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Theory of Shot Noise in Junction
Diodes and Junction Transistors*

In the above paper,' the shot noise in
junction transistors was calculated for a one-

dimensional model, both for low and for high
frequencies. The low-frequency calculation
was exact, the high-frequency calculation
was carried out under the assumption that
the equilibrium hole concentration pn in the
base region and the excess hole concentration
P,s' at the collector junction were negligible.

The noise has now been calculated with-
out these assumptions. It was found that the
following equations, derived in my article,'
are of general validity:

(i,12).,= 4kTGedf-2eIedf (1)
(i122). = 2el,df (2)

(ip1*ip2) av = -2kTaYedf. (3)

Here a is the current amplification factor,
Y, the emitter admittance, G. the emitter
conductance, ip, the emitter current genera-
tor and i,2 the collector current generator. If
V,<O, and |eV,/kTj>>1, the emitter and
collector current may be written

= Iee(e eVlkT- 1) + asolcc
Ic = aosJee(eeVlkT- 1) + InC,

in contrast with the statement,' according to
which the collector saturated current should
not give full shot noise. This discrepancy is
caused by a wrong definition of (h)B5t; in-
stead of (6a) the definition (Ic)sat =I, was

used. The first term in (8) gives the high-
frequency equivalent of the low-frequency
partition noise term.

Eqs. (1), (2), and (3) do not give any

reference to the one-dimensional model for
which they were derived. It thus seems

likely that they hold for all geometries.
The author is indebted to Dr. K. M. van

Vliet, University of Minnesota, for stimulat-
ing discussions on the subject, and to Dr.
R. L. Pritchard, General Electric Company,
for pointing out the correct expression for
(It)sa

ALDERT VAN DER ZIEL
Elec. Eng. Dept.

University of Minnesota
Minneapolis, Minn.

(4)
(5)

where as is the low-frequency current ampli-
fication factor and the current I.. = h,, has
been defined.' Substituting (4) into (5)
yields

Ic = aoie + (Ic)sat. (6)

The quantity

(Ic)sat = I¢c(1 - ao) (6a)
is known as the collector saturated current,
that is the collector current for zero emitter
current.

The noise current generator

ip = ip2 + aipl, (7)

corresponding to the output noise current
generator for open input, has also been in-
troduced.' Substituting (1), (2), (3) and
(6a), we obtain

(jp2)av = 2eI,df I122eIedf
= 2e(ao- Ce[2)l5df+ 2e(Ic)satdf. (8)

For low frequencies this reduces to

(jP2), = 2ea(1-ao)Ildf+ 2e(Ih)55tdf. (8a)

The reader will recognize the first term as

the partition noise term introduced by van

der Ziel and the second term as the shot noise
term due to the collector saturated current
introduced by Montgomery and Clark.2

The collector saturated current thus
gives full shot noise at all frequencies. This is

* Received by the IRE, November 6, 1956. Work
supported by the U. S. Signal Corps.

' A. van der Ziel, PROC. IRE, vol. 43, pp. 1639-
1646; November, 1955.

2 H. C. Montgomery and M. A. Clark, "Shot noise
in junction transistors," J. Appl. Phys., vol. 24, pp.
1397-1398; November, 1953.

A. van der Ziel, 'Note on shot and partition noise
in junction transistors," J. Appl. Phys., vol. 25, pp.
815-816; June, 1954.

Molecular Amplification and
Generation of Microwaves*

My above paper' was not intended to
give a comprehensive survey of the literature
on molecular amplification, but was meant
to give a brief description of the present
state of the field and an idea of its scope and
promise.

However, I should like to mention here,
as I did not do in my article, that the pos-

sibility of obtaining microwave amplifica-
tion by means of stimulated emission was

pointed out by Weber at the Tenth Annual
Conference on Electron Tubes at Ottawa,
Can., in June, 1952, and in the IRE TRANS-
ACTIONS ON ELECTRON DEvIcES.2

JAMES P. WITTKE
RCA Laboratories

Princeton, N. J.
* Received by the IRE, March 22, 1957.
l Proc. IRE, vol. 45, pp. 291-316; March, 1957.
2 J. Weber, 'Amplification of microwave radiation

by substances not in thermal equilibrium," IRE
TRANS., PGED-3, pp. 1-4; June, 1953.

Alternatives to Cathode Bias for
Vacuum Tubes*

Although the use of a cathode resistor,
by-passed if desired, is by far the commonest
way of providing bias for tubes when some

* Received by the IRE, April 1, 1957.

self-regulation of the operating point is de-
sired, there are alternatives which may be
attractive under certain circumstances. If
a fairly well regulated negative voltage is
available, as often happens in such appli-
cations as instrumentation, the scheme
shown in Fig. 1 may be used. The voltage
divider formed by resistors Ri, R2, and R3,
working between the plate voltage Vp and
the negative supply voltage - V, holds the
grid at the proper operating point, the cath-
ode being grounded directly. The capacitor
C, by-passes all signal frequencies preventing
degeneration of the signals.

cl T OUTPUT

INPUT 0 f

n3?

Fig. I-The voltage divider bias system for a vacuum
tube. By means of the divider chain, the plate
voltage is compared with the fixed voltage - V,
and the feedback from this comparison stabilizes
the operating point.

It can be seen, from ordinary feedback
theory, that any tendency of the operating
point to change, due to a change in the
properties of the tube, is attenuated approxi-
mately by a factor {1+ (gmRLR3)/(R, +R2
+R3) } -1, gm being the transconductance of
the tube. If R,-R2-R3, and gmRL>)l, this
factor becomes approximately 3/(gmRL).
When the bias is provided by a cathode
resistor Rk, on the other hand, the factor is
approximately (1 +gmRk)-l. Typically gn,Rk
-1, so the factor is around one half.

There are certain other possible ad-
vantages of the system shown in Fig. 1.
Since R, will be as much as one thousand
times as great as Rk would be for a similar
situation, C, need be only about one

thousandth the size of the capacitor re-

quired to by-pass Rk. This could mean sav-

ings in size, weight, and cost. Having the
cathode grounded directly may help in re-

ducing hum, and, in addition, it might be
desirable if, for some reason, tubes with
filamentary cathodes were to be used.

The same system may be used with a

pentode. Fig. 2 shows another alternative
which may be attractive here, especially
when the screen has to be by-passed anyway.
Here the screen provides the regulation,
just as the plate did in the former circuit.
Since the grid to screen and grid to plate
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trtc.nsonductances are in about the same
ra.1:io as the screen current and plate cur-
rEii-, and the plate and screen run at about
the same voltage, the attenuating factor for
changes in the properties of the tube will
bee btout the same when the regulation is
taken from the screen as when it is taken
frorn the plate. The screen tnethod saves
one resistor and one capacitor (if the screen
has to be by-passed anyway), and is also
useful if the plate load is something like a
transformer, with a very low dc impedance.

caumse of t-ie pa-rlaLel geomnetry, the elezi'-rons
app--oach the pla e perpendicularly, a-ic a
sniali, deiinite fr,ction of theiry penet -es
the hole to orin the beanm whiclh goes oa to
excite the phosphorescent screell. A large
current (imilliamperes) flows to the plate.
However, thiis is at low (300) voltage. The
power dissipated is less than that required
in Oliver's rooter circuit. It is easily possible
to force this plate current to vary linearly
with the input voltage by using a conven-
tional video feedback circuit. The beam
current is a small, definite fraction of the
plate current, and hence, its variation is
accurately linear too. Note that aging of
the tube no longer is a problem; it is cor-
rected for by the feedback.

CATHODE

to confine the field from the plate.
Otherwise, as the grid bias decreases,
some electrons hit the side of the
plate and its supporting strucLure
so that the fraction of the current
going through the hole again is too
small.

3) The space within the gun must be
carefully shielded from the accelerat-
ing field to prevent electrons being
drawn around rather than through
the plate.

It is a pleasure to acknowledge the assist-
ance of the staff of the University of Illinois,
Electron Tube Laboratory, and especially
that of Murray Babcock.

D. BITZER
AND R. D. RAWCLIFFE
Control Systems Lab.
University of Illinois

Urbana, IIL.

INPUT

-VC
Fig. 2-The voltage divider bias system applied to a

pentode by comparing the screen voltage with
the fixed voltage. This method requires no addi-
tional capacitors, in case the screen has to be by-
passed anyway.

HAROLD L. ARMSTRONG
Pacific Semiconductors, Inc.

Culver City, Calif.,
Formerly with Nat. Res. Council

Ottawa, Ont., Can.

A Linear Cathode-Ray Tube*
There have been numerous attempts to

correct, for the nonlinear light output vs
grid drive characteristic of cathode-ray
tubes, (crt). In the rooter circuit developed
by Oliver,' for instance, the crt is preceded
by a circuit with a nonlinearity which is the
inverse of that of the crt so that the over-all
circuit is linear. It is not too difficult to
match these nonlinearities with the pre-
cision required for most television applica-
tions. A further improvement in the pre-
cision of linearity, however, becomes in-
creasingly difficult. In addition, a perfect
match, if once obtained, would be difficult
to maintain, since the two tubes involved
would not age at precisely the proper rela-
tive rates.

The above objections are largely elimi-
nated in a tube of the construction shown in
Fig. 1. The first three electrodes are similar
to the cathode, grid, and plate of a con-
ventional lighthouse tube such as the 2C40,
i.e., a large area cathode, a parallel wire
mesh control grid, and a parallel plate
(screen grid in our tube), the plate, however,
having a small hole through its center. Be-

* Received by the IRE, March 23. 1957.

1 B. M. Oliver, 'Tone rendition in television,"
PROC. IRE, vol. 38. pp. 1288-1300; November, 1950.

GRID

PLATE

Fig. 1.

Conventional crt's can be corrected in
this manner. However, the cathode current
which must be sampled by the feedback
circuit is so small that it becomes impossible
to obtain the wide-band pass required in
radar and television applications. The "gi"
on conventional tubes is of the order of
10 micromhos.

There remains the question of the linear-
ity of the phosphor itself. As long as satura-
tion is avoided, the phosphor in itself ap-
pears to be linear. However, its response
falls off with temperature, and localized
heating by the electron beam is sufficient to
reduce the light out: beam current char-
acteristic from a one to an approximate
0.8 power law within a 10 to 200 micro-
ampere current range. (Our tests have shown
that P11, P15, and P16 phosphors behave
this way.) It is possible, however, by prop-
erly under-correcting the gun nonlinearity,
to make the over-all response sufficiently
linear. The simplest feedback circuit which
will do this is merely a selected cathode
resistor.

