
IEEE TRANSACTIONS ON EDUCATION, VOL. 56, NO. 3, AUGUST 2013 329

Evaluation of a UML-Based Versus an
IEC 61131-3-Based Software Engineering
Approach for Teaching PLC Programming

Birgit Vogel-Heuser, Senior Member, IEEE, Martin Obermeier, Steven Braun, Kerstin Sommer, Fabian Jobst, and
Karin Schweizer

Abstract—A field experiment investigated the evaluation,
teaching, and application of two different approaches to auto-
matic control in programmable logic controllers, in particular
comparing the Unified Modeling Language (UML) to the classic
procedural paradigm (IEC 61131-3). A total of 85 apprentices
from a vocational school for production engineering with a
specialization in mechatronics took part in the training and the
experiment. This paper details the results of the training using
both approaches, and the correlations found between the mod-
eling and/or programming performance and cognitive abilities,
interest, workload, expertise, and school grades. In general, the
results show that students can be trained to carry out authentic
programming tasks within one and a half days, even for begin-
ners in programming. The data distinguish the two approaches.
Function Block Diagram programming (IEC 61131-3) can be best
predicted by the grade in mathematics, programming experience,
and cognitive demand. For performance in UML class diagram
and state chart modeling, the grade in
mathematics plays an even more prominent role; this explains the
greater variance in modeling performance in the UML group than
in the 61131/Function Block Diagram group. With respect to other
findings, the paper concludes that special problem-solving skills
and skills for abstract thinking should be taught when teaching
UML-based modeling approaches.

Index Terms—Automation, cognitive science, engineering
education, modeling, object-oriented methods, programmable
logic devices.

I. INTRODUCTION

M ODEL-DRIVEN object-oriented (OO) software engi-
neering of programmable logic controllers (PLCs) re-

mains a challenge in machine and plant automation [1]. Since
the IEC 61131-3 standard [2] is widely accepted in industrial
automation [3], using OO features for model construction in
this field is still uncommon [4]. According to Thramboulidis
and Frey [3], the benefit of integrating IEC 61131 with Unified

Manuscript received July 17, 2012; revised September 21, 2012; accepted
October 10, 2012. Date of publication November 29, 2012; date of current ver-
sion July 31, 2013. This work was supported in part by the Universität Bayern
e.V. and the Vocational School for Manufacturing TechnologyMunich and their
trainees, who participated in the experiment.
B. Vogel-Heuser, M. Obermeier, S. Braun, and K. Sommer are with the

Institute for Automation and Information Systems, Technische Universität
München, 85748 Garching, Germany (e-mail: vogel-heuser@ais.mw.tum.de;
obermeier@ais.mw.tum.de; braun@ais.mw.tum.de; sommer@ais.mw.tum.de).
F. Jobst and K. Schweizer are with the University of Education Weingarten,

88250Weingarten, Germany (e-mail: jobst@ph-weingarten.de; schweizer@ph-
weingarten.de).
Digital Object Identifier 10.1109/TE.2012.2226035

Modeling Language (UML) lies in being able to use several dia-
grams in order to capture more aspects of the system. This gives
a more complex yet still comprehensible model. Furthermore, it
is assumed that the use of more diagrams leads to the generation
of more abstract mental models.
Several works attempt to integrate IEC 61131 with UML

or SysML, e.g., [5]–[10]. However, previous research on
software engineering with UML shows that while using more
diagrams is confusing [10], using adapted subsets of UML is
helpful [7], [8], [11].
This paper presents a study comparing the teaching of classic

procedural PLC programming versus teaching object-oriented
PLC programming based on UML. Control courses teaching
PLC programming or programmable logic design are manda-
tory for electrical, mechanical, and computer engineering under-
graduates in Germany and elsewhere (cf. [12, Table I] and [13]).
In the Faculty of Mechanical Engineering of the Technische
UniversitätMünchen (TUM),Munich, Germany, PLC program-
ming in IEC 61131-3 and UML is integrated into lectures on au-
tomation and the associated automation lab course offered in the
fifth semester of the Mechatronics and Mechanical Engineering
Bachelor’s degree programs; this course is mandatory for the
Mechatronics students. Further courses for vocational and tech-
nical schools have been developed from these lectures.
The research question posed was whether the chosen ap-

proach to teaching beginners in programming and OOmodeling
was successful in facilitating modeling. A further question was
whether correlations could be found between a student’s per-
formance in modeling and other variables (e.g., [14]–[17]) that
could explain their difficulties in learning OO modeling. Corre-
lations were therefore sought between performance with either
the model-based OO approach using UML [class diagram and
state chart ], or the classical PLC programming
approach using IEC 61131-3/FBD, and students’ cognitive abil-
ities, interest, workload, expertise, and school grades in various
subjects. The main hypotheses were that the correlations would
differ for each approach (modeling versus programming), and
that UML modeling is more demanding and requires certain
cognitive abilities, namely problem solving. When using UML,
mentally representing and defining suitable states and operators
gradually minimizes the discrepancy between the initial and
the end state [18]. Section II briefly discusses the state of the art
in software engineering for production automation to introduce
the two approaches. Section III discusses teaching requirements
and the programmers’ knowledge of automation. Section IV
describes the design of the experimental study and presents the
results. Finally, Section V discusses the results and future work.

