas about what computer science should be, presents 
many interesting observations (as: it is pretty impractical to say a 
Perceptron can classify something if the setting of t,he weights can 
be proved to require an accuracy of 1 part in 106), and calls important 
proof techniques to the reader’s attention. Anyone who got right 
through this review and wants more will enjoy finding it in Minsky 
and Papert’s book. 

MICHAEL A. ARBIB 

Dept. of Elec. Engrg. 
Stanford University 
Stanford, Calif. 94305 


