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A Note on Magnetic Circuit
Calculations

Abstract—A technique that is similar
to load-line analysis of a vacuum tube
amplifier for solving for the flux in a mag-
netic circuit is given.

Most textbooks devoted to the basic
principles of electrical engineering illustrate
a trial and error solution for the flux in a
simple magnetic circuit excited by a con-
stant current. A graphical solution is briefly
alluded to in Smith [1], Craven [2], and
Fitzgerald, Higginbotham; and Grabel [3],
and is not suggested at all in a recent refer-
ence [4]. Attention is called to a graphical
solution of the simple series magnetic cir-
cuit, which is closely related to load-line
analysis of a simple vacuum tube amplifier.

Consider the magnetic circuit shown in
Fig. 1, in which the core is composed of an
alloy whose B-H curve is shown in Fig. 2.
The ferromagnetic material is assumed to
have a uniform cross-sectional area 4, a
mean path length L., and an air gap of
length L,. Flux fringing at the gap is as-
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Fig. 1. The magnetic circuit.
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Fig. 3. Electrical circuit.

sumed to be negligible and leakage fluxes
are not considered. The equivalent electrical
circuit of the magnetic circuit of Fig. 1 is
shown in Fig. 3.

From Fig. 3 it follows that

F = ¢Ra + Fm, (1)

where
F= NI=total MMF supplied
Ry =air gap reluctance
¢ =magnetic flux
F,=MMTF of the ferromagnetic ma-
terial.
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Solving (1) for ¢ gives
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Substituting
¢ =Bud, F=NI, Ro= Li/nA,
and
Fn = HpLn,

the above equation may be rewritten in the
form

By, = — (F()Lm/La)Hm + MONI/La- (2)

Equation (2) is a straight line in the
variables B,, and H,. This equation can be
plotted on the B-H curve of the material,
with a horizontal intercept of NI/L, and a
vertical intercept of uoNI/L. The intersec-
tion of this load line with the B-H curve of
the material, as shown in Fig. 4, gives the
resulting magnetic flux density from which
the flux may be easily computed. (If no air
gap is present, the load line is simply a ver-

tical straight line through the point
H,=NI/Ly.)
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Fig. 2. The B-H curve.
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Fig. 4. Load-line solution.
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Conservation of Energy in the Ideal
Capacitor Discharge

Abstract—The search for the best
answer to the question of the final resting
place for the energy in an ideal capacitor
discharge is completely satisfied by consid-
ering the first law of thermodynamics. The
energy is transferred to the internal energy
of the materials and is conserved. A simple
energy-band model is used to illustrate the
physical aspects of the problem.

Levine's recent discussion! on the fate
of the energy in an ideal capacitor discharge
is interesting, not so much because of the
interjection of a nonconservative system,
but rather the model that diminishes the
hand-waving argument of radiation. I would
like to offer a better explanation which
satisfies the anti-nonconservation concept,
but which is probably less satisfactory due
to its subtlety.

The first law of thermodynamics states
the principle of conservation of energy. In
the absence of heat transfer into or out of the
system, any rearrangement in the energies
involves every transfer between work done
on or by the system and gain or loss of in-
ternal energy. Consider Levine's model,
which does not permit the energy to be
radiated, and assume it to be in thermal
equilibrium with its surroundings. There
are two systems that will be considered
below. The first is that total capacitor and
its connecting link, and the second is the
materials that make up the capacitor and its
connecting link.

Suppose that an external force, e.g., a
battery, is applied to the capacitor. Then
the work done on the capacitor system in
transferring charge from one plate to the
other is converted to the internal stored
energy of the capacitor system. Now when
the shorting link is connected, the work
done by the capacitor system in dischargng
is transferred to the internal energy of the
materials that make up the capacitor. The
best explanation for the lost energy then is
that it has been transferred to internal
energy. To complete the discussion, al-
though the above statement completes the
argument, it should be stated that the
internal system is no longer in equilibrium
with its surroundings and that the excess
internal energy will be transferred as heat
by whatever means are available. Since no
discussion of this kind is complete without
a pedagogical example, consider the follow-
ing ideal system.

Fig. 1 represents the energy-band dia-
gram for the two plates, which are assumed
to be identical, prior to charging. The inter-
connecting link will be assumed to be an
ideal conductor. When the capacitor is
charged, a small number of occupied energy
states of plate 1 are emptied and the charge
transferred to plate 2. The average energy
difference between the charge on the two
plates is indicated in Fig. 2, where eV repre-
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Fig. 2. Energy-band diagram for energized capaci-

tor, which indicates energy transfer to internal
energy during discharge.

sents the energy through which each charge
has been transferred. When the plates are
connected, each transferred charge makes a
horizontal transition from plate 2 to plate 1.
After transferring, the electron seeks the
lowest empty energy state and, in decaying
to it, transfers its extra energy to atoms of
the plate, thereby increasing the thermal
energy of the plate. The plate, in turn, will
lose this energy by convection, conduction,
or radiation, until it is in equilibrium with
its surroundings. The completely satisfying
explanation for the final resting place of the
lost energy is that it is converted to internal
energy.
WiLLiaM B. BErRrY
Dept. of Elec. Engrg.
University of Notre Dame
Notre Dame, Ind.