The success of this device hinges upon
obtaining accurate proportionality between
the plate and beam currents. This is pos-
sible if several precautions are observed.

1) The grid-plate spacing should be
large enough so that thermal motions
of the electrons will be sufficient to
fill in the 'shadows" cast by the
individual grid wires before the elec-
trons reach the plate. If the hole in
the plate is partially shadowed, the
beam current may be too small at low
currents.

2) The grid supporting structure should
partially enclose the plate, as shown,

Quantum Derivation of Energy
Relations Analogous to Those for
Nonlinear Reactances*

In a paper by Manley and Rowe,' equa-
tions are given relating the average powers
at the different frequencies in nonlinear react-
ances. These general energy relations are
very interesting and give useful information
regarding the gain and stability of nonlinear
reactor modulators and demodulators. How-
ever, the derivation of the above equations
involves a rather complicated Fourier analy-
SiS.

It is interesting to note that in a quan-
tum mechanical system, the Manley-Rowe
relations are almost selfevident. For exam-
ple, (26) and (27) or (30) and (31) of
Manley and Rowe,' applicable to a single-
sideband modulator or demodulator, can be
readily obtained by using the equivalent
three-level quantum mechanical system
shown in Fig. 1. The principle that one must
utilize is that in the steady state, the total
number of quanta per second leaving any
level must equal the number arriving at that
level. Therefore, one can write

where

N,2= no. of quanta per second going from
level 1 to level 2

Nis = no. of quanta per second going from
level I to level 3

N23= no. of quanta per second going from
level 2 to level 3

N21 = N,12= no. of quanta per second
going from level 2 to level 1.

The energy in each quantum is hf where h is
Planck's constant and f is the frequency of
the transition. Therefore, Nl2hf, is equal to
WI, the power in frequency fJ, with similar
relations for N,3 and N23. One can therefore
write (1) as follows:

* Received by the IRE, April 2, 1957.
l J. M. Manley and H. E. Rowe, 'Some general

properties of nonlinear elements,' PROC. IRE, vol.
44, pp. 904-913; July, 1956.

N,2 + N,3 = 0
N12= N23 (1)
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3.

21

Fig. 1-Quantum level scheme equivalent of siI
sideband modulator or demodulator.

WI W3
+

=

O

fl f3

Wi W2
fi f2

These equations are identical to (26)
(27) or (30) and (31) of Manley and Rov
by noting the difference in symbolism.

One can derive similar relations for
case of a nonlinear system in which b
side bands carry power. Fig. 2 shows

4A A

fi
3

f2 f2

I I-

Fig. 2-Quantum level scheme equivalent of uppe
and lower sideband modulator or demodulator.

equivalent quantum mechanical system
which we shall analyze using the principle
of conservation of quanta in the steady state.

Nn + N13 + N14 = 0

N23+ N24-N12 = 0 (3)

N34- N1i - N23 = 0.

Combining the first two of (3) we get

N(3 + N24 + N,4 + N23 = 0.

Similarly, combining the first and last of
(3) we get

N1a + Nu + N4 - N23 = 0.

Noting that W2 = (N13+N24)hf2 and WI
= (Nn+N34)hfi and substituting in the
above equations, we obtain

W2 W+ W_ =0

fA f+ f-
Wi W+ W_fI W+- -
fl f+ f-

(4)

where W+ and W_ are the upper and lower
sideband powers respectively. These equa-
tions are again identical to those obtained
from (24) and (25) of Manley and Rowe.'

One can alternatively derive the above
relations by considering a photon interaction
scheme rather than a multilevel quantum
system. Thus, let us derive (4) by consider-
ing the following scheme. A material is ir-
radiated with photons of frequency f+ =fi
+f2 and of energy hf+. We assume that this

ngle- material is in a cavity which can absorb
energy at frequencies fi, f2, and f_=f2 -fi.
Two different "decay" processes, shown in
Fig. 3, are possible, In process A, a photon
of energy hf+ results in one photon of energy

(2) hfi and one photon of energy hf2, so that
energy is conserved. In process B a photon
of energy hf+ results in one photon of energy
hf_ and two photons of energy hfi, again
conserving energy for this process.

anc
ve,'

the
ioth
the hf+ hf-

hhf-

f-= f2 - f

PROCESS A PROCESS B
Fig. 3-Quantum interaction scheme equivalent

of Fig. 2.

Let
-N+A= no. of hf+ photons absorbed by

process A in one second
-N+B=no. of hf+ photons absorbed by

process B in one second
NIA=no. of hfi photons emitted by

process A
NLB =no. of hf, photons emitted by

process B
N2 = no. of photons of energy hf2

emitted per second
N= no. of photons of energy hf_

emitted per second
-N+ =-(N+A+N+B) = total no. of

photons of energy hf+ absorbed
per second

+Ni=+(N1A+NIB)="total no. of
photons of energy hf, emitted
per second.

From Fig. 3 one can readily see that the
following equations hold:

N1A = -N+A1Nprocess A
N2 = - N+AJ

NiB = - 2N+B
N-. = -N+B process B.

(5)

Combining the second of (5) with the
second of (6) we obtain

N2 + N_- (N+A + N+B) =-N+
or

Ws W_ W+_+ + -- = 0
4s f_ f+

which is identical to the second of (4).
Similarly, by combining the first of (5)

and (6) we obtain

N1 = NL + NIB =- (N+A + 2N+B)
=-N+-N+B --N++N-

or

N1 + N+-N = 0

or

WI + W+ W_ o

fi f+ f

which is the first of (4).
If one knows the relative probability of

occurrence of process A to process B, one
can, of course, obtain additional information
regarding the powers at the different fre-
quencies. Thus, if process A and process B
were equally probable one can readily see
that

WI 3 W+
fi 2 f+

These simple energy relations are par-
ticularly significant in the analysis of the
potentialities of the various multilevel
solid-state maser2 schemes.

MAX T. WEISS
Bell Telephone Labs., Inc.

Holmdel, N. J.

J. B. Wittke, 'Molecular amplification and gener-
ation of microwaves," PROC. IRE, vol. 45, pp. 291-
316; March, 1957.

Microwave Mixing and Frequency
Dividing*

Data obtained from frequency mixing
experiments and from related experiments
in frequency division demonstrate the feasi-
bility of achieving effective mixing and
dividing in microwave tubes. In all of the
experiments, the nonlinearity of an over-
modulated electron beam was used to
produce the desirable effects. As will be
described in some detail below, mixing con-
version gains as high as 30 db and strong
divided-frequency signals have been ob-
tained from traveling-wave-type tubes.

Interest in the traveling-wave mixer has
been stimulated by certain characteristics
which these tubes can possess. For example,
such tubes may be designed to have wide IF
bandwidths, to give IF outputs at micro-
wave frequencies, to be free from burnout
due to high-power inputs, to provide local-

* Received by the IRE, March 23, 1957. This
(6) paner prepared under Air Force Contract AF 19(604)

1847.
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r(:-iilatnor isolation from the signal input and
tc gJi'e high-level output power. The possi-

of including the local oscillator within

the tuTbe envelope by using backward-wave
structures has been investigated elsewhere
by Gray.1

NIluch experimental data were obtained
fronm an S-band traveling-wave tube having
two identical helices as in Fig. 1. The tube
was operated as a mixer with the local oscil-
lator signal and the input signal applied to
the input of the first helix. The IF signal
was then obtained at the output of the sec-

ond helix. In the experiment illtistrated by

Another rnixcr experiment .was per-
form-led by ulsing a conventional, helix-type
X-band travelinig-wave tube. An S-band
resoniantt cavitv was fitted over the tube
envelope and(1 positioned withil the cavity ga-lp
concelntric withl the beam and located in
the region between the helix output and the
beam collector. A high-level signial at 10,100
mc and a low-level signal at 7600 mc were

applied to the helix input. The cavity was

tuned to 2500 mc and was excited by the
difference frequency current present in the
electroni beam passing to the collector. A
conversion gain of +11 db could be obtained.

Input signal
f2= 2700 mc

I helix voltage=900v helix voltage= 2100v
electron gun collector

Fig. 1-Double-helix traveling-wave-tube mixer. The first helix was operated for broad-band amplification of
S-band signals (including the frequencies f, and f2) with a gain of +8 db. The second helix was operated in
the dispersive region and was tuned for the IF frequency fs, the gain for which was 0 db. In the experiment
illustrated, the conversion gaini, taken as the ratio of Pa' to P2, was +27 db.

Fig. 1, the measured gain through the
first helix for both a high-level signal at f,
and a low-level signal at f2 was about 8 db.
The second helix was operated at a higher
voltage in the dispersive region in order to
peak the gain at the difference frequency
fi. The measured gaiul through this helix for
signals at f3 was very nearly 0 db. The high-
level signal served to drive the electron beam
into a partially-saturated condition in order
to produce a difference-frequency modula-
tioin on the beam. The difference-frequency
modulation then was cotipled to the second
helix and hence to the mixer output. The
conversion gain, defined as the ratio of the
IF output power to the low-level signal in-
put power, was +27 db.

The above experiment was repeated
after adding an external attenuator (marked
"added attenuation") to the second helix.
The purpose of the attenuator was to re-

duce the effects of possible feedback through
the second helix. Such effects may have
been partially responsible for the high con-

version gain because the added attenuation
restulted in lowering the conversion gain to
+16 db.

She operation throughout the above ex-

perimentation was very stable. For example,
even with the attenuator absent, a substan-
tial increase in the beam current would still
niot produce oscillations. By increasing the
beam current 50 per cent the conversion
gain could be increased to +30 db. It is
also interesting to note that by raising the
input power levels, the tube's full saturation
power output of +15 dbm was obtainable at
the intermediate frequency. Consequently,
high-level mixing can be accomplished in
this type of tube.

' G. A. Gray, 'Investigation of Mixing in Travel-
ing-Wave Tube Amplifiers,' Ser. No. 60, Issue No.
151, Fleo. Res. Lab., University of Calif., Berkeley,
Calif.; November 11, 1955.

Thus, the tube's full saturation power out-
put was obtainable at the divided frequency.

