
IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1968

Pittsburgh, Pa., and
the Ph.D. degree in
electrical engineering
from Syracuse Uni-
versity, Syracuse,
N. Y., in 1957, 1963,
and 1968, respec-
tively.

From 1958 to
1959, on a leave of
absence from West-

inghouse Corporation, he served in the
Signal Corps at Ft. Monmouth, N. J.,
and Ft. Huachuca, Ariz. After rejoining
Westinghouse, he was involved in instru-
mentation and data logging for an extra-
high voltage transmission-line project, and
was later engaged in programming a process
control computer. In 1963 he joined IBM
Corporation, working on the logic design of
small computers. During most of 1966 and

1967 he was an IBM Resident Study Fellow
at Syracuse University. Returning to IBM
in Endicott, N. Y., he joined the Digital
Systems Science Department, where his
interests include data flow techniques and
reliable computer design.

Dr. Langdon is a member of the Associa-
tion for Computing Machinery, Phi Eta
Sigma, Sigma Tau, Tau Beta Pi, Phi Kappa
Phi, and Sigma Xi.

William G. Wee (S'66-M'67) was born in
Iloilo, Philippines, on September 9, 1937.
He received the B.S.E.E. from Mapua In-
stitute of Technology, Manila, Philippines,
in 1962, where he was awarded the "Presi-
dent Gold Medal" for attaining the highest

grade average of the
graduating class in
electrical engineer-
ing. He received the
M.S. and Ph.D. de-
grees in electrical en-
gineering from Pur-
due University, La-
fayette, Ind., in 1965
and 1967, respec-
tively.

From 1964 to 1967 he was engaged in
graduate teaching and research at Purdue
University. At present he is a principal Re-
search Engineer of the Systems and Re-
search Division of Honeywell Inc., St. Paul,
Minn. His areas of interest include pattern
recognition and learning and adaptive sys-
tems.

Dr. Wee is a member of Eta Kappa Nu
and Sigma Xi.

Reviews of Books and Papers in the Computer Field
DONALD L. EPLEY, Reviews Editor

D. W. FIFE, A. I. RUBIN, R. A. SHORT, H. S. STONE
Assistant Reviews Editors

Please address your comments and suggestions to the Reviews Editor: Donald L. Epley,
Department of Electrical Engineering, University of Iowa, Iowa City, Iowa 52240.

A. ANALOG COMPUTATION

R68-51 The Design of an Automatic Patching System-D. A. Starr
and J. J. Jonsson (Simulation, vol. 10, pp. 281-288, June 1968).

'Getting rid of the patchpanel" has long been the dream of analog
computer users (and designers). Besides the aesthetic value of elimi-
nating "all those messy wires," there are the more substantial advan-
tages of shortened turnaround time, long-term low-cost problem
storage and greatly simplified programming.

An analog computer with automatic patching, operating in con-

junction with a digital computer and the appropriate software, opens

up the possibility of an automatic programming system in which the
user would merely type in his differential equations and let the sys-

tem scale the problem, assign components, "patch" and check the
problem, and display the solution. Such a system would be pro-

grammed much like a digital computer with a simulation language,
but a typical run would take milliseconds rather than minutes. The
operator's freedom to change parameters and see the results imme-
diately would give the system a considerable advantage over con-

ventional simulation languages.
Several attempts have been made to replace the patchpanel with

some automatic or semiautomatic switching system (relays, crossbars,

static card readers, etc.); but whatever switching scheme is used, the
number of switches turns out to be prohibitive. For example, a
typical medium-scale computer (150 to 200 amplifiers) has about
650 outputs and 1300 inputs. Any of the outputs may be patched to
any of the inputs. To allow all these connections to be made directly
through switches requires an array of 650X 1300, or about 850 000
switches. Even with modern techniques of mass-production and
miniaturization, a system with this many switches would be too
bulky and expensive to be practical.

Thus, progress is needed on two fronts: low-cost schemes for
packaging the switches economically, and designing the switching
system to minimize the number of switches required. This paper,
which is a summary of Mr. Starr's M.S. thesis, prepared under the
guidance of Mr. Jonsson, discusses the first problem briefly and the
second one at greater length.