0018-9359/$31.00 © 2012 IEEE



330 IEEE TRANSACTIONS ON EDUCATION, VOL. 56, NO. 3, AUGUST 2013

II. STATE OF THE ART IN SOFTWARE ENGINEERING FOR
PRODUCTION AUTOMATION

The IEC61131-3 standard defines five procedural pro-
gramming languages for PLC programming [2]: two textual
programming languages, Instruction List (IL) and Structured
Text (ST), and three graphical languages, Function Block Dia-
gram (FBD), Ladder Diagram (LD), and Sequential Function
Chart (SFC).
Lucas and Tilbury [19] investigated different metrics, taking

one sample of code each from LDs, Petri nets, and modular fi-
nite state machines to evaluate the effectiveness of various logic
control design methodologies using task analysis. According
to [20], the time and manpower required either to create a pro-
gram, to install and debug a program on a machine, or to change
an existing program can be regarded as alternative measures. In
this context, Venkatesh et al. [21] suggest counting the number
of elements required to represent a certain program to mea-
sure its complexity; Lee and Hsu [22] translated programs into
Boolean expressions and counted the number of these required.
This paper focuses primarily on comparing the teaching of

automation software engineering using either OO modeling
with UML in [23]–[25] or procedural programming with IEC
61131-3/FBD. UML specifies different diagram types that set
different priorities. In the following, the focus is on class and
state chart diagrams as important chart types for the preparation
of OO modeling.
Subsequently, the UML CD as a structure-focused type of di-

agram will be discussed in detail. CDs are designed to represent
the system structure in the form of classes. A class is defined
as a summary of objects of similar properties and functionality.
It contains attributes and methods that apply to all elements as-
sociated with the class. The level of abstraction of a class is
dependent on the respective task. Associations and generaliza-
tions between classes are linked to the structure of a program-
ming task. A software structure can be realized by associating
classes with other classes, as well as by creating generalizations
between them. Generalizations specify inheritance from general
classes to more specialized ones.
In contrast to the CD, an SC diagram describes a program

from a behavioral perspective. It shows all discrete states of an
object during runtime. Basically, an SC contains two compo-
nents: states where methods of classes are invoked, and transi-
tions with conditions leading to the next state. The UML-Plugin
for CoDeSys 3, a reference implementation of the OO extension
of IEC 61131-3 [8], provides modeling, coding, and online de-
bugging of UMLmodels, where OO elements can bemixedwith
traditional IEC language elements. Supported diagram types are
CDs for structural description, and SCs and activity diagrams
for behavioral description. The online debugging functionality
is entirely integrated into the IEC 61131-3 environment, thus
the program/model can be monitored during runtime [7].

III. TEACHING REQUIREMENTS AND PROGRAMMERS’
KNOWLEDGE

Most studies investigating the benefit of OO programming
fail to show clear results, perhaps due to different affordances in
teaching. Thramboulidis [23], [24] used constructivist methods
when teaching OO programming and received good evaluations
from his students. Another approach, which is pursued here, is

to examine the competencies related to different programming
approaches.
A different type of authentic (and therefore also construc-

tivist) teaching was chosen by Kim and Jeon [26], who ad-
dressed the problem of how to teach freshmen the basic con-
cepts of embedded systems and how these could be applied to
real-world problems. They used LEGOMindstorms to empower
students to build their own LEGO robots and ANSI-C to pro-
gram and operate them; students scored an average of 56% cor-
rect answers.
Berges and Hubwieser investigated Computer Science

freshmen’s abilities to learn OO programming in two and a
half days with as little (human) instruction as possible [27].
Examining 300 students’ program code, they found that most
were able to write quite satisfying programs. They identified
two types of students: those who accept and apply the OO
concepts, and those who prefer to program in a more traditional
procedural way. They also tried to define the characteristics of
object orientation to evaluate measures for program quality,
e.g., one instance of a class is created.
The problem how to teach freshmen, novices, and students of

introductory courses in computer science or engineering is also
addressed by [26] and [28]–[34]. Faux [28] investigatedwhether
a preprogramming course designed as a breadth-first approach
affected students’ ability to perform coding tasks. He found
that students evaluated the sections on problem solving, algo-
rithm development, and pseudocode as being the most impor-
tant. Jacobson et al. [29] also regarded problem-solving skills as
a prerequisite of design skills for engineering students. Among
other measures, the authors assessed students’ abilities by a
short multiple-choice questionnaire on problem solving, theo-
retical mathematics and physics, English, and the use of SI units.
In order to better develop design skills, hands-on measurements
and communication were stressed. Verginis et al. [30] employed
a Web-based, adaptive, activity-oriented learning environment
(SCALE) in a blended learning setting and trained 175 students
for eight weeks. One of themain conclusions was that successful
students learned from the feedback from the system, especially
when they had initially submitted wrong answers. Like [27],
they discovered two types of students: those who tried to guess
the right answer rapidly (27.8%), and those who responded cor-
rectly after considering the system’s tutorial feedback or other
relevant educational material (72.2%).
Boticki et al. [33] analyze the educational benefits of intro-