Successful dividing was also obtainied
fronm a conventional (i.e., a single-helix)
S-band traveling-wave tube. Preliminatry
tests had shown that nul-der the pr-opeI-
operatiig conditions the gaini for the differ-
ence-frequency signal in this tube was sub-
stantially higher than the gain for either of
the signals being mixed. This was precisely
the characteristic which had permitted suc-

cessful operation of the double-helix tube
as a divider. Thus the conventional tube was

connected with its output fed back through
an attenuator to the input as in Fig. 2;
except, of course, only one helix was present.
The tube was operated as a frequency divider
and gave successful performance over a

bandwidth of about 10 mc. The operationi
was less stable and more critically dependent
upon proper adjustment than in the case of
the double-helix tube.

A number of experiments were made to
investigate certain characteristics of the mix-
ing. The results of a theoretical analysis by
Putz2 had indicated that for tubes of fixed
dimensions the conversion gain should be
proportional to the square of the intermedi-
ate frequency. These results were verified
for low intermediate frequencies by taking
the IF output signal directly from a travel-
ing-wave-tube collector through a load
resistor. As shown in Fig. 3, the variation

input signal
fl= 4000mc

signal
2000mc

| helix voltage=900v helix voltage= 1140v

electron gun collector

Fig. 2-Freqtuency divider employing a double-helix traveling-wave-tube mixer. The first helix was operated
for broad-band amplification covering the 2000 to 4000-mc range. The second helix was tuned to peak
the gain at 2000 mc.

At the same time the tube gain as an ampli-
fier was +32 db. Obviously this method of
obtaining a mixer output was much less effec-
tive than the previous one.

An interesting application for the double-
helix mixer tube of Fig. 1 is its use as a fre-
quency divider. This mode of operation can

be understood by assuming that the fre-
quency of the high-level signal, fi, is exactly
twice that of the low-level signal, f2. As
a consequence,f3 equalsf2. By adding a feed-
back path as in Fig. 2 the tube can be made
to oscillate precisely at f2--fi/2. This, of
course, constitutes dividing by two.

Because of the gain mechanism inherent
in the mixing process, the oscillations at f2
will continue so long as the signal at fi is
present. Since the straight-through gain for
f2 is too low to sustain oscillations, the oscil-
lations cease when fi is removed.

The double-helix tube was tested as a

frequency divider with good results. The
frequency fi was chosen to be 4000 mc. For
the best operation it was necessary to ad-
just the helix voltages to obtain proper
phase relationships. Under these conditions,
the system could easily be excited into oscil-
lation at 2000 mc by supplying a high-level
signal at 4000 mc to saturate the beam.

-0

0

Cc

50 75 100 200 300 500 7501
Intermediote Frequency (mc)

Fig. 3-Relative IF output power as a function of the
intermediate frequency. For these data, the input
power level of the signals which were mixed was
held constant. The IF output was taken from a
traveling-wave-tube collector operating into a
50-ohm load.

2 J. L. Putz, "Nonlinear Phenomena in Traveling-
Wave Amplifiers," Tech. Rep. No. 37 (N6onr 251),
Flec. Res. Lab., Stanford University, Stanford, Calif.;
October 15, 1951.
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of the output power for constant input pow-
er (and thus the variation of the conversion
gain) was as the square of the intermediate
frequency. These data were taken with a
50-ohm collector load resistor. Since the
collector capacity is fixed as in a pentode
amplifier stage, the obtainable mixer con-
version gain must be a function of band-
width. This fact was verified by inserting
a 30-mc tuned circuit as a collector load
having a resonant impedance of about
16,000 ohms and a bandwidth of 0.6 mc.
The conversion gain was thereby increased
by 25 db. (This tube then had an over-all
conversion gain of +7 db at 30 mc with a
tube gain of 35 db.)

Additional experimental data were ob-
tained from the above tube to determine the
mixer saturation characteristics. These data
are presented in Fig. 4. The relative conver-

20'f C '
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Fig. 4-Relative conversion gain and local oscillator
output power as a function of local oscillator input
power. The IF output was taken from the collector
while the local oscillator output was taken from
the helix of a traveling-wave tube.

sion gain is shown as a function of the
local oscillator input power. Also shown is
the curve for the local oscillator ouput power
from the traveling-wave-tube helix. As is
apparent, the conversion gain reaches its
peak well before large signal saturation, for
the tube as an amplifier, sets in. Consequent-
ly, it is felt that a first-order mixing analysis
can be used successfully to predict conversion
gain and mixing effects in the useful region of
operation of this type of tube. Such an

analysis is being made at the present time.
R. W. DEGRASSE

AND G. WADE
Stanford Electronics Labs.

Stanford University
Stanford, Calif.

A Name and Unit for Handling
Admittances Due to Coils*

The problem of a suitable name and
unit for what has been called "inverse in-
ductance" and "inverse mutual inductance'
has been discussed several times in the cor-
respondence columns of PROCEEDINGS. The
inadequacy of names such as 'inverse in-
ductance" (or 'inverse" anything), and of
symbols that imply inversion, is more or

* Received by the IRE. April 8, 1957.

less obvious. The need for a better name
became a practical necessity, however, when
it was required to develop a simplified ap-
proach to filter theory and design, which
could be readily understood and applied at
all levels of engineering.

It was clear from the start that the
simplest approach was via nodal analysis
rather than loop analysis, for the reason
that node equations translate into equivalent
circuits far more readily than do the cor-
responding mesh equations. But, an immedi-
ate difficulty was encountered in trying to
present this approach for general consump-
tion when it was found that a very large
number of engineers tend to think of ad-
mittance as the inverse of impedance. Such
a notion makes nodal analysis an impossibly
complicated mental contortion. It proved
most essential to replace this 'inverted
viewpoint" with a clear understanding of
admittance as a measure of the ability to
admit current-measured by the current
that flows per volt applied.

In terms of nodal analysis, it was found
that a considerable simplification of filter
theory can be made by considering all
filters as band-pass configurations made up
of sections coupled by "mutuals" rather than
by ponderable elements. High-pass, low-
pass, stop filters, and so on, then drop
out as special cases of this very simple and
easily manipulated basic configuration. The
approach is the opposite of the usual ap-
proach which makes the low-pass filter the
basic configuration. Its success depends on
the simplicity with which mutually-coupled
circuits can be described in terms of admit-
tances, provided coils are described in terms
of parameters related to their admittances.

The admittance of coils has therefore
been expressed in terms of their "accept-
ance,' A, which is defined as a measure of
the rate at which a coil accepts current.
Thus, if a voltage, E, is applied to a pure
acceptance, A, the current, i, that flows
will be given by:

i = AEt.
The unit of acceptance is, therefore, one
ampere per volt-second; hence acceptance
is measured in amperes per volt-second. We
can write this: i/et, where i stands for am-
peres, e for volts, and t for seconds; and
the source of the somewhat whimsical, but
completely descriptive name, "ippets"
(spelled i/et), as the name for units of ac-
ceptance, is clear.

Acceptance, A, has been defined to in-
clude coefficients of magnetic coupling, there-
fore inductance, L, of a coil, is not simply
the reciprocal of the coil's acceptance (ex-
cept when the coil is not magnetically
coupled to any other coils). In general, in-
ductance, L, is related to acceptance, A, by:

1
A(1 - .2)

where 0 is the total effective coefficient of
magnetic coupling. If a coil is magnetically
coupled to other coils with individual co-
efficients of coupling, Pnl1, (Pnet, (PO etc., then:

SO= s_nl2 + 'Pn22 + Ys_2 etc.

Magnetic coupling between any two
coils can be replaced by a mutual accept-
ance, Am. Corresponding mutual inductance,

Lm, is related to mutual acceptance by:
<p2

Lm Am(1 o)

It will be noted that when magnetic
coupling is replaced by a coil, as in Fig. 1,

A
2

S 2 =
A 2

Al A2

A,2 (=4A,)

(Al-Ax) (A2-A,,)

k2- A122A,A2
Fig. 1-Equivalent circuits and coefficients of

coupling.

the coefficient of magnetic coupling, 4, be-
comes zero. It is replaced by the coefficient
of coupling, k, which is given by:

Ale
\/AlA2

and the inductance of each of the coils in
the equivalent 7r of Fig. 1 is then simply the
reciprocal of the coil's acceptance. In terms
of "ippets," a coil whose acceptance is 108
i/et (one "megippet") corresponds to a coil
whose inductance is 10-6 henries (one micro-
henry) (when there are no magnetic cou-
plings). "Megippet"isof coursespelled Mi/et
and "kilippet" (which corresponds to an in-
ductance of 1 millihenry) is spelled ki/et.

The simplicity with which circuits con-
taining mutual acceptance (or mutual itn-
ductance, which amounts to the same thing)
can be handled in terms of acceptances and
mutual acceptances, has indicated that it is
advantageous to express a whole class of
networks in terms of the mutually-coupled
equivalents. Thus, the equivalent circuits of
Fig. 1 are not restrited t- coils. We may
consider the coils to be any adinittances
whatsoever, coupled by a "mutual field"
admittance yin. There is th-en a coefficient
of "field" coupling, so, and this enters inlto
the definition of the coupled admttances.
When the circuit is eventually transformed
back to a simple ir, however, p goes to
zero and therefore the fact that it was ever
anything other than zero can be ignored. In
the same way, the presence of 0 in the defini-
tion of inductance in terms of acceptance,
can also be ignored, unless magnetically
coupled circuits are to be actually con-
structed that way.

The filter study based on this approach
is the subject of a report being prepared
for the Air Force. The terms, acceptance,
A, mutual acceptance, Am, and for total
effective coefficient of magnetic coupling,
with p for coefficient of magnetic coupling
between any two coils, are introduced
therein. The unit of acceptance, i/et, is also
described, and the generalization of "field"
coupling under the symbols, so and q, is
used. Apart from this study, however, it
was felt that the names and units for handling
admittances due to coils, which have been
described, would be of general interest.

F. SUTHERLAND MACKLEM
Instruments for Industry, Inc.

Mineola, N. Y.

1957 1015

/ /<
X / /

Relative Local
gaon OscillaTOr90111- ~~~output POW1er

V -1I



4 f 4 PRC(F'i>PIAsGS ut 7-HE IRE

T^,o Theorems for Dissipationless
Symnmetrical Networks*

It is the purpose of this letter to derive
two little known, but convenient theorems
tha[ enable one to quickly determine the
insertion loss and insertion phase delay of a

dissipationless, symmetric network from a

knowledge of the input admittance of a half
section of that network.