As far as the hardware problem is concerned, the authors make
two useful observations. First, they suggest the use of latching, rather
than momentary relays, which eliminates the need for flip-flop
storage and also reduces the noise and power-supply problems, since
no current need flow through the relay coils to keep them in the
"energized" state. Second, they suggest arranging the relay coils in
a rectangular array and addressing them by a scheme similar to a

1179



IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1968

2D core memory. Voltage pulses are generated which put half the
necessary energizing voltage on each coil in the same row or column
as the relay to be selected. Only the selected relay itself (at the inter-
section of the desired row and column) receives the full energizing
voltage. This system allows much of the selection to be performed in
the relay coil itself, thus drastically reducing the need for decoding
logic and relay drivers. A matrix of N2 relays thus requires only 2N
driving lines, instead of one per relay.

These ideas appear sound, but they are hardly original (as the
authors readily admit). Their main concern in this paper is the second
half of the problem: reducing the number of switches to a reasonable
value. This the authors propose to do by means of two techniques:
modularization and concentration.

The technique of modularization consists of dividing the compu-
ter components into small groups, called modules. Each component
has only a limited and indirect access to components in different
modules, but much more free and direct access to components in the
same module. This is the way the telephone company designs its
switching system, on the valid assumption that most calls are local
calls. (An analogous statement would be "most patched connections
use short patchcords.")

Even with modularization, the number of switches is excessive if
all components are in use at once. To reduce the number of switches
further, the authors introduce the concept of concentration based on
the assumption that "all customers will not be using the telephone at
the same time."

For example, the typical module in the proposed system (about
one-twentieth of the machine) contains 58 component outputs and
101 component inputs. Direct connection of each input to each out-
put requires 5858 switches (58 X 101). This is clearly excessive, since
there are twenty such modules in the computer.

To keep the number of switches within reasonable bounds, the
authors assume that at most 20 percent of the input and output
terminals are likely to be in use at any one time. They divide the
58 outputs into two equal groups (of 29 each) and the 101 inputs into
four nearly equal groups (three groups of 25 and one group of 26).
Each of these groups has associated with it a small "concentrator"
matrix of switches which allow up to 20 percent of the terminals in
any group to be connected to trunklines. Additional swtches inter-
connect the trunklines to complete the connections between inputs
and outputs. The entire system uses only 1242 switches, and appears
adequate to handle the majority of problems which satisfy the au-
thors' basic assumption (at most 20 percent of the terminals are in use
at any one time).

A natural question arises at this point: What is the optimum
grouping for the inputs and outputs? The authors have chosen to
divide the inputs into two groups and the outputs into four. Would
a different grouping produce an adequate system with fewer switches?
This type of problem has been analyzed by Clos' in connection with
telephone network design. Subsequently, this reviewer extended
Clos's work and applied it to the automatic patching problem in a
study under a contract with the National Aeronautics and Space
Administration.2

The general line of attack and the results of these studies may be
summarized as follows. First, conditions must be found to determine
which switch configurations are adequate to handle the proposed
traffic; this is a problem in set theory and combinatorial analysis.
Second, once the adequate systems are characterized mathemati-
cally, one must select from the set of all adequate systems the one
that uses the fewest switches. This is the optimal grouping problem
described above. It turns out that a few large groups are inefficient
and so are many small groups. Between the two extremes lies an op-

I C. Clos, "A study of non-blocking switching networks," Bell Sys. Tech. J., vol.
32, pp. 406-423, March 1953.

2 G. Hannauer, 'Stored program concept fo- analog computers," Final Rept.,
NASA project NASA-21228.

timum which may be found by the usual methods of calculus.
Using the techniques developed in the NASA report and the

module size chosen by Starr and Jonsson (58 component outputs,
101 component inputs), a switching scheme can be designed which
is adequate for 20-percent traffic density using only 518 switches, in-
stead of the 1242 used by the authors. In fact, a system which is
adequate for 50-percent traffic uses only 1145 switches.

Since the NASA report was not available at the time this paper
was written, and since Clos's paper was available only in a 14-year
old journal, the authors can hardly be blamed for being unfamiliar
with the technique. What is surprising is that the authors apparently
failed to recognize that an optimization problem exists at all. Faced
with 58 component outputs and 101 component inputs per module,
they arbitrarily propose a particular scheme for interconnecting them.
If they ever considered any alternative schemes, this fact is not
mentioned in the paper.

