
CORRESPONDENCE

That is,
ho 1

h = b12- b2 (7)
h3 =-b,3 + 2blb2-b3

Here, (- 1)ibj is the sum of (ni) products
of Xi takenj at a time without repetition. By
way of illustration, consider n = 3. Then

b= - (Xl + X2 + )

b2 = X1X2 + X2A3 + X3XI (8)
b3 = X2X3-

A simple check shows that the relation-
ships among the hi, bj, and \j as indicated
by (4), (5), and (8) are consistent.
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Comments on "The Mechanics of
the Bilinear Transformation"

Abstract-Rules are given which permit
the product matrix GS, encountered in a
recent vector-matrix formulation of the
effect of the transformation z = (s+1)/(s- 1)
on a polynomial equation, to be formed
directly.

In the above paper' the author intro-
duced a vector-matrix formulation of the
effect of the bilinear transformation sub-
stitution

s +1
s-1

on a polynomial equation
041'n +a- iZ"'- + *..* + a,z + as = 0. (2)
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With the notation and equation numbering
previously used, the result was

2
b = -GFp.

Pn

Despite the simple rules given for forming
the nX(n+1) and (n+1)Xn matrices Gand
F, it was felt that a certain amount of un-
necessary labor was involved in having to
calculate the nXn product GF ab initio for
each problem. A study has since been made
of the structure of GF, and the results are
given below. Algebraic proofs have not yet
been found for all features, but they have
been verified by computation for all values
of n up to 15. Any suggestions for proofs
will be gratefully received!

With the first row of F chosen as

the only terms in GF which contain p. occur
in the last column. All other elements are
dependent only on the value of n. It has
been convenient, therefore, to consider the
structure of GF in two stages:

a) the nXn matrix X obtained by setting
p.=0;

b) the terms in p. which must be added
to the final column of X to get GF.

The following features of X follow at
once from the structures of G and F:

1) xlj= 1.

2) xi, = (-1)i (n--1)!
(n -j)!(j - 1)!

Property 2 simply means that the first
column of X is equal to the second column
of G. The following additional properties
have been found by experiment:

3) x,n = I.
4) Xj xi,j+i xi-s,j+i -xiX

(i 2,3, ***7n
j= l2, ..*n).

Once the first row and last column have
been laid out using rules 1 and 3, rule 4
enables X to be completed, moving from
right to left on each row. Rule 2 provides a
check on the calculations. Further checks
which have been discovered include the
following:

5) +1 and -1 alternate along the last
row of X.

6) All the column sums of X are zero,
except for the last column which adds to
2-1. The latter is a well-known property of
binomial coefficients, and follows from rule
3. The final column elements of X are the
coefficients in the binomial expansion of
(s+1)n-1, arranged in order of descending
powers of s. Setting s=1 gives the stated
result.

To illustrate these properties, the matrix
X is shown below, for n=5, with the bent
arrow indicating the sequence of calculation
by rule 4.

.I- I 1 1 1 1-

--4 -2 0 2- 14
=6 0 -2 0( 6
-4 2 0 -2 4

To complete the matrix GF, each term
xp, is augmented by the amount

_1)i n! Pn
(n-j)j!] 2

(j= 1,2,- n,).
The coefficients of pn/2 are, in fact, the ele-
ments of the first column of G. These are

the coefficients in the binomial expansion of
(s-1)n, arranged in order of descending
powers of s, but omitting the coefficient of
s'. By setting s =1 we see that the sum of
such binomial coefficients is zero. The coeffi-
cients of pn/2, therefore, add to -1.

In conclusion, attention is drawn to er-

rors in the numerical example done in the
original paper. The correct result is

/- 13 42 -30 -5
b = column I, -

19 19 19 t 19.
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The Concept of "Zero Resistance"

Abstract-It is shown that conduction in
an ideal, lossless conductor is different from
conduction in a vanishingly small resistance
and that it is not appropriate to use the term
"zero resistance" to describe the lossless
conductor.

Levine has discussed, the paradox of a
charged capacitor discharged through a zero-
resistance conductor. Since a zero-resistance
conductor is considered to be an ideal con-
ductor, i.e., a lossless medium, what happens
to the energy that is originally stored in the
electric field of the capacitor? Levine points
out that for the case of arbitrarily small, but
nonzero, resistances the power dissipated in
the resistance (as calculated from the
voltage-current product) equals the rate at
which the capacitor is losing energy so that
energy is conserved. In the limiting case of
zero resistance this power must still be
dissipated in the resistor, a fact which is not
consistent with the concept of the zero-
resistance conductor being a lossless me-
dium.

It is the purpose of this correspondence
to point out that this paradox is created
because of a falacious premise. Conduction in
a lossless region is not the same as conduc-
tion in a region of vanishingly small resis-
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tance. The power input to the electrons is
indeed the product of potential difference
and current but if the circuit element is
"lossless," this power is not dissipated but is
carried by the electrons in the form of
kinetic energy. As an electron moves through
the ideal conductor its kinetic energy will
continually increase because of the existence
of the field. This energy will not be dis-
sipated in the conductor but will be given up
in the form of heat when the electron strikes
the positively charged capacitor plate.