It is shown that the insertion loss 11Th
of a dissipationless network of the type il-
lustrated in Fig. 1 can be determined from

II t~~~~~2

A' 8

V A tv2 GL

Fig. 1-Dissipationless symmetrical network.

the midplane admittance or impedance ob-
tained when the network is terminated at
each end in its load conductance GL=1/RL,
by means of the relation'

T2 [Gm ] Rm
(1)

Here BIn/Gm is the ratio of midplane sus-

ceptance to conductance, while Xm/Rm is the
ratio of midplane reactance to resistance.
Similarly, the insertion phase of the network
terminated at each end with conductance
GL can be determined from the susceptances

1 1

Boc =-X and B, =--

at the input terminals of the network, ob-
tained when an open circuit and a short
circuit are placed respectively at the mid-
plane of the network. The relation is

= 7r/2 + tan- BC + tan-' -O
GL GL

7- .X tn XC.
=

+ tan- '+ tan-1-2 RL RL
(2)

These relations may be demonstrated in
the following manner.

The insertion voltage ratio IIT of the
network shown in Fig. 1 is defined as the
voltage at the load when no network is
present divided by the voltage at the load
when the network is present. The input and
output voltages and currents of this net-
work are related in terms of the A', B', C',
D' constants by

V = A'2 + B'11
I, = CTV2 + D'2. (3)

By applying the appropriate boundary
conditions to (3) and remembering that
D'=A' in this symmetric network, it is easy
to see that

1 B'GL Cl
=A'+ +
T2 2GL

(4)

It follows from elementary matrix theory
that if the network in Fig. 1 is bisected as

shown in Fig. 2 and that if the ABCD
matrix of the left-hand section is

* Received by the IRE, March 5, 1957; revised
manuscript received, April 15, 1957.

1 This relation has been stated without proof by
J. Reed, 'Low-Q microwave filters," PROC. IRE, vol.
38, pp. 793-796; July, 1950.

r
L

- - n n
v v, GcG B+1s, j V2

Fig. 2-Bise ted dissipationless symmetrical
network.

11A B 1

then the ABCD matrix of the right-hand
section is*~~ B

C A 1

Therefore, the matrix of the whole sym-

metric network of Fig. 1 may be written as

AD +BC 2AB 11

2CD AD + BC

and the insertion voltage ratio for the whole
network becomes

CD
-=AD + BC + ABGL + * (6)
T CL

For a dissipationless network, it is well
known that A and D are real while B and C
are imaginary. Hence the insertion power
ratio (i.e., insertion loss) lIT2 is

CD\2

1 -(AD + BC)2- (ABGL + G-) (7)

The insertion phase delay on the other
hand is given by the relation

1 GL

tank-j G(A B) C D (8)

By applying the reciprocity relation AD
-BC=1, (7) becomes

1 ICD121- 1-[ABGL -_ (9)

The admittance Ym of the right-hand half of
the network of Fig. 2 as measured at the mid-
plane is

Ym Gm +jBm GL+CD-AB (10)
D2-B 2GL2

Substituting (10) in (9), one obtains (1), thus
proving the first theorem.

Eq. (8) can be written in terms of B,, and
B,c as

1 GL
tan

Boc IBsccBL BB.+B,

B.cBc- GL2
GL(B.c + Bor)

Using the trigonometric relation for the co-

tangent of the sum of two angles, one finds

tan =- cot [tan-'
B

+ tan7l
B

]

tan (- + tan-' + tan-l BC (12)
2 GL GL

thus proving (2).
E. M. T. JONES
AND S. B. COHN

Stanford Res. Inst.
Menlo Park, Calif.

Smooth Random Functions Need
Not Have Smooth Correlation
Functions*

This note is concerned with certain ques-

tions relating to the behavior of autocor-
relation functions, defined by

1
p(.r) -= Lim 2TJf(t + r)f(t)dt (1)

for functions f(t) such that the limit (1)
exists for every (real) value of r. Sometimes
this definition is modified by subtracting
out the square of the mean, (f)2, where

(2)(f) -=-Lm J"f(I)dt,
and dividing by the variance ua2 (f2) (f)2,
assumed positive. The two definitions co-
incide if (f) =0 and 72= 1, as we shall assume
for the time being.

It is quite widely believed that the auto-
correlation function obtained from an f(t)
with no "jump" discontinuities is differen-
tiable at the origin. That is, it is thought
that the graph of p(T) necessarily has a

horizontal tangent at -r=0, provided only
thatf(t) has no "jumps" such as those in an
ideal square wave. This proposition seems

to be some sort of "folk theorem;" e.g., one

finds:
"Of course, the theoretical function
given in the figure cannot fit the data in
the vicinity of the origin; this function
has a finite slope [at the origin] which
signifies infinitely sharp or steplike
boundaries, a physical impossibility."'

This has even been cited as the basis, at
least in part, for modifying or rejecting a

proposed physical theory:
"Finally, it should be noted that the
first derivative of the correlation function
(2) [exists ] at the origin, as it must . . . to
describe a physical process, and this
eliminates one of the objections to the
model proposed by Booker and Gordon
which involved an exponential correla-
tion function with a cusp at the origin."2

Such examples are quite common, and
may be found in several branches of physics
and engineering. However, there is one fea-
ture in common to every example-namely,
that every time the "folk theorem" is in-
voked, it is always without reference to a

proof. As a matter of fact, however, there is
no hope of proving it; the object of this note
is to point out that it is false, and to state
mathematical conditions under which it is
actually true that an autocorrelation func-
tion is differentiable at the origin. We shall
also discuss certain practical considerations.

The fact that it is false has actually been
known, though not widely so, since 1933,
when Wiener3 gave an example of a function

* Received by the IRE, March 15, 1957. This
research was supported jointly by the U. S. Army,
Navy, and Air Force under contract with the Mass.
Inst. of Tech., Cambridge, Mass.

I L. Liebermann, 'The effect of temperature in-
homogeneities in the ocean on the propagation of
sound," J. Acoust. Soc. Amer., vol. 23, pp. 563-570;
September, 1951.

2 K. A. Norton, "Point-to-point radio relaying via
the scatter mode of tropospheric propagation," IRE
TRANS., VOl. CS 4, p. 42; March, 1956.

N. Wiener, 'The Fourier Integral and Certain of
its Applications,' Cambridge University Press (re-
printed, Dover Press, New York, N. Y.), p. 151; 1953.
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that was everywhere analytic (not merely
continuous!) and uniformly bounded, but
which had the autocorrelation function

p(s) = 1$ 7 0; (3)

which is not even continuous at the origin,
let alone differentiable there. Once it is
appreciated that the "folk theorem" is in-
deed false, it is not very difficult to give
other counter-examples; e.g., one can con-
struct a uniformly-bounded function with
continuous, everywhere-finite derivatives of
all orders, and which has the correlation
function p(7)=exp -fTI.

It is of interest to state conditions under
which it is unequivocally true that an auto-
correlation function is differentiable at the
origin. In order to do this, we shall first re-
view some definitions. A function f(t) is said
to satisfy a uniform Lipschitz condition of
order p if there is a number M such that for

ff( +T) - f(t) < I lPM (4)
for all I. A function f(t) is said to be "uni-
formly differentiable" if it is differentiable
and if, given any e>0, there is a 5>0 such
that for every Tin 0< Irj <a,

f(t + T) -f(t) _ < e

=0. If so, this would shed light on 2). This
conjecture is quite attractive, though it
does not appear to be a simple matter to
establish the true state of affairs concerning
it.

We might remark that 1) will hold
(with p=1) if in particular f(t) has a uni-
formly bounded first derivative. Condition
3) will hold if in particular

Lim Yf2(t)/1 30
(e.g., if f is uniformly bounded) and if f
has a uniformly continuous first derivative.
If f(t) has a uniformly-bounded second
derivative, then f'() is uniformly continu-
ous, which implies that f(t) is uniformly
differentiable.

It is clear from the conditions that it
would certainly be safe to assume that one
or more of them held in a great many prac-
tical cases. On the other hand, there are a
great many practical cases where it would
be equally safe to ignore the conditions, and
use a model correlation function that did
not have a horizontal tangent at the origin.
For example, consider Fig. 1, which is an

(5)

for all t. It is then true that p(T) will have
a horizontal tangent at the origin whenever
any one of the following three conditions
is satisfied:

1) f(t) satisfies a uniform Lipschitz con-
dition of order p>J.

2) f(t) is uniformly differentiable and
has a finite mean square derivative
((f')2).

3) f(t) is uniformly differentiable and
the limit (ff') exists and is equal to
zero.

Condition 1) follows readily from the
easily established relation

-P(7) 12p-f Li)
7 2a2 T, o 2T

ff(t + f() dt (r O) (6)

where we now use the normalized definition
of p(r) mentioned after (1). Condition 2)
follows from (6) (with p = 1) and the Schwarz
inequality. Condition 3) follows from the
trivial fact that, for r$0,

-p(7) 1 L T
Lim f(t

f(t) -f(t+T)d-7-dt. (7)

In some sense, condition 1) is the most
general of the three, and cannot be sharp-
ened very much; in particular, it may hap-
pen that 2) or 3) implies 1).

It has been conjectured by Eckart4 that
a function with a finite mean square deriva-
tive essentially satisfies a Lipschitz condi-
tion, in the sense that if (ff')2) is finite, then
there is a function g(t) satisfying a uniform
Lipschitz condition and such that (Cf-g)2)

4C. Eckart. Scripps Institution of Oceanography,
La Jolla, Calif.; private communication.

p(r)

.1;

Fig. 1-Correlogram of the envelope of a fading
radio wave.

empirical autocorrelogram of the envelope
of a fading radio wave. One would be quite
prepared to assume that one or more of the
conditions held for the original envelope
function. However, in spite of the fact that
the correlogram has been computed with
resolution a full order of magnitude better
than is usually obtained [1 -p(l) =0.01 in
Fig. 1], the obvious model correlation func-
tion to fit to the points of Fig. 1 would be
one which did not have a derivative at the
origin. (As a matter of fact, one of the form

exp - arI does quite well.) The only cir-
cumstances irn which this would be unde-
sirable would be where some desired rela-
tion actually diverged or otherwise failed
to exist in consequence of the nonexistent
derivative," in which case one would natural-
ly use something else.