In fact, almost every aspect of the proposed design has an arbi-
trary character. Critical design decisions are made by appeals to in-
tuition. Thus, the authors admit that they selected the number of
intermodule trunks "intuitively." Similarly, the assumption of
20-percent usage of terminals was based on an investigation of some
"typical analog computer problems" (unspecified by the authors)
"mixed with a little intuition." Other decisions, such as the above-
mentioned grouping of terminals, are made without even appealing
to intuition (simply by ignoring the possibility of alternatives).

Of course, intuition is a legitimate and useful tool in designing
any new system. The proof of the soundness of a proposed system lies
in how well it works, not in how it was obtained. The next step,
therefore, is to evaluate the proposed system by programming some
actual problems on it. Note that this does not require actually build-
ing the system. Once the proposed system is specified, that is, once
the number of components and their method of interconnection are
defined, it is possible to analyze a given problem and search through
the proposed switching matrix to see if the required connections can
be made. This should be done for a number of problems, including at
least one or two that use most of the major computing components in
the machine.

Although the authors do not include any such evaluation in their
paper, a cursory examination of the structure of the system indicates
that it almost certainly is not adequate. The main trouble seems to
lie in the authors' assumption of 5:1 concentration (i.e., 20-percent
traffic density). This assumption means that only 12 of the 58 com-
ponents in any module can be used in any problem, which drastically
limits the usable equipment complement.

For example, the typical module contains twelve pots (two hand-
set, and ten servo-set), two integrators, two inverters, one multiplier,
one summer (or high-gain amplifier), and an assortment of com-
parators, loose resistors and diodes, etc. Consider a program that uses
all twelve pots. These twelve pots are presumably connected to am-
plifiers (e.g., summers and integrators), but it is hard to see what
role these amplifiers can play in the simulation since their outputs
cannot be connected to anything (the twelve pots use up the entire
intramodule trunking system). I conclude that no meaningful prob-
lem can possibly use all twelve pots in any module. If this is the case,
why not reduce the number of pots, thus saving both switches and
analog hardware?

To see what can be done within one module of the proposed sys-
tem, consider a loop that contains the two integrators and the mul-
tiplier. Such a loop represents a second-order system with a variable
spring stiffness, for example. The system has a total of fifteen outputs
(six pots, two integrators, one multiplier, one high-gain amplifier, two
inverters, two incoming trunks, and reference voltage for an initial
condition). Since there are only twelve trunks available, even this
simple system cannot be programmed.

To summarize, the proposed system appears to be neither ade-
quate nor optimal. The main weakness of the paper, however, lies

1180



REVIEWS OF BOOKS AND PAPERS IN THE COMPUTER FIELD

not in its results, but in its methodology. The system is designed on
the basis of intuition, rather than analysis, and the authors do not
even pay lip service to the ideal of evaluating the system by pro-
gramming real problems on it.

It is rather disappointing that the authors' only "evaluation" of
their proposed system consists of counting the number of switches
(about 27 000) and pronouncing it "reasonable."

Since the paper under review is only a seven-page summary of an
M.S. thesis, one might expect that the detailed analysis and evalua-
tion were merely omitted from the summary for the sake of brevity.
This is not the case. The original thesis suffers from the same limita-
tions. It appears that neither the paper nor the thesis itself makes a
substantial advance in the state of knowledge about this problem.

GEORGE HANNAUER
Electronic Associates, Inc.

Princeton, N. J.

B. MULTIPROGRAMMING

R68-52 The Structure of the "THE"-Multiprogramming System
-E. W. Dijkstra (Commun. ACM, vol. 11, pp. 341-346, May 1968).
(See also Computing Rev., vol. 14, p. 979.)

This paper is worthy of attention. Written with the facility one
has grown to expect from Prof. Dijkstra, this is an announcement of
a new operating system designed and constructed at the Technologi-
cal University at Eindhoven for the EL X8.

While the operational characteristics of the new system are not
unusual, the claims for the confidence level of both the design and im-
plementation of the system certainly are. "We have found that it is
possible to design a refined multiprogramming system in such a way
that its logical soundness can be proved a priori and its implementa-
tion can admit exhaustive testing." For one of Dijkstra's stature in
the community to make such a statement is to demand the considera-
tion of all of us.