ducing the aspect-oriented programming paradigm, in addition
to the object-oriented programming paradigm, into a program-
ming course for undergraduate Software Engineering students.
How the additional aspect-oriented paradigm affects students’
programs, their exam results, and their overall perception of
the theoretical benefits of aspect-oriented programming was as-
sessed by automated analysis of student-created computer pro-
grams, surveys, and exam results. Their results show that “the
use of aspect-oriented programming as a supplement to object-
oriented programming enhances the productivity of novice pro-
gram code software engineering students and leads to increased
understanding of theoretical concepts” [33].
Further papers on programmers’ competencies in modeling

and informatics systems application are related to competence
models, e.g., [14], [15], and [35]. Competence models often
refer to curricula and syllabi. Usually, competencies in this



VOGEL-HEUSER et al.: UML-BASED VERSUS IEC 61131-3-BASED SOFTWARE ENGINEERING APPROACH FOR TEACHING PLC PROGRAMMING 331

context are understood as abilities, skills, and knowledge—a
perspective that is still prominent in most Anglo-Amer-
ican research on competencies. An example is provided by
Curtis [16], who proposed that programming results depend
on individual personal factors and mental abilities. His model
covers intellectual aptitudes, the knowledge base, cognitive
styles, motivational structure, personality characteristics, and
behavioral characteristics. Although Curtis did not empirically
test his model, the factors would appear to have validity.
Other approaches for gaining insights into the competencies

required for different programming approaches or skills are to
analyze interviews from experts in the relevant domain [36]
or to evaluate programmers’ behavior when performing cer-
tain tasks, such as programming [32] or debugging [35]. This
type of research often uses Bloom’s taxonomy, e.g., [37], di-
viding cognitive aspects of learning into six hierarchical levels
(recall of facts, comprehension, application, analysis, synthesis,
and evaluation). Applying that to different programming tasks,
Lahtinen [31] identified six types of student behavior in a cluster
analysis of novice software engineering students: competent,
practical, unprepared, theoretical, memorizing, and indifferent.
Kim and Lerch [38] realized that repetition is required to

learn object orientation. This point of view is also emphasized
by Ruocco [32] and the studies reported above, i.e., [26]–[31].
He selected a phased approach to threading UML throughout
a Computer Science degree program and found that incorpo-
rating UML in the database course and incorporating use case
diagrams as well as sequence and activity diagrams generated a
richer and deeper exposure to UML.
In summary, three facts are important for the present study.
1) Teaching computer science or object orientation to begin-
ners or freshmen requires repeated training, as shown by
longitudinal studies [26]–[32].

2) Certain types of curricular organizations that emphasize
problem solving and other cognitive abilities favor the suc-
cessful teaching of programming and modeling, e.g., [7],
[9], and [11].

3) It is important to investigate aspects of cognitive learning
on different levels, e.g., [32], [35], and [39].

IV. EXPERIMENTAL STUDY

The aim of this empirical study was to investigate whether
the chosen approach to teaching beginners in OO modeling
was successful, and whether correlations could be defined
between students’ modeling performance and other variables,
which could explain their difficulties in learning OO modeling.
The performance measures varied with the Bloom taxonomy
levels for cognitive aspects of learning [39]. Patig [40], [41]
and Gemino and Wand [42] present results of various ex-
periments on the usability of modeling notations. In order to
establish fair conditions for informationally equivalent soft-
ware engineering approaches, different training scenarios and
experimental problem-solving situations were created, and a
suitable task setting and training, supported by Hierarchical
Task Analysis (HTA), was developed [4], [41]. The complexity
of the training and the test was increased, based on Kim [38],
but “isomorphic” problems were used. The characteristics of
object orientation were defined to evaluate measures for the
program quality based on Berges and Hubwieser [27], e.g., by
creating one instance of a class.

Fig. 1. Elements of an IEC 61131 FBD and a UML CD for the experiment
application.

A. Hypotheses and Research Questions

The hypotheses (1, 2) and research questions (Q1, Q2) de-
rived from Section III are as follows.
1) Students trained in OO modeling show an improved mod-
eling performance.

2) The FBD programming training improves students’ pro-
gramming performance.

Q1) Is programming performance in FBD related to other
variables (e.g., cognitive abilities, experience, workload,
and knowledge) than is OO modeling performance in

?
Q2) Is modeling performance correlated to problem-solving

skills?