This situation is completely analogous
to the many situations in physics and engi-
neering where one uses (as a matter of con-

venience) the Rayleigh, normal, or some
other probability distribution of a definitely
unbounded sort to represent the distribu-
tion of a variable that would actually be
bounded. For example, no one would actual-
ly expect to find gas molecules running about
a room at speeds in excess of the velocity of
light, even though the Maxwell-Boltzmann
distribution would assign positive probabil-
ity to this event. As always, such distribu-
tions are approximately valid only over

S For example (3.3-11), of S. 0. Rice, Bell Sys.
Tech. J., vol. 24, p. 54; January, 1945, could not be
used with model correlation functions of this type.

certain finite ranges, which do not in, u cle
either arbitrarily small or arbitrarily lirge
values.

In the case of autocorrelation funcdions,
meaningful questions will always involve
values of T bounded away from zero by sorne
significant margin-not arbitrarily Small
values. The question of whether or not a
given model correlation function actually
has a derivative at the origin is thus ulti-
mately vacuous, so far as physics is con-
cerned, though the writer would be the last
to deny the utility of classical analysis for
physics and engineering. It might be added
that analogous statements are true of the
behavior of power spectra at high fre-
quencies.

We might point out that (6) is useful
in investigating the "reasonableness" of
proposed model correlation functions at
finite values of 7, and for interpreting the
meaning of empirical correlograms. Setting
p= 1, (6) yields the interpretation: The
magnitude of the slope from the origin to the
point [T, p(r)J is equal to (T/2) times the
mean square slope off (measured in units of
the standard deviation a) over intervals
of fixed length r. This is useful for, among
other things, estimating limits of validity
for proposed correlation functions.

The writer is indebted to several people,
including Martin Balser, T. J. Carroll, Carl
Eckart, C. L. Mack, and Robert Price for
critical comments and stimulating discus-
sions on various aspects of this subject.

DONALD G. BRENNAN
Lincoln Laboratory
Mass. Inst. Tech.
Lexington, Mass.

Transient Response in FM*
In the above paper,' Gumowski derived

expressions for the frequency-step and
phase-step responses of networks in terms
of the impulse responses of their zero-
center-frequency analogs. This note is in-
tended to present derivations which are
considerably simpler and which sidestep
the mathematical complications of Gumow-
ski.'

Let the input be
e(t) = z(l) exp (jwot),

where z(t) is, in general, a complex function.
The output of the network may be written
as

E(g) = Z(t) exp (j.ot); Z(t) X(t) + jY(t);
and its instantaneous frequency is

w(t) = wo + d/dt[tan7l (Y/X) I.
The zero-center-frequency analog A(jw) of
the network's transfer function A '(jw) is
defined by

A'(j) -A[(w - wo) J.

* Received by the IRE, April 5, 1957.
X I. Gumowski, PRoc. IRE, vol. 42, pp. 819-822;

May, 1954.
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IJsi ng a well-known transform property,
Z(11, may be found2 as the response of the
a nlalog network A (icw) to the excitation
z(t). In particular, Z(t) may be expressed
in terms of the impulse response u(t) of the
analog network A (Co).3

As an example, consider deviations from
centl.er frequency and zero phase, starting
at t =0; i.e., let

z(t) = 1, (t < 0)

= exp [jF(t) ], (t>0).

The output Z(t) consists of the superposi-
tion of three responses: The steady-state re-

sponse to a unit dc input; the response to
a niegative unit step occurring at t=O; and
the response to the input exp [jF(t)], ap-

plied at 1=0. The first of these responses is
simply A (0). The other two may be written
in terms of u(t). One obtains immediately

Z(t)=A(0O) u(x)dx+ eiF(t- it(x)dx,

which is essentially (10) of Gumowski.I
An input frequency jump from center fre-
quency co to (coo+a) is described by F(t)
=exp (jat). The corresponding output iS4

Z(t)=A(0)- u(x)dx+eiatl e-iazu(x)dx

Similarly, F(t) exp (j4) represents a car-

rier phase jump from zero to 4I radians, and
the output function is'

Z(1) = A(0) - (1 - eiA) u(x)dx.

An extension of Gumowski's results will
* t r 1 t *_1-_ _ r __ _-- ___--provide a hnal exz

jump from ((Do-

ample: consider a trequenicy
-b) to (wos+a). Here

z(t) = exp (-jbI), (t < (0)

= exp (jat), (t > 0).

Again considering the output as the stum of
three respon ses, onie may write

Z(t) = A(- jb)e-2I -f e-i(6-)u(x)dx

rt
+ eia(ti )u(x)dx.

Inputs other than frequency and phase
steps may be handled in the same manner.

Further, the output Z(t) can be expressed
in terms of the unit step response of A (jc)
rather than its impulse response.

If the zero-frequency analog is realizable,
i.e., if the band-pass network is narrow and
symmetrical, the above derivations may

be rephrased in terms of in-phase and
quadrature components. For example, an

inptit frequency jump from coo to (co+a)
corresponds to an input function

e(t) = cos cot,

Altern atively,

e(t) .j(t) cos wot -y(t) sin wot,

where

x(X) = 1,

= cos at,

(t < 0)
(t > 0)

and

y(t) = 0,

= sin at,
(1 < 0)

(t > 0).
The corresponding output is

E(t) = X(t) cos coot- Y(t) sin wt,

where X(t) and Y(t) are the responses of the
low-pass analog to x(t) and y(t), respective-
ly. The original network is thus represented
by two identical low-pass analogs, one in the
in-phase and one in the quadrature chan-
nel.6 The instantaneous output frequency
is again given by the time derivative of arc

tan (Y/X).
DONALD A. LINDEN

Philco Corp.
Philadelphia, Pa.

6 This concept has been used extensively by
M. J. E. Golay in the analysis of fm phenomena.

Phase Error of a Two-Phase
Resolver*

In the application of two-phase resolvers,
it is sometimes useful to know the error

resulting from an inequality between the
two-phase voltages. This error may be ex-

pressed as the difference between the space

angle of the rotor, 0,,,, and the electrical
angle of the rotor voltage, 6C.

If the amplitude of the reference phase
voltage is set equal to unity, and the ampli-
tude of the quadrature voltage is A, then
the phasor diagram (Fig. 1) can be drawn

4, /o,pt. t91

Fig. 1.

(t < 0)
= cos (o + a)t, (1> 0).

2 For example, E. A. Guillemin, "Communication
Networks,' John Wiley and Sons, New York, N. Y.,
vol. II, p. 470; 1935.

3 The fuinctions z(t) and Z(t) are "vector envelopes"
in the sense defined by H. A. Wheeler, "The solution
of unsymmetrical-sideband problems with the aid of
zero-frequency carrier," PROC. IRE, vol. 29, pp. 446-
458; August, 1941.

4 GumowYski, Op. cit., {5a).
5 Ibid., (7a) represents the output in response

to a carrier phase jump from to zero radians, and is
therefore not identical with this result.

for the induced voltages in the rotor. This
leads to the relationship:

C. = tan-' (A tan am).

Subtracting the angle C,m from each side:

,- 0m = tan-' (A tan Cm) -Cm.

This expression gives the angular error for

* Received by the IRE, March 29, 1957.

any rotor position. The maximum angular
error may be obtained by differentiating the
above expression and setting the result equal
to zero.

d(0-Af4) _ A sec2 am
1=0

dOm 1 + A 2tan2 am

A sec2 am = 1 + A 2tan' f9m

A(1 + tan2m) = 1 + A2tan'0m

tanOm=

Substituting this result in the expressioni for
the angular error and taking the tangenit of
both sides:

tan (0,e -6Jm) =

1
+/IA - --

2

It can be seen from this result that an

unbalance of only one per cent in the phase
voltages will result in a maximum angular
error of more than 17 minutes which is con-

siderably in excess of the inherent error of
many of these devices.

JACOB SCHACHTER
Pitometer Log Corp.

New York, N. Y.

A Simplified Procedure for Finding
Fourier Coefficients*

Application of Gibbons' methods in the
above article' to a different representation
of the Fourier series may be of initerest.

Consider the function f(x) with period
X and Fourier series:

ao 00

+ E (a. cos cwnx + b1o sin cwex). (1)
2 na I

An alternate represeintatioil of f(xY) is

f(.x) = E7 a,,einf

where
2i7r Ifx

= x; an= f(x)e-ijnxdx

('(an + jbn) if n2 0
an = I*n if n < 0

(2)

(3)

(4)

f(x)dx = f aneeinxdx

= Et,aei""x + aox+ K. (5)

2' indicates omission of the n=O term.
The ao's for a train of delta functions

L X,6(x- x-jx);
is0 j_0

0 xo <Xi < < x, < X (6)

* Received by the IRE, April 5, 1957.
1 J. F. Gibbons, PROC. IRE, vol. 45, p. 243; Feb-

ruary, 1957.

July



Correspondence

are

EXe-iZf, ~~~(7)
i-ox

Consider a function g(x) which has
h(x) as its derivative. Since g(x) is periodic,
h(x) is also periodic, and has zero average

value.

g(x) = ' + K. (8)

Now, assume that by differentiating some

function g(x) mn times, we arrive at a function
k (x) which is a sum of delta functions as

given by (6). The a.'s are given by (7). That
is,

1
= X >L, einwzi.
X i-O

Integrating m times gives

g(x) = (9)

= angeinwx. (10)
n_-:

In conclusion, to find thean's of a func-
tion g(x), differentiate it until the mth deriv-
ative appears as a sum of delta functions.
Find the an's of

dm[g(x)]
dxm

Divide by (jnw)m to get the a.'s of g(x).
Add the average value of g(x).

MARVIN I. GANG
1681 49th St.

Brooklyn 4, N. Y.

High Performance Silicon Tetrode
Transistors*

Since the grown-diffused technique was

announced one year ago,' this technique has
been further exploited. The result is a de-
velopmental silicon tetrode transistor which
seriously rivals germanium transistors in
high-frequency performance.

Fig. 1 illustrates the frequency response
possible for the common emitter and com-

mon base short-circuit current gains. The
alpha cutoff frequency is approximately 350
megacycles.

One prevalent misconception concerning
tetrode transistors is that tetrode operation
necessarily precludes a high alpha. Referring
to Fig. 1, it is seen that this unit has a low-
frequency common emitter current gain
of 37 db. Since the common emitter cutoff
frequency is about 5 megacycles, this unit
has a very large gain bandwidth product.

* Received by the IRE, April 1, 1957. This work
was supported by the Signal Corps under Industrial
Preparedness Study Contract No. DA-36-039-SC-
72703.

1 R. F. Stewart, B. Cornelison, and W. A. Ad-
cock, 'High-frequency tetrodes, 1956 IRE NATIONAL
CONVENTION RECORD, Pt. 3, pp. 166-171.