The author's abstract and his "key words and phrases" provide
a terse summary of his announcement:

A multiprogramming system is described in which all
activities are divided over a number of sequential processes.
These sequential processes are placed at various hierarchi-
cal levels, in each of which one or more independent ab-
stractions have been implemented. The hierarchical
structure proved to be vital for the verification of the logi-
cal soundness of the design and the correctness of its imple-
mentaticn.

Key words and phrases: operating system, system
hierarchy, system structure, real-time debugging, program
verification, synchronizing primitives, cooperating sequen-
tial processes, system levels, input-output buffering, multi-
programming, processor sharing, multiprocessing.

Professor Dijkstra is quite precise in his abstract. Some amplifica-
tion is offered below.

Two unusual claims are made for the THE system.

1) Its logical soundness was proved a priori (i.e., before imple-
mentation).

2) Its implementation admitted exhaustive testing.

Consider them in turn.
A Priori Proof of Logical Soundness: In the THE system a set

of abstractions are realized in an hierarchy of "levels." These ab-
stractions concern parallel processes, virtual memory, input-output
streams, and other useful facilities. Though each abstraction is im-

portant in that it realizes some facility in the context of resource
restrictions, the mere concept of hierarchy, in conjunction with
parallel processes and the means for synchronizing their operation is
fundamental to the objective of proof of design for the system.

Designed well within Habermann's' universe, the THE system
enjoys the benefits of "harmonious cooperation." One aspect of such
cooperation is the avoidance of "deadlock," or "the deadly embrace,"
one of the banes of designers of parallel-task systems.

But just how does one achieve a priori proof of design? Granted
commitment to a Habermann hierarchy (so as to enjoy the benefits),
just how does one prove that a particular society composed of mu-
tually synchronized processes does indeed satisfy all requirements in
its time behavior? Dijkstra is not explicit here. He presents only the
announcement that he and his compatriots have "learned the art of
reasoning" by which this was possible.

Admission of Exhaustive Testing: Given a correct design, how
does one achieve a valid (correct) realization of it? Dijkstra's tech-
nique is that of dividing and conquering. One relies on the relative
simplicity of functions on a given level, plus the ability to maneuver
a subsidiary level, using cooperating sequential processes, to search
out, establish, and demonstrate the correct operation of the system in
each of its "relevant states." In effect, one attempts to design such
that the combinatorial aspects of the operations are additive, rather
than multiplicative.

The author's argument for exhaustive testing relies on our confi-
dence in the perception of the designers on one hand, and of the
testers on the other. The designers must keep the relevant states on
each level to a manageable number. The testers must identify all
relevant states, and devise tests (also to be verified) that 1) maneuver
the system into each relevant state, and then 2) demonstrate the
correct operation in that state. Detailed arguments are not provided
in Dijkstra's paper.

Bonuses: Two elegant new primitives (the "P" and "V" func-
tions) for the coordination of cooperating sequential processes are
briefly described in an appendix to the paper.

A brief sketch of the proof of "harmonious cooperation" leads us
to Habermann's work: apparently significant, and hopefully avail-
able in the general literature soon.

CODIE WELLS
The MITRE Corp.

Bedford, Mass.

1 N. A. Habermann, On the harmonious co-operation of abstract machines,
Ph.D. dissertation. The Netherlands: Technological University of Findhoven.
1967.

C. INTERACTIVE GRAPHICAL PROGRAMMING

R68-53 A System for Interactive Graphical Programming-W. M.
Newman (1968 Fall Joint Computer Conf., AFIPS Proc., vol. 32.
Washington, D. C.: Thompson, 1968, pp. 47-52).

This paper describes a scheme for organizing and creating the con-
trol portions of an interactive graphical program. Since the response
of such a program to some console input may depend on the history
of previous inputs, the author structures his control programs as
finite-state automatons. Thus state diagrams are used as the notation
for defining the behavior of an interactive graphical program. Such
notation does indeed add clarity and order to the description of this
information.

The control concepts presented have been implemented in a
working system. A written description of the state and transition

1181