A zero resistance could be made in prin-
ciple in several ways: a) the interaction be-
tween the electrons and their surroundings
could be vanishingly small, b) this interac-
tion could be nonzero but the density of
electrons could be infinitely large, or c) the
cross-sectional area of the conductor could be
infinitely large. Cases b) and c) would cor-
respond to the limiting case discussed by
Levine and would result in dissipation of
energy in the conductor despite the zero
resistance. Case a) would be lossless and
would result in the increase of kinetic energy
discussed in the preceding paragraph. The
discharge of a capacitor through a zero
resistance requires a finite displacement of
mass (charge) in zero time. This is mathe-
matically possible in the limiting cases b)
and c) but is impossible in the case a) which
is a correct representation of a lossless ele-
ment. It is obvious from the brief descrip-
tion of conduction through a lossless me-
dium given above that this mass transport
will indeed take a finite time.

Ohm's law (from which the resistance
concept derives) can be shown to be applica-
ble only if the power transferred to the elec-
trons by the field is transferred in turn from
the electrons to the medium (e.g., crystal
lattice) through which the electrons are
moving. Conduction through the zero-resis-
tance elements described as b) and c) could
be considered to be following a limiting form
of Ohm's law. Conduction through the
lossless element a) would not be described
by Ohm's law.

It can be seen that an ideal conductor
constructed from a lossless medium does not
have the properties of a vanishingly small
resistance. For this reason it cannot be and
should not be described by the term "zero
resistance."

COLMAN GOLDBERG
Dept. of Elec. Engrg.

Northwestern University
Evanston, Ill.

Comments on "The Laplace
Transformation of the Impulse
Function For Engineering
Problems"

T. J. Jordanides
Abstract-Some confusion exists about

the concept and properties of the impulse or
delta function. It is shown that the proposed

Manuscript received December 15, 1967.

changes and qualifications of Etzweiler and
Steele' are totally unnecessary. Instead, it
is shown that if one considers carefully the
series of events at 0,, 0,0+, things are easily
put in their proper perspective.

In the above short paper,' the authors
have certainly brought out a subtle and
often neglected point of linear analysis in-
volving the transformation of the impulse
function. However, no substantial justifica-
tion exists in their statement of the Laplace
transformation as

520

£[f(t)] = F(s) = lim f(t)Ocstdt,
e>0

and furthermore, in the shifting of b(t) from
0 to 4. The above two modifications will,
I think, confuse this delicate issue even
further for the juniors, and they are totally
unnecessary at any level of instruction, un-
dergraduate or graduate.

I consider their example, as shown in
Fig. 1. The apparent inconsistency in the
evaluation of I(s) by the two parallel ap-
proaches which Etzweiler and Steele present
should not be sought in the statement of the
Laplace transformation, but rather in the
following fallacy.

R L C

tE
i

Fig. 1.

When the switch is closed at t= 0, the
current as a function of t, for t > 0, is given by

di 1 r
Eu(t)=Ri + L di + idt. (1)

dt CJ

As we differentiate the above equation,
dEu(t) dEu(t)

?s) ES(1) but = 0 fort >0+.
dt dt

We cannot allow u(t) to be anything other
than 1, since the initial conditions intro-
duced at t=0+ take care of all the energy
stored in the circuit at t =0+. In other words,
the effect of 6(t) at t=0 is accounted for by
the initial conditions at t=0+. The very
presence of those initial conditions is due to
the discontinuity of u(t) at t = 0. So,

(s)
2E

1

LS2 + RS + C

E (2)
but I(s) x

LS2 + RS +
C

Now, when we take the direct transform of
(1), the initial condition

di ( F)E
dt L

does not appear at all in the transformed
equation, and we get

1 G. A. Etzweiler and S. A. Steele, IEEE Trans.
Education (Short Papers), vol. E-10, pp. 171-173,
September 1967.

E 1
= RI(s) + LSI(s) - Li(O+) - I(s),s ~~~~~Cs

which leads to the solution (2), above.
Frequently, functions of time, such as

the step function, encountered in linear sys-
tem analysis have a discontinuity at t= 0.
In such cases the value of the function at
the discontinuity is not uniquely defined
and consequently differentiation at the dis-
continuity is not defined unless we step over
on either side of the discontinuity. To "clear
up the air" in the somewhat congested area of
0-, 0, 0+, e (see Fig. 2). I have this suggestion:
let's let the impulse function occur at 0 or any-
where else it happens to occur and formulate
our integration from either 0- or 0+ to t.
Either method will work well, as long as we
adhere to it consistently.

io vo
Fig. 2.

1) If we state the Laplace transform
defining integral as

F(s) _ ff(t)e-tdt,
the integration process will then include the
full contribution of any impulse at the origin.
The initial conditions will then be evaluated
at t=0- and they will simply tell us about
the history of the circuit (energy stored)
before 5(t) happens at t= 0.

2) If we state the Laplace transforma-
tion as

F(s) _f f(t)e-a"dt,

the initial conditions at 0+ will take care of
the impulse function at 0. The second
method perhaps is preferable for pedagogi-
cal purposes since most people are used to
evaluating the initial conditions at t=0+.
Of course, if there is no impulse function at
0 then the initial conditions remain the same
from 0- to 0+, and the two integral formu-
lations above become identical.

Thus, a wider class of situations can be
encompassed where the circuit already has
been energized before t=0, and some
change (a(t) or other jump-off in the func-
tion) occurs in the excitation at t= 0.

All of the above can be summarized,
perhaps, by 'move Mohammed to the
mountain, not the mountain to Mohammed. "

T. J. JORDANIDES
Dept. of Elec. Engrg.
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Long Beach, Calif.

K. K. Murthy2

Abstract-Defining the impulse as a
narrow pulse of vanishingly small width
provides a physical insight which is usually
lacking in other definitions.

2 Manuscript received January 10, 1968.
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