Fig. 1-Short-circuit current gain as a function of
frequency in the common emitter and common
base connections for a developmental grown-
diffused silicon tetrode transistor.

The collector capacity for this type of
unit is very low, approximately 0.6 mmf.
The emitter and collector series bulk resist-
ances are often thought to prohibit very

high-frequency performance in a grown
structure. However, with improved fabri-
cation techniques these extrinsic elements
may be reduced to quite low values. For
this particular unit, the emitter series bulk
resistance was about 0.5 ohm and the col-
lector bulk resistance was 60 ohms. The
high-frequency base resistance is 150 ohms
at 150 megacycles.

Fig. 2 shows the power gain capabilities
of this device. The curve was calculated
assuming a common emitter conjugately
matched input and ouptut stage with ad-
mittance neutralization. With moderate
care, it is possible to realize within 2 or 3
db of this calculated power gain.

1.0 10.0 100 4 00
FREQUENCY IN MEGACYCLES

Fig. 2-Calculated common emitter power gain,
assuming conjugate matched input and output
and admittance neutralization.

The maximum collector to emitter volt-
age is 30 volts. The frequency response is
relatively constant for collector voltages
from 1.5 volts to 30 volts. The I,o has been
a small fraction of a microampere as is usual
in siilcon transistors.

The tetrode bias current is not critical.
A value of 0.2 ma was used in this example.
It should be pointed out that in many ap-
plications, such as common emitter circuits,
adequate tetrode bias may be obtained by
merely connecting the second base to the
emitter.

Fig. 3 illustrates not only the high tetrode
alpha obtained but also the constancy of
alpha with emitter current. Alpha remains
essentially constant from 0.2 ma to greater
than 15-ma emitter current.

I-
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Fig. 3-Variatioli of tetrode alpha with emitter
current.

In this effort, many individuals have
made significant contributions. Members of
the project group who contributed to the
development and evaluation of these de-
vices in addition to the author were W. C.
Brower and Drs. R. E. Anderson, M. E.
Jones, and W. R. Runyan.

RICHARD F. STEWART
Texas Instruments Inc.

Dallas, Texas

Relation Between Ratio of Diffusion
Lengths of Minority Carriers and
Ratio of Conductivities*

There is a simple relationship between
the diffusion length Lp of the holes in the
n region, L. of the electrons in the p region,
and the conductivities -,, and o-p of the n

and p regions respectively. Namely,

(1)
kLp,2 OpL_ C__n

Eq. (1) is derived on the basis of two
commonly-made assumptions of junction
transistor theory.

1) The conductivities in both regions
can be closely approximated by that
of the majority carriers alone.

2) The presence of injected minority
carriers does not increase the number
of majority carriers substantially
enough to have detectable effect on

the diffusion lengths.
Eq. (1) can be readily derived from the

following well-established relations:

kT
Lp = Dprp =- pIrp

q

kT

Ln2 = DrnT = - CnTn

q

1

Trp =
rn1

I

ep qiqPp

u0n qionn.

(2)

(3)

(4)

(5)

(6)

(7)

* Received by the IRE, April 3, 1957.
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Jrr. the above equations, Tp and Tn are life-
ti W,3 of holes and electrons as minority
carriers; Dp, Dn and upp, Iun are diffusion con-
stanlsi and mobilities of the holes and elec-
trons, respectively. N. and Pp are densities
of iu-najority carriers, q is the electronic charge
andra is a constant of recombination. From
(2) arid (3),

Lp2 pprp

Ln2 /lrTn
From (4) and (5),

Tp PP
Tn nn

From (6) and (7),
up 1ppp

a,n ynnn

(8)

(9) f
dy
d t

(10)

Eq. (1) follows from (8), (9), and (10).
As there are usually more than a single

p region and a single n region, it is desirable
to put (1) into an alternative form,

kT
cr1L2 = (11)

where aj is the conductivity of the majority
carrier in the j-th region, and Li is the dif-
fusion length of the minority carrier in the
j-th region. The right-hand side of (11) is a

constant throughout the entire crystal, in-
dependent of the local densities of donors
and acceptors. Eq. (11) can be easily de-
rived for an n region from (2), (4), and (7),
and for a p region from (3), (5), and (6).

SHELDON S. L. CHANG
Dept. of Elec. Eng.

New York University
New York, N. Y.

The Measurement and Specification
of Nonlinear Amplitude Response
Characteristics in Television*

It is gratifying to find Doba, in the
above paper,' placing emphasis on linearity
as such rather than on its effect-distortion.
The widespread practice of specifying
linearity in terms of the distortion which it
produces has persisted too long.

I would, however, like to suggest an al-
ternate procedure for plotting the linearity
of an amplifier which is more direct and also
simpler in application than the method of
superposition of two signals. The term
linearity refers specifically to an input-output
characteristic and the definition of differ-
ential gain corresponds, in essence, to the
slope of this curve at a particular point re-

ferred to some other point on the curve as a

reference. If a ramp function is used for the
input voltage waveform, the output wave-

form as plotted against a linear time base is
the input-output characteristic. By means

of a simple RC differentiating network, it is

Received by the IRE, March 29, 1957.
'S. Doba, Jr., PROC. IRE, vol. 45, pp. 161-165;

February, 1957.

possible to differentiate the output wvave-
forirri with respect to the input (since ej,-- kt)
and thus obtain a plot of the slope as a fnIIc-
tion of signal amiiplitude. The definition
"differential gain" corresponds very closely
to the "figure of demerit" which I proposed2
and is defined in Fig. 1.

with "figure of demerit." For more complex
systems where it may be necessary to
specify the "differential gain" as a function
of frequency, this can be done without
violence either to the definition or to the
method of measurement.

STEPHEN DOBA, JR.
Bell Telephone Labs.
Murray Hill, N. J.
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"figure of demerit'@ (dy/dt dy/dt-)

Fig. 1.

This procedure for plotting linearity re-

quires fewer components, less bandwidth,
and by use of a repetitive waveform of low-
duty cycle permits measurements at power

levels beyond the continuous duty ratings of
the components involved.

STANLEY I. KRAMER
Guided Missiles Div.

Fairchild Engine and Airplane Corp.
Wyandanch, N. Y.

Author's Comment3
Although I am not in disagreement with

Mr. Kramer's method of measuring and de-
fining the "figure of demerit," I would like
to point out that this is not quite the same

as "differential gain."
The methods proposed by Mr. Kramer

are correct for devices which have no time-
storage effects. By this, I mean that they
are valid when applied to a dc amplifier if
the ramp function used as the input wave-

form changes at a "suitably" slow rate. As is
obvious, in an ac amplifier there may be
difficulty in making the ramp function too
slow. With a finite bandwidth, there also
may be difficulties in making it too fast.
Hence, the determination of the meaning of
the word "suitable" above may be quite a

stumbling block, as was indicated by Mr.
Kramer.

A more serious difficulty arises when we

consider systems in general (such as feed-
back amplifiers), where the nonlinearity is a
function of frequency. Here the distortion
is affected not because of bandwidth limita-
tions, but because a rapidly varying wave
may be distorted differently from a slowly
varying wave.

It is important then that the definitions
and methods of measurement be stated
clearly and without ambiguity. I believe
our terms "differential gain" and "differ-
ential phase" are successful in meeting this
objective. For the simple dc amplifier "dif-
ferential gain" may be closely correlated

2 S. I. Kramer, "A sensitive method for the meas-
urement of amplitude linearity," PROC. IRE, vol. 44,
pp. 1059-1060; August, 1956.

' Received by the IRE, April 11, 1957.

Automatic Dictionaries for
Machine Translation*

Mechanical translation is one of the
newer objectives of the communications en-
gineer. Until now his concern has been
chiefly with single-language messages. As
communication has become more wide-
spread it is more and more necessary to per-
form rapid multilingual transformations. An
increasing number of communications engi-
neers are concerned with the problems with
which this note is concerned, and for which
a partial solution is outlined.

In the field of machine translation, auto-
matic dictionaries are generally recognized
as the first requirement even by those who
hope to go beyond word-for-word transla-
tion to sentence-for-sentence translation: "If
translations better than word-for-word are
wanted, work on an automatic dictionary
should still be undertaken because any ma-
chine that translates will need a dictionary. "I

At the present time, no translation ma-
chine, not even word-for-word, has been
constructed which has a usefully large
vocabulary.2 The main problems for auto-
matic translation machines are: 1) overcon-
ing the many-one and one-many word rela-
tions which arise in translating words with
several meanings; 2) reducing memory-
search time; and 3) reducing input and out-
put or print-out time. This note is addressed
mainly to 2), although the word-for-word
translation is evidently also a first approxi-
mation to a solution to 1).

As a specific kind of storage and retrieval
device (a "pure memory" look-up system,
rather than a computing system), an auto-
matic dictionary is subject to the same logi-
cal considerations as storage and retrieval
systems in general. Therefore an automatic
dictionary involves two main processes: in-
put of data, and search of stored data. Dis-
cussion of input is omitted here except for
the observation that the information which
can be gotten out of any storage and re-
trieval system can be no better than the in-
formation and organization put into it.

Now an automatic dictionary must
search its word-memory either sequentially
or by parallel (simultaneous) search. Ob-
viously, parallel search is to be preferred for
reduction of search time. Unfortunately, up
to the present, the principal large-scale mem-

* Received by the IRE, April 11, 1957.
1 V. H. Yngve, "The technical feasibility of trans-

lating languages by machine," Elec. Eng., vol. 75, pp.
994-999 (p. 994); November, 1956.

2 R. E. O'Dette, 'Russian translation,' Science,
vol. 125, pp. 579-585 (p. 584); March 29 1957.
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ories are tapes or their analogs, and cards,
all of which require sequential search.

We have found that rapid, accurate
parallel scanning of a large word-collection
can be achieved by scanning, not the collec-
tion directly, but a class or classes of which
the word sought is a member. We have con-
structed several systems for isolating class
members, in the storage and retrieval of
large collections of data.84 They have the
merit that access to an item can be had
through a number of starting points, so
that the devices are almost certain to de-
liver a word if it is in the system.