B. Subjects

The subjects of the study were 85 apprentices from a vo-
cational school for production engineering in Munich with a
specialization in mechatronics. The students, four entire classes
(two from the second and two from the third year), were also ap-
prentices in various companies aroundMunich. The average age
of the subjects was 19.15 years ; 93% of the sub-
jects were male, and only 7% were female. According to their
curriculum and the results of tests of their previous program-
ming knowledge (cf. [4]), all students were being taught pro-
gramming by the procedural paradigm, with a focus on the IEC
61131-3 languages. Object-oriented programming or UML is
not yet included in the curriculum for mechatronics apprentices.

C. Design of the Study

In this experiment, only the SC was used as a UML be-
havioral modeling technique because it is better for detailed
modeling tasks than the activity diagram. A sophisticated UML
code generator plug-in for PLC programming was developed
to meet the tool support demand for the modeling tasks. For the
IEC 61131-3, the programming language FBD, widely taught
and applied, was used (see also Fig. 1). The application chosen
for the experiment has similar components to be modeled/pro-
grammed (see [4], i.e., three storage elements with work pieces
should be sorted into five different terminals according to their
material and color) to analyze whether different variants of a
component will be identified as variations of the component
and already built components will be reused. A full simulation
of the plant was provided for debugging and testing purposes.
The study was carried out as a field experiment with a 2 2

between-subjects design. The factor notation [39] was experi-
mentally varied with either UML CD and SC
or IEC 61131-3 using FBD (61131/FBD). The second factor,



332 IEEE TRANSACTIONS ON EDUCATION, VOL. 56, NO. 3, AUGUST 2013

TABLE I
EXPERIMENTAL DESIGN

expertise, was not experimentally adjusted, but varied naturally
between the less experienced second-year classes and the more
experienced third-year classes; see Table I. (Please note that due
to this fact, advanced experience means advanced knowledge in
automation hardware and IEC 61131-3/FBD, but not in UML.)

D. Procedure

Each of the four classes took part in a training set in
a hybrid-learning environment (HLE), switching between
computer-based and conventional instructional designs. The
digital learning section consisted of a sequenced, 45-min-long
recording of an ideal-type programming approach, using one
of the approaches for each group and four practical training
scenarios with training and instruction. An additional 22

or 21 (61131/FBD) pages of documentation
were provided as a training handout.
Overall, the training lasted one and a half days, with groups

repeatedly performing programming and modeling tasks.
During the second half-day, the subjects performed the exper-
imental task. Before and during the training phases, and after
the experimental phase, the subjects were asked to assess the
training in several questionnaires.

E. Performance and Related Variables

Data were obtained for several variables assumed to be re-
lated to programming/modeling performance. These variables
are the graduation and special grades in mathematics, German,
automation, and mechatronics, as well as cognitive capabilities,
motivation levels, challenge, and workload (single instruments
are described in [3]).
Two methods were employed to obtain the performance vari-

ables.
1) Before and after the training, students took an 18-item
knowledge test, requiring them to name and explain the
function of components, terms, and definitions and to rec-
ognize or IEC 61131/FBD. The tests
lasted about 4.5 min and differed in content for 61131/FBD
and .

2) A second dependent performance variable was the pro-
gramming/modeling achievement itself. To obtain this
value, the developed models/programs were stored and
analyzed manually by two evaluators, who compared
them to a full reference model (interrater reliability from

up to ). The trainees’ performance was
measured as number of correctly modeled or programmed
elements, and compared with respect to structure (classes
or FBDs) and behavior (state charts and FBDs). These
performance scales serve as performance scales for struc-
ture and behavior as well as being an overall measure.

Fig. 2. Results of the knowledge tests before and after the training for beginners
in IEC 61131-3.

3) To measure problem-solving skills, which should be cor-
related to modeling performance according to the second
research question (Q2), the beginner
group worked on a well-defined toy problem known as
missionaries and cannibals (MAC). The pure processing
time, after instruction and clarification of questions, was
15 min. In terms of ecological validity, Jeffries et al. [18]
claim that the mental processes for solving the problem
highly overlap with those used to solve other formal
iterative problems.

F. Results

The data were analyzed using three methods. First, an
analysis of variance (ANOVA) was applied to test differ-
ences between the variances of several groups in order to
show whether their performance changed after the training
approaches and whether their performance differed between
classes due to expertise level differences. Then, correlations
were computed as a measure of the relation between program-
ming/modeling performances on different performance scales.
Subsequently, differences in relations between the two software
engineering approaches (see hypothesis 3) were shown by com-
puting regression models for the programming performance for
both approaches.
Hypotheses 1 and 2: In order to examine hypotheses 1

and 2, an ANOVA with the dependent variable knowledge
before and after the training was carried out. The analysis
examined the within factor (before and after the training) and
additionally two between factors (notation and expertise). The
results show that the training was highly effective since the
knowledge before and after the training differed significantly

