X22?		
	0	RUN
R12?	20	DUN
X12?	20	KUN
	-15	RUN
Z01?	75	DIIN
Z02?	15	KUN
	50	RUN
1 MAG?	1	ыти
16?	ι. Έ	KUN
And ara	-90	RUN
L1=139.E0	DEG	DIIM
L2=187.E0	DEG	KUN
		RUN
1.1=50.2E0	DEG	12111
L2=134.E0	DEG	KUN

Finally, repeat the same example, but this time let $Z_{01} = Z_{02} = 75 \ \Omega$.

		RUN
R11?	50	DIIN
X11?	50	NUN
0000	0	RUN
R22 (50	RUN
X22?	٥	DIM
R12?		KUN
¥199	20	RUN
A16:	-15	RUN
Z01?	75	DIIN
202?	10	NON
T MAG2	75	RUN
1 MAG:	1	RUN
1 7.	-90	RIIN-
		Non
L1=138.E0	DEG	RUN
L2=185.E0	DEG	
L1=63.4E0	DEG	RUN
		RUN
L2=153.E0	DEG	

Notice that there is NO SOLUTION when $Z_{01} = Z_{02} = 50 \ \Omega$; however, two solutions are found when Z_{01} is changed to 75 Ω , and when both Z_{01} and Z_{02} are equal to 75 Ω .

Correction to "Prediction of Sun Transit Outages in an Operational Communication Satellite System"¹

X.T. Vuong GTE Spacenet Corp. McLean, Virginia 22102

Since the publication of the above paper in the Dec. '83 issue of the IEEE Transactions on Broadcasting, some readers have consulted me when they could not reproduce results shown in the tables of the paper. The following clarifications/corrections were given to them.

To be consistent with the standard notations of θ and ϕ in the spherical coordinate system, the orders of $d\theta^*$ and $d\phi^*$ in Eq. (7) should be interchanged. To distinguish from the untransformed antenna gain pattern f, the notation f in Eq. (7) should be replaced by f^{*} to represent the transformed antenna pattern. It should also be noted that θ^* and ϕ^* here are expressed in radians.

¹X.T. Vuong and R.J. Forsey, <u>IEEE Trans. Broadcasting</u>, vol. BC-29, no. 4, Dec. 1983, pp. 121-126.