The operating principle is the construc-
tion of data storage classes from which it is
possible to form logical products. Such
products have continually decreasing mem-
bership as the number of products is in-
creased: if a, b, c are the members of class X,
and b, c, d are the members of class Y, then
only b, c are the members of the class (X and
Y). Further, if c, d, e are the members of
class Z, then only c is a member of class
[(X and Y) and Z]. If a device is set up
which forms the logical product or "inter-
sects" (in the form of an "and"-gate) classes
X, Y, and Z, the intersection is simultane-
ous. The search is parallel search. In the case
of a dictionary the final membership of the
logical product is comprised of a word or
words. The word-for-word dictionary re-
stricts the output membership to a single
word, but in the more general cases which
may in time become feasible the dictionary
could print out the entire set of translated
words required to satisfy the one-many re-
lationship.

Now there is a particularly easy way to
locate words as members of classes, which
is based upon the concept that the letters of
words determine classes. If a letter of the
alphabet is the name of a class, then a word
is a member of the class formed by the logi-
cal intersection of its letter-classes. This is
true for any language which has been alpha-
betized. In word-for-word translation, the in-
put word is the intersection of the letter-
classes which form it; and the output word
is the intersection of other letter classes.
However, it is not necessary to use this de-
vice for both input and output. Only the
letters of the input word are needed, and of
course only these are known initially. The
output word can be considered as a single
element. That is, in one-way translation the
letters of the input terms are interpreted as
the names of classes; the output terms as the
members of these classes.

Suppose a French-to-English dictionary
is to be used. The desired outputs will be
English words, the input will be letters of
the French words which are to be translated.
Each letter of the French input will define a
class which has as members a set of English
words. The class distinguishes between the
position of letters. Thus, the letter C in the

a E. Miller, 'Final Report to the National Science
Foundation on the MATREX Indexing Machine,'
Documentation, Inc., Washington, D. C.; January,
1957. See also, "The Prototype of the Mechanical
Alpha-MATREX Indexing Machine,' in 'Studies in
Coordinate Indexing,, Documentation, Inc., vol. 4;
June, 1957.

4 M. Taube, et al., 'The Logic and Mechanics of
Storage and Retrieval Systems,' Tech. Rep. No. 14,
prepared under Contract Nonr-1305(00) for the Office
of Naval Res.; February, 1956. See also 'Studies in
Coordinate Indexing," Documentation, Inc., Wash-
ington, D. C., vol. 3, pp. 58-100; 1956.

French word, chateau, will be the class Ci,
whereas the C's in accomplir will be C2 and
C,; and the H in chateau will be H2, etc.
Consider now the normal procedure of look-
ing up a word in a printed French-English
dictionary, e.g., the word chateau.

1) First look for the letter C (that is, for
the French words beginning with C).
This isolates from the total number
of English words in the dictionary a
partial set consisting of such mem-
bers as: basket (cabas); coffee (caff);
hood (capuchon); ticket (carte);
warm (chaud); cat (chat); hat
(chapeau); castle (chateau); ... swan
(cygne); etc.

2) Next look for CH. This is equivalent
to the class (Cfl H2) and has as typi-
cal members: warm (chaud); hat
(chapeau); and castle (chateau).

3) If the search is continued until it
reaches the class [(((((CinfH2) nA s)
nT4) nE6) nA6) nfU7], the output
will be "castle," the single member of
this class.

The above is a strictly accurate descrip-
tion only for a single word output (one-one)
type dictionary such as would be used in an
elementary word-for-word device. In gen-
eral, in order to convert a printed dictionary
to an automatic one, it is only necessary to
construct a system of product circuits in
which the selection of a set of switches (input
letters) will select a single path through the
system (the output word). In this case the
system can be arranged as many-one or as
one-one, depending on the ratio of input to
output words. If the system is arranged as
one-many, the reader of the translation has
to do part of the work of final selection, since
he has the different meanings of the input
word presented to him. For example, the
French noun revers might be printed out:
(back, wrong side, back-stroke, counter-
part, reverse, facing). As mentioned above,
several devices using the class intersection
principle have already been constructed for
general storage and retrieval problems, and
additional machines are under design.' 4
These machines ordinarily have multiple
outputs and multiple inputs as well. Thus
modification to automatic dictionaries is a
simple matter of substituting different
meanings for the variables, namely, the in-
put and output signals, by redefining what
are regarded as classes and as members.

After basic design of the product-makinge
automatic dictionary, certain interesting
problems of efficiency remain. For instance,
the sequential-scanning automatic dic-
tionary may be operated on the assumption
that the root of a word can be recognized by
stripping away letters one by one, starting
at the end of a word (that is, from right to
left, in English). For example, the memory
can be greatly reduced in size by storing
only the root-stock judg, instead of judge,
judging, judgment, etc.; and storing the end-
ings separately. A product-making dic-
tionary will proceed from the beginning of
the word (i.e., from left to right, in English).
In many cases the last letters need not even
be employed. Thus, the classes defined by
C1, H2, A3, T4, E5, As, U7 and by C2, H2, A3,
T4, Es, As have the same member. U7 is
redundant and can be disregarded. An

efficient machine will not utilize products
longer than are required to provide unique
outputs. In our experience seven-letter in-
tersections cover most cases, and need for
more than ten is rare. And, of course, word-
endings do not require separate storage.

The suggested solution for the search
problem of automatic dictionaries has been
directed mainly to word-for-word transla-
tion, on the assumption that this will come
first. The principle should apply also in the
case of dictionaries with many-one and one-
many input-output relations. If such com-
plexity can indeed be handled by a reason-
ably-sized memory, then the letter-class
"and"-gate method appears to be the most
efficient method of simultaneous search. The
operating principle is that of the actual use
of a dictionary: mere typing out of the
input word forms the logical product. Not
only will this save search time and some
extra storage space, but the input typewriter
itself can be a high-speed printer. The time
for translation then will depend almost en-
tirely on the output "readout" device.

M. TAUBE
AND L. B. HEILPRIN
Documentation, Inc.

Washington, D. C

On a Property of Wiener Filters*
The theory of optimum filters as origi-

nated by Wiener' and extended by many
others2 is invariably based upon a minimiza-
tion of mean-squared error. A property of
Wiener filters acting on stationary Gaussian
inputs, which seems to have escaped general
notice, is that they also minimize any func-
tion of the error of the form

n

where n is positive (but not necessarily an
integer). This may be proved as follows.

If the input {x(t) } to a linear time-
invariant system h(t) is Gaussian, the output
y(t) } and hence the error

{e(t)} = {y(t)} - {x(t+a)}
will also be Gaussian. Then

6-(t)in ~-= ee--412;"de
-\/2 ri_20
2n/2 in ± 1\

= -Xr 2
(K)n/2

where

(0=g()-(2 f h(r)4tx( + a)dT

+ f h1(7) f h(T2).(r1 - r2)dr2dri

* Received by the IRE, April 22, 1957.
1 N. Wiener. "Extrapolation, Interpolation and

Smoothing of Stationary Time Series," John Wiley
and Sons, New York, N. Y.; 1949.

2 J. Bendat, "A general theory of linear prediction
and filtering," J. Soc. Ind. Appl. Math., vol. 4, pp.
131-151; September, 1956.
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and O.(r) is the autocorrelation of the in-
put t x(t) } . The minimization of f((I ) by
the usual calculus of variations technique of
varying h(7) to h(r)+ak(,r), differeintiating
with respect to a, letting a=O, and subse-
quently setting this derivative equal to 0
gives

[\/ r ( (2) n/2-1

*[- k(r)4,.(Tr + a)dT

+ fk(To) fh(T2)ctx(Tr - T2)drT2dr = 0

where h(T) is the optimum filter impulse re-

sponse. The quantity within the first
brackets cannot vanish since o'>0; hence a
necessary condition for a minimum is that
the second factor must vanish. This yields
the requirement

4z2(T + a) = k(>)O.(r o)dO

which may be recognized as the Wiener-
Hopf equation arising in the classical analysis
based on the usual mean-square error cri-
terion. The sufficiency of this condition may
be proved in the usual manner.

T. R. BENEDICT
AND M. M. SONDHI
Dept. of Elec. Eng.

University of Wisconsin
Madison, Wis

A Simplified Procedure for Finding
Fourier Coefficients

Letter from Mr. Brenner*

In the above article, Gibbons' pointed
out that the Fourier series of periodic wave-
forms can be deduced with ease if successive
differentiation of the waveform results in a

simpler waveform, impulses being particu-
larly desirable. The same technique can be
applied to the problem of formulating the
Fourier transform of pulse-type waveforms.
If a pulse-type waveform is defined as a sig-
nal which lasts for a finite time and is Four-
ier transformable, i.e.,

f(t) 0, I > a, a positive, (1)

then the (complex) Fourier transformation
has the form:

f(1) =- F(jco) exp (jcot)dw
2wr -

where

(2a)

r+a
F(jco) = = f(t) exp (-jct)dt. (2b)-a
From (2b) it follows that

icF(jco) + f(a) exp (-jcoa)

+ f(-a) exp (jca) =:df/dt.

* Received by the IRE, March 22, 1957.
1 J. F. Gibbons, PROC. IRE, vol. 45, p. 243; Feb-

ruary, 1957.

Since a has been chosen so that fca) =fr--a)
-0, oiie may write

,-if(t) 1=1(jco)5df/dt.

f(t)

(3)

In addition to (3), the relationship for the
Fourier transform of the unit impulse

,36(t -b) = exp (-jwb)
-a

(4)
is sufficient to find the Fourier transform of
many waveforms. (The same scheme is ap-
plied to the Laplace transform if the wave-
form is shifted so that f(t) = 0 for t .0.)

EXAMPLES
1) Find the Fourier transform of the rec-

tangular pulse shown in Fig. 1(a). Solution:
Since

f(t) = U(t) - U(t -T),
df/dt = 8(t) - (t - T)

as shown in Fig. 1(b). Hence

ioF(jw) = 1 - exp (-jcoT)

and

F(jco) = LI - exp (-jcoT)]1/jc.
2) Find the Fourier transform of the

pulse

fT)W) (V/T)tU(t) - (V/T)(t- T)U(t - T)
- VU(t - T)

shown in Fig. 2(a). The derivative df/dt,
shown in Fig. 2(b) has the form

df/dt = (V/T)U(t) - (V/T) U( - T)
-Vb(t -T);

hence

d
Ldf/dt - V(t - T)]

= (V/T)5(i) - 6(t - T)

which corresponds to Fig. 1 (b) (with a scale
change). Hence
jwo5 [df/dt - V (tT)]

= (V/T)[1- exp (-jwoT)]

and

Wdf/dt = (V/jcoT)[1 - exp (-jwT)]I
- V exp (-jwT)

so that

5:f(t) = F(jc) =
T

1 - exp (-jcoT) -jcoT exp (-jwoT)
(jCt) 2

3) Find the Fourier transform of the
sine pulse shown in Fig. 3(a):

f(t) = sin (coot)U(t)
+ sin coo(t -7r/coo) U(t - r/coo).