. All participants
learned from the training. Regarding the factors notation

and expertise
, highly significant

differences are found, which means that the UML/SC-groups
and 61131/FBD-groups as well as the experienced and not
experienced groups differ with respect to the knowledge
tested. Both interactions (training*notation:

; training*notation*expertise:
) were also highly

significant, indicating that the -group had
learned even more from the training because of their poor
results before the training (see also Fig. 2) and their lack of
prior knowledge.
Research Questions and Related Analyses: In order to

give insights into the differences between the two program-
ming/modeling approaches, the correlations were computed
between the performance in programming/modeling for both



VOGEL-HEUSER et al.: UML-BASED VERSUS IEC 61131-3-BASED SOFTWARE ENGINEERING APPROACH FOR TEACHING PLC PROGRAMMING 333

TABLE II
CORRELATIONS SEPARATED FOR 61131/FBD AND

software engineering approaches and the variables listed
above (i.e., grades in different subjects, cognitive abilities and
motivational variables). The grades were transformed into
positive values ranging from 1 to 5, with higher values indi-
cating better results. For the overall performance measures for

and 61131/FBD, the significant correlations
and tendencies

given in Table II were found. At this summarized level, nearly
all surveyed measures of cognitive ability, motivation, and
grades were at least somewhat related to certain aspects of
programming/modeling performance. The only exception for
summarized correlations was the grade in German. Further-
more, a certain structure can be detected when the different
scales are examined. Cognitive abilities and the grade in
mathematics were mainly correlated to the performance scale
structure, whereas the other variables were significantly related
to the scale behavior or, in the case of previous knowledge,
with both scales.
Since the differences in the relations between the two ap-

proaches ( versus 61131/FBD) were especially
interesting, the correlations were also examined separately (cf.
Table II). When examining 61131/FDB programming, the cor-
relations stayed nearly the same. Differences only arise for in-
terest, which is not meaningful.
In contrast to the 61131/FBD approach, the result for perfor-

mance scales for the groups was not related
to cognitive abilities. They were, however, more highly related
to the grades in mathematics and stayed nearly the same for the
grades in mechatronics. The grades in automation and German,
motivational factors, and previous knowledge in modeling are
not relevant for the correlations. performance

scales show only weak correlations with subjective ratings of
cognitive demand and show a mean correlation with frustration,
especially for the performance scale behavior.
On the basis of these findings, it can be stated that OO

modeling and FBD programming show different relations to
variables such as cognitive abilities, experience, workload,
and knowledge. A separate examination of the beginners in

indicates another difference. This
group shows slight correlation between the performance scale
structure and the grade in German .
However, further examination of the various experimental
groups according to Table I was not warranted because of the
low number of cases in each group.
To give more insight into the differences addressed with

research question Q1, regression models for the program-
ming performance in both approaches were computed. The
main regression weights (ß) were also listed in Table II.
The regression model for 61131/FBD programming (

, explained variance: 42.6% [corrected: 33.6%]) differs
from the model for programming (

; explained variance: 52.0% [corrected: 41.6%]). Again,
the regression models show the differences in explaining the
two approaches: Student performance in the

groups seems to be less related to previous knowledge
and cognitive abilities than does student performance in the
61131/FBD groups. Unfortunately, none of the 18 students
tested found a solution to the MAC task.

V. DISCUSSION AND CONCLUSION

The first two hypotheses served as a treatment check to
show that students can be trained to carry out authentic



334 IEEE TRANSACTIONS ON EDUCATION, VOL. 56, NO. 3, AUGUST 2013

programming tasks within one and a half days. It can be
stated that the training for the different programming ap-
proaches—61131/FBD and —was extremely
successful when performing a task in a PLC programming
environment. The created HLE, in combination with the ad-
ditional handout, allowed switching between computer-based
and conventional instructional designs, letting the apprentices
exercise the programming/modeling tasks repeatedly. This
prepared them so well for the test situation that they possessed
significantly more knowledge afterwards in both programming
approaches. The results presented with hypotheses 1 and 2
therefore support the reported findings of the importance of
adequate time and authentic problems when teaching freshmen
or beginners programming/modeling.
Q1 required examination of the prerequisites for program-

ming/modeling. In this context, cognitive abilities, experience,
motivational variables like interest and frustration, workload
(cognitive demand), and knowledge were of interest. It was hy-
pothesized and confirmed that the programming performance
in 61131/FBD is related to variables other than those related to
OO modeling with . The results showed that
61131/FDB programming is mainly related to cognitive abil-
ities, mathematics, automation, mechatronics, and the subjec-
tive ratings of cognitive demand and frustration, as well as pre-
vious knowledge. In contrast, modeling is not
related to cognitive abilities and previous knowledge, but is
related to mathematics and mechatronics. Regression models
went in the same direction. Mathematics explains more vari-
ance of modeling performance in the group
than in the 61131/FBD group. Therefore, it is concluded that
abilities determining mathematical competencies are more rel-
evant for learning and modeling with than for
classic procedural paradigms (IEC 61131-3). This might also be
due to the high taxonomy level of the cognitive skills (synthesis
and evaluation) students had to demonstrate in the experimental
programming/modeling task.
Another question was related to themethod of preparing com-