Author’'s Reply?

W. B. Berry has realized the same con-
clusion reached by C. Goldberg,? that the

2 Manuscript received July 8, 1968.

3 C. Goldberg, “The concept of ‘zero resistance,’”
IEEE Trans. Education (Correspondence), vol. E-11,
pp. 159-160, June 1968.

energy originally stored in the electrostatic
field of the capacitor is converted into inter-
nal kinetic energy of the electrons within
the conductor. To amplify upon Berry's
description, it can be noted that during
continuous current in an ohmic conductor,
the electrons transfer to a higher energy
level, and then lose some of their energy
through inelastic collisions with the lattice
of atoms. Thus, there is a continual flux of
electrons up and down in energy level in the
case of an ohmic conductor, but only an
upward transfer in a perfect conductor, as
Goldberg has noted.
RicuarD C. LEVINE
Stevens Inst. of Technology
Hoboken, N. J. 07030

Comments on ‘“Apparent Noncon-
servation of Energy in the Discharge
of an Ideal Capacitor”

In the above correspondence,! Levine
has spent five pages on that old chestnut,
the discharge of an ideal capacitor, without
getting to what I think is the main point.
He correctly asserts that the lossless case
can be considered as the limiting case of an
RC circuit when the resistance approaches
zero. He also implies the correct statement
that it can be considered as the limiting case
of an LC circuit in which the inductance ap-
proaches zero. Interestingly, these two
limiting situations lead to different results.
His argument about radiation is invalid
unless it is considered as still another limit-
ing situation. By neglecting the fringing
fields (“consistent with circuit theory,” he
asserts) he has rendered invalid his conclu-
sion that “there is no power flow at the edges
of the cylinder volume and no radiation of
energy to the outside world.”

It is trivial to state that energy is, in
fact, conserved; any energy which is not
stored in the capacitors after the transient
has been radiated, converted into heat, dis-
sipated as acoustic energy, or gone some-
where else where it could be accounted for
by appropriate theory. A somewhat more
profound way of stating this is that we
believe in the law of the conservation of
energy somewhat more strongly than we
believe in the “laws” of circuit theory. The
most important pedagogic point is that the
models of circuit theory are exactly that—
models. A linear capacitor without resis-
tance or inductance is a most useful concept,
and models based on it have allowed signifi-
cant understanding of real electrical phe-
nomena, but it is clearly an abstraction and,
occasionally, can get us into trouble. When
it is combined with an otherwise innocuous
perfect switch and resistanceless and in-
ductanceless wires, it does get us into
trouble, as in this particular example.
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A comparable chestnut, which has been
discussed in the literature,? concerns the
attempt to distinguish between two black
boxes, one of which contains a pure resistor
and the other a certain series-parallel
resonant RLC circuit whose impedance is
independent of frequency. The answer comes
down to this: if you believe your “linear,
lumped, bilateral, passive” models, then the
two are indistinguishable; if you do not (for
example, if the black boxes are real), then
there are any number of tests which can be
applied to distinguish between them. Any-
thing else which may be said about this
problem is extrinsic pedantry.

For the amusement of those who enjoy
“paradoxes” based on the incompatibility
of otherwise useful model abstractions, I
submit the following from thermodynamics.
In Fig. 1, AB and CD are arcs of confocal

Fig. 1.

ellipses, the foci being f; and fs. BD and AC
are arcs of a circle centered on f3. f1, B, and
D are colinear, as are f1, 4, and C. (Note:
this construction is possible.) We now rotate
this plane figure around the line fifs to gen-
erate a three-dimensional body of revolution.
We coat the inside of it with the usual per-
fect reflectors, place the usual black bodies
at fi and fs, and heat them to some tem-
perature ¢. All of the radiation from f; will
now be incident on one of the ellipsoids and
will therefore be reflected to and absorbed
at fo. The same will be true of some fraction
of the energy radiated from fs, but a non-
zero fraction of the energy from f; will be
reflected by the spherical surfaces back onto
f2 where it will be absorbed. It follows that
the temperature of f2 will rise above that of
f1 in contradistinction to the Second Law.
RoBerT E. MACHOL
School of Business
Northwestern University
Chicago, IlI. 60611

Author's Reply?

Most of the comments, written and oral,
which I have received concerning my origi-
nal paper,! fall into two distinct classes.
They say either, “Your treatment is under-

2 See M. T. Lebenbaum, “Earlier essay on black
box problem,” Proc. IEEE (Correspondence), vol. 51,
p. 864, May 1963, where earlier references are cited
and well assessed.
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