puter science students and the role of problem solving. Unfor-
tunately, none of the 18 students tested on untrained and ab-
stract problems were able to find a solution within the limit of
15 min of pure processing time. This time limit might, however,
be a point of criticism, in that the MAC problem can take some
time for a beginner to figure out. This should be examined in a
follow-up study. On the other hand, together with the findings
that mathematics played a key role in modeling
and that demanding tasks are correlated to better performance
(on a high level), poor problem-solving skills might also indi-
cate that abstraction is the key to the successful application of

.
In summary, it is concluded that performance in PLC pro-

gramming with is limited and can be improved
through two different factors.
1) Previous knowledge of 61131/FBD and
notations has to become more comparable. Therefore,
teachers in vocational and higher technical schools will
be trained for the next experiment, so that they can pass
on their knowledge in the classroom to the apprentices
and technicians. For experienced engineers in industry, a
training session needs to be designed that includes these
results and supports those engaged in an engineering task

to change from pure IEC 61131-3 programming to an OO
model-based software engineering in automation.

2) The participants should also be trained beforehand in
problem-solving skills and abstract thinking. A procedural
diagnosis of problem-solving skills (e.g., thinking aloud)
with a small (sub)sample in advance could give some
indication as to how the specific training might look.

Based on these results, the training exercises developed, in-
cluding videos, handouts, simulations, and so on, will be revised
and integrated in the 2013 offering of TUM’s fifth-semester
automation course and associated lab course for Mechatronics
and Mechanical Engineering undergraduates. Cooperating
vocational and technical schools are adapting the developed
training for future courses on PLC programming, particularly
since OO has just become mandatory in the curriculum for
technicians in Germany.

REFERENCES
[1] A. L. Ramos, J. V. Ferreira, and J. Barcelo, “Model-based systems en-

gineering: An emerging approach for modern systems,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 42, no. 1, pp. 101–111, Jan.
2012.

[2] IEC International Standard: Programmable Controllers, Part 3: Pro-
gramming Languages, IEC 61131-3, International Electrotechnical
Commission, 2003.

[3] K. Thramboulidis and G. Frey, “Towards a model-driven IEC 61131-
based development process in industrial automation,” J. Softw. Educ.
Appl., vol. 4, no. 4, pp. 217–226, 2011.

[4] B. Vogel-Heuser, S. Braun, M. Obermeier, F. Jobst, and K. Schweizer,
“Usability evaluation on teaching and applying model-driven ob-
ject-oriented approaches for PLC software,” in Proc. ACC, Montréal,
Canada, 2012, pp. 4463–4469.

[5] D. N. Ramos-Hernandez, P. J. Fleming, and J. M. Bass, “A novel
object-oriented environment for distributed process control systems,”
Control Eng. Prac., vol. 13, no. 2, pp. 213–230, 2005.

[6] K. Sacha, “Verification and implementation of dependable controllers,”
in Proc. DepCoS-RELCOMEX, Szklarska Poreba, Poland, Jun. 2008,
pp. 143–151.

[7] U. Katzke and B. Vogel-Heuser, “Combining UML with IEC 61131-3
languages to preserve the usability of graphical notations in the soft-
ware development of complex automation systems,” in Proc. IFAC-
HMS, Seoul, Korea, Sep. 2007, pp. 90–94.

[8] D.Witsch and B. Vogel-Heuser, “PLC-statecharts: An approach to inte-
grate UML-statecharts in open-loop control engineering—Aspects on
behavioral semantics and model-checking,” in Proc. 18th IFAC World
Congress, Milan, Italy, 2011, pp. 7866–7872.

[9] E. Estévez, M. Marcos, and D. Orive, “Automatic generation of PLC
automation projects from component-based models,” Int. J. Adv.
Manuf. Tech., vol. 35, no. 6, pp. 527–540, 2007.

[10] L. Bassi, C. Secchi, M. Bonfé, and C. Fantuzzi, “A SysML-based
methodology for manufacturing machinery modeling and design,”
IEEE/ASME Trans. Mechatron., vol. 16, no. 6, pp. 1049–1062, Dec.
2011.

[11] D. Friedrich and B. Vogel-Heuser, “Benefit of system modeling in au-
tomation and control education,” in Proc. ACC, New York, NY, 2007,
pp. 2497–2502.

[12] C. M. Kellett, “A project-based learning approach to programmable
logic design and computer architecture,” IEEE Trans. Educ., vol. 55,
no. 3, pp. 378–383, Aug. 2012.

[13] C. A. Chung, “A cost-effective approach for the development of an
integrated PC-PLC-robot system for industrial engineering education,”
IEEE Trans. Educ., vol. 41, no. 4, pp. 306–310, Nov. 1998.

[14] J. Cross and P. Denning, “Computing curriculum 2001,” Joint Cur-
riculum Task Force, IEEE-CS/ACM Rep., 2001 [Online]. Available:
http://www.acm.org/education/curric_vols/cc2001.pdf

[15] A. Tucker, “A model curriculum for K–12 computer science: Final re-
port of the ACM K–12 Task Force Curriculum Committee,” ACM,
New York, NY, 2nd ed., 2006.

[16] B. Curtis, “Five paradigms in the psychology of programming,” in
Handbook of Human-Computer Interaction, M. Helander, Ed. Ams-
terdam, The Netherlands: Elsevier, 1988, ch. 4, pp. 87–105.



VOGEL-HEUSER et al.: UML-BASED VERSUS IEC 61131-3-BASED SOFTWARE ENGINEERING APPROACH FOR TEACHING PLC PROGRAMMING 335

[17] H. N. Mok, “Student usage patterns and perceptions for differentiated
lab exercises in an undergraduate programming course,” IEEE Trans.
Educ., vol. 55, no. 2, pp. 213–217, May 2012.

[18] R. P. Jeffries, A. A. Turner, P. G. Polson, andM. E. Atwood, “A process
model for missionaries-cannibals and other river-crossing problems,”
Cogn. Psychol., vol. 9, no. 4, pp. 412–440, 1977.

[19] M. R. Lucas and D. M. Tilbury, “Quantitative and qualitative compar-
isons of PLC programs for small test bed with focus on human issues,”
in Proc. AAC, 2002, pp. 4165–4171.

[20] M. R. Lucas and D. M. Tilbury, “Methods of measuring the size and
complexity of PLC programs in different logic control design method-
ologies,” Int. J. Adv. Manuf. Tech., vol. 26, pp. 436–447, 2005.

[21] K. Vankatesh, M. Zhou, and R. J. Caudill, “Comparing ladder logic di-
agrams and Petri nets for sequence controller design through a discrete
manufacturing system,” IEEE Trans. Ind. Electron., vol. 41, no. 6, pp.
611–619, Dec. 1994.

[22] J. S. Lee and P. L. Hsu, “A new approach to evaluate ladder diagrams
and Petri nets via the if-then transformation,” in Proc. IEEE Conf.
SMC, Tucson, AZ, 2001, pp. 2711–2716.

[23] K. Thramboulidis, “A constructivism-based approach to teach object-
oriented programming,” J. IEE, vol. 4, no. 2, pp. 1–11, 2003.

[24] K. Thramboulidis, “Teaching advanced programming concepts in in-
troductory computing courses: A constructivism based approach,” in
Proc. ICEE, Valencia, Spain, 2003 [Online]. Available: http://www.
ineer.org/events/icee2003/proceedings/pdf/5045.pdf

[25] C. Oates and A. Zoitl, “Utilizing LEGOMindstorms as a teaching plat-
form for industrial automation,” in Proc. RiE, 2010, pp. 31–36.

[26] S. H. Kim and J. W. Jeon, “Introduction for freshmen to embedded
systems using LEGO Mindstorms,” IEEE Trans. Educ., vol. 52, no. 1,
pp. 99–108, Feb. 2009.

[27] M. Berges and P. Hubwieser, “Minimally invasive programming
courses: Learning OOP with(out) instruction,” in Proc. SIGCSE, 2011,
pp. 87–92.

[28] R. Faux, “Impact of preprogramming course curriculum on learning in
the first programming course,” IEEE Trans. Educ., vol. 49, no. 1, pp.
11–15, Feb. 2006.

[29] M. L. Jacobson, R. A. Said, and H. Rehman, “Introducing design skills
at the freshman level: Structured design experience,” IEEE Trans.
Educ., vol. 49, no. 2, pp. 247–253, May 2006.

[30] I. Verginis, A. Gogoulou, E. Gouli, M. Boubouka, andM. Grigoriadou,
“Enhancing learning in introductory computer science courses through
SCALE: An empirical study,” IEEE Trans. Educ., vol. 54, no. 1, pp.
1–13, Feb. 2011.

[31] E. Lahtinen, J. Sajaniemi, M. Tukiainen, R. Bednarik, and S.
Nevalainen, Eds., “A categorization of novice programmers: A cluster
analysis study,” in Proc. 19th Annu. Workshop PPIG, Joensuu, Fin-
land, Jul. 2–6, 2007, pp. 32–41.

[32] A. S. Ruocco, “Experiences in threading UML throughout a computer
science program,” IEEE Trans. Educ., vol. 46, no. 2, pp. 226–228, May
2003.

[33] I. Boticki, M. Katic, and S. Martin, “Exploring the educational bene-
fits of introducing aspect-oriented programming into a programming
course,” IEEE Trans. Educ., 2012, to be published.

[34] J. Schramm, S. Strickroth, N.-T. Le, and N. Pinkwart, “Teaching UML
skills to novice programmers using a sample solution based intelligent
tutoring system,” in Proc. 25th Int. Conf. FLAIRS, Marco Island, FL,
2012, pp. 472–477.

[35] S. Fitzgerald, R. McCauley, B. Hanks, L. Murphy, B. Simon, and C.
Zander, “Debugging from the student perspective,” IEEE Trans. Educ.,
vol. 53, no. 3, pp. 390–396, Aug. 2010.

[36] J. Magenheim, W. Nelles, T. Rhode, N. Schaper, S. Schubert, and
P. Stechert, “Competencies for informatics systems and modeling.
Results of qualitative content analysis of expert interviews,” in Proc.
IEEE EDUCON, Madrid, Spain, 2010, pp. 513–521.

[37] J. Buckley and C. Exton, “Blooms’ taxonomy: A framework for as-
sessing programmers’ knowledge of software systems,” in Proc. 11th
IEEE IWPC, 2003, pp. 165–174.

[38] J. Kim and F. J. Lerch, “Towards amodel of cognitive process in logical
design comparing object-oriented and traditional functional decompo-
sition software methodologies,” in Proc. ACM CHI, pp. 489–498.

[39] “Taxonomy of educational objectives,” in The Classification of Educa-
tional Goals: Handbook I, Cognitive Domain, B. S. Bloom, Ed. New
York: Longmans, Green, 1956.

[40] S. Patig, “A practical guide to testing the understandability of nota-
tions,” in Proc. 5th APCCM, Wollongon, Australia, 2008, pp. 49–58.

[41] S. Patig, “Preparing meta-analysis of metamodel understandability,” in
Proc. Workshop ESMD, Toulouse, France, 2008, pp. 11–20.

[42] A. Gemino and Y. Wand, “A framework for empirical evaluation of
conceptual modeling techniques,” Requirements Eng., vol. 09, pp.
248–260, 2004.

Birgit Vogel-Heuser (M’04–SM’12) graduated in electrical engineering and
received the Ph.D. degree in mechanical engineering from the RWTH Aachen,
Aachen, Germany, in 1991.
She worked for nearly 10 years in industrial automation in the machine and

plant manufacturing industry. After holding different chairs of automation in
Hagen, Wuppertal, and Kassel in Germany, she has been Head of the Automa-
tion and Information Systems Institute, Technische Universität München, Mu-
nich, Germany, since 2009. Her research work is focused on modeling and ed-
ucation in automation engineering for hybrid process and heterogeneous dis-
tributed and intelligent systems using a human-centered approach.
Prof. Vogel-Heuser is member of the GMA (NMO IFAC). She has received

the Special Award of the Initiative D21 Women in Research in 2005, the
Borchers Medal of the RWTH Aachen in 1991, the GfR Sponsorship Award in
1990, and the Adam Opel Award in 1989.

Martin Obermeier received the Dipl.-Ing. degree in mechanical engineering
(focus on control theory and information technology) from Technische Univer-
sität München (TUM), Munich, Germany, in 2009, and is currently pursuing the
Ph.D. degree at the Institute of Automation and Information Systems, TUM.
Mr. Obermeier does research on the design and evaluation of model-based

programming software for automation systems in regard to model quality, mod-
ularity aspects, and usability.

Steven Braun received the Dipl.Ing. degree in mechanical engineering (focus
on mechatronics and information technology) from Technische Universität
München (TUM), Munich, Germany, in 2008, and is currently pursuing the
Ph.D. degree at the Institute of Automation and Information Systems, TUM.
Mr. Braun does research in the design and evaluation of model based pro-

gramming software for automation systems.

Kerstin Sommer received the Diploma degree in psychology (focus on human
factors and statistics) from Universität Regensburg, Regensburg, Germany, in
2007, and is currently pursuing the Ph.D. degree at the Institute of Experimental
Psychology, Universität Regensburg.
From 2007 to 2010, she was with the Institute of Experimental Psychology,

Universität Regensburg. Currently, she is with the Institute for Automation and
Information Systems, Technische Universität München, Munich, Germany. Her
research interests are in the area of human factors methods and usability design.

Fabian Jobst received the diploma degree in psychology (focus on instructional
design for gifted students) from Universität Würzburg, Würzburg, Germany, in
2008, and is currently pursuing the Ph.D. degree in psychology at Pädagogische
Hochschule Weingarten, Weingarten, Germany.
His research interests are instructional designs and digitally augmented

videos.

Karin Schweizer graduated in psychology and informatics and received the
Ph.D. degree in cognitive psychology from Universität Mannheim, Mannheim,
Germany, in 1996.
Since 2002, she has held visiting professorships at various German univer-

sities. Since 2010, she has been Head of the Department of Psychology, Päda-
gogische Hochschule Weingarten, Weingarten, Germany. Her research interests
deal with different methods of technology-based learning.