For this pulse, the derivative [see Fig. 3(b)]
is

df/dt = coo cos (coot) U(t)
+ coo COS coo(t - r/coo) U(t -7r/COo)

and the second derivative [see Fig. 3 (c) ] is

d2f/dt2 =-co02sin (coot) U(t)
co2 sin [coo(t - r/coo) U(t -7r/coo)]

+cooLb(t) + a(t -7r/co) ].

0

(a)

f I £(t)
T

-S(t-T)

(b)

Fig. 1.

f (t) V

0 T

(A)

df
dT

WT

(b)
Fig. 2.

(a)

(b)

(c)

0 11/
-9

t

t

Fig.3.
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Hence

Y[coo2f(t) + d2f/dt2]
COO [ + eXP (-jC7/W0) ]

so that

F) [1 + exp (-jw7r/coo)IF(fr) = --+ j)
C)o02 + (jWx)2

EGON BRENNER
The City College of New York

New York 31, N. Y.

Letter from Dr. Fatehchand2
The simplified procedure for finding

Fourier coefficients given by Gibbons' ap-
pears a most useful one. It may easily be
extended to the transient case, when it is
required to determine the frequency spec-
trum g(co) of a time function f(t). Here the
Fourier integral relationships are necessary:

+x0

g (co))=f_ f(t)e-iw tdt

I +Xo
f(t) = g(w)eiwdwXco

2I f,,,, i

(1)

If fn(t) is the nth time derivative of f(t)
differentiating within the integral sign gives

1 r+0
fn(t) - g=(,)(i.)neiotdw

I

2-J gn(w)eiwtdw (

Therefore, if gn(co) is the frequency spec-
trum of fn(t), the frequency spectrum of f(t)
is given by

gos(u')= g(w) = (s,) n

f (t)

H

Fig. 1.

Fig. 2.

+2 I(t+7 )

(3)

We also have the result that if 8(t - T) is
a a function centered on t = T, and h(t) is a
function continuous in the neighborhood of
t=T,

f+
h(t)5(t - T)dt = h(T)

-00

(4)

Hence the frequency spectrum of 8(t- T)
is given by

r+c
Je-ita(t- T)dts e-iwt. (5)

Thus, for example, if
fn(t) = b(T - t), gn(w) =e-t

and

g(co) =.(gw)""
As an illustration of the simplified

method for deriving the frequency spectrum,
consider a triangular pulse centered at t = 0
(Fig. 1). The time function is differentiated
until 8 functions appear. In this case two
differentiations are necessary (Figs. 2, 3).
Then by (5):

2 4 2
g,(CT)= - eiwTI2- ewT12

f (t)
+ 2T S (t T/2)

Fig. 3.

and
4 coscoT/2 - 1

g(co) = - e

Here, the a functions all appear at the
same stage, but as Gibbons shows, this is not
necessary for the solution. The method may
obviously also be applied to the inverse
problem, i.e., to obtain the time function
which corresponds to a given frequency
spectrum.

RICHARD FATEHCHAND
British Broadcasting Corp.

London, England

Letter from Mr. Klotter3
Mr. Gibbons' has drawn attention to a

very valuable tool for finding the Fourier co-
efficients of functions which exhibit discon-
tinuities in the function itself or in any of its
derivatives. Because his note does not quote

any literature on the subject, it may be worth
while to point out that the method has both
a history and considerable ramifications, and
to give some pertinent references.

After some early publications by La-
lesco4 and Abason5 which failed to receive
much attention, the first (and still best)
presentation in English of the method for ob-
taining the Fourier coefficients from the dis-
continuities of a function's derivatives was
given by Eagle.6 In spite of its usefulness and
the very adequate presentation by Eagle,
the method seems to have gone generally
unnoticed in the English-speaking countries.
There seems to exist only a single reference
to it and application of it by Jolley.7

On the European continent, however, the
method caught on, was used extensively, and
was developed further. Propagandists for
and developers of the method were, in addi-
tion to the Roumanian school,4'8 mainly
Walther and his fellow workers in Germany.
The first paper9 of that group essentially re-
ports on Eagle's work. Some items in that
paper led to a discussion with Feinberg.10"'l
Later Zech'2 investigated some refinements
and seemingly paradoxical results. A paper
by Popesco8 treats essentially the same
items as Zech's paper.

The idea of finding the coefficients of ex-
pansions from the discontinuities of the
function is not restricted to expansions into
Fourier series but can be extended to other
expansions; this was shown in a paper by
Walther and Brinkmann.'3 Here the idea is
extended to series progressing according to
any orthogonal system with particular at-
tention to expansions into spherical harmon-
ics. The paper also gives an extensive list of
references dealing with the development and
applications of the method.

A fairly recent (English language) pres-
entation of the essential features of the
method has been given by Janssen."4 In this
paper, the method, furthermore, is extended
and linked to the Fourier integrals, and it is
shown how the frequency even of continuous
functions may be found by suitably applying

4 T. Lalesco, 'Sur les fonctions polygonales
periodiques, Rev. Gen. -lectr., vol. 5, pp. 43-45;
January, 1919.

X E. Abason, 'Asupra determinArii pe cale grafich
a armonicelor unei functiuni periodice (On finding the
harmonics of a periodic function by graphical means),"
Gas. mat., vol. 26, pp. 81-85, 105-108; 1920.

B A. Eagle, "Fourier's Theorem and Harmonic
Analysis," Longman, Green and Co., London, Eng-
land; 1925.

7 L. B. W. Jolley, "Alternating Current Rectifica-
tion and Allied Problems," Chapman and Hall,
London, England, 3rd ed.; 1928.

8 A. T. Popesco, 'Sur Ilapplication de la methode
des discontinuit6s a l'analyse harmonique des fonc-
tions sinusoidales," Bull. Math. Phys., (Ecole Poly-
tech, Bucharest), vol. 9, p. 83; 1939.

9 G. Koehler and A. Walther, "Fouriersche Analyse
von Funktionen mit Spriingen Ecken und iihnlichen
Besonderheiten," Arch. Elektrotech., vol. 25, pp. 747-
758; October, 1931.

10 R. Feinberg, "Bemerkung zu der Arbeit von G.
Koehler und A. Walther uiber die Fouriersche Analyse
von Funktionen mit Sprungen, Ecken und aihnlichen
Besonderheiten," Arch. Elektrotech., vol. 27, pp. 15-19;
January, 1933.

11 A. Walther, "Stellungnahme zu der Bemerkung
von Herrn Feinberg und geschichtliche Erganzung zur
Fourierschen Analyse von Funktionen mit Sprtingen,
Ecken und ahnlichen Besonderheiten," Arch. Elek-
trotech., vol. 27, pp. 19-20; January, 1933.

12 T. Zech, a"Iber das Sprungstellenverfahren zur
harmonischen Analyse," Arch. Elektrotech., vol. 36,
pp. 322-328; May, 1942.

13 A. Walther and K. Brinkmann, "Zum sprungs-
tellen-verfahren, insbesondere fur die entwicklung
nach kugelfunktionen," Ing.-Arch., vol. 13, pp. 1-8;
January, 1942.

14 J. M. L. Janssen, 'Th6&method of discontinuities
in Fourier analysis,' Phillips'Res. Rep., vol. 5, pp. 435-
460; December, 1950.i Received by the IRE, April 23, 1957.
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tLe ileas of the "Method of Discontinui-
ties. "

The writer wishes to close with an ap-
peal 1-o the textbook authors in this country
to talke notice of this extremely useful meth-
od; especially because the ideas underlying
the niethod are intimately related to intrin-
sic properties of the expansions which are
treated in the textbooks anyway.

KARL KLOTTER
Stanford University

Stanford, Calif.

Unit-Distance Number-
Representation Systems,
a Generalization of
the Gray Code*

A digit-distance function is any distance
function, p, satisfying the metric space
axioms, and defined on a finite set of digits.
For binary digits, p = 0 when the digits are
the same and 1 when they are different. If
di and d2 denote the numerical value of
arbitrary digits, then for any base, 16, one
distance function is

pi(di, d2) = d- . (1)

Another one is

p2(d, d2) = min( - d2] ,

I di-d2 +13, d2- dl + ). (2)
If ,3=2, (1) and (2) reduce to the same

function. This is false for ,B>2, since the
maximum value of p in (1) is ,B-1, whereas
in (2) it is the largest integer not greater
than 13/2. Digit-distance function (1) corre-
sponds to placing the digits, in natural or-
der, opposite the teeth of a rack, and meas-
uring the distance between digits along the
pitch line of the rack. Function (2) corre-
sponds to placing the digits in natural order,
opposite the teeth of a gear, and measuring
the distance along the pitch circle of the
gear.

Given a digit-distance function, we de-
fine an expression-distance function (syn-
tactical distance) between two digit strings,
e, and e2, of length n, as the sum of the n
digit-distance functions for corresponding
digit pairs, dii, d2,.

pj(n)(el, e2) = p (dii, d2i) (3)
i-n

where j= 1 orj= 2, or j may represent some
other digit-distance function. This corre-
sponds to metrizing the Cartesian product
of the n individual metric spaces. It is known
that a function of a finite number of factor
metrics which vanishes if and only if all the
factor metrics vanish, and which is sub-
additive and suitably isotone, is a product
metric. The above is perhaps the simplest
function having these properties.

We now assign some (or all) of these
on4-distinct n-digit strings as names of in-

* Received by the IRE, April 11, 1957. This com-
munication was prepared under the sponsorship of the
Dept. of the Army, U. S. Army Signal Corps. Eng.
Labs., Ft. Monmouth, N. J., Contract No. DA36-039
SC-72344.

tegers. At most, there will be 13" integers, and
if all strings are used, there will be exactly
that many. For example, let n= 2, d-=3, and
the integers be 0 to 8 inclusive:

integer, i

0
1
2
3
4
5
6
7
8

string of n digits
e =dido

'00'
'01'
'02'
'12'
'10'
'11'
'21'
'22'
'20'.

The integers have a natural distance
function:

p(il,i2) = il -i2f.
This integer distance function also in-

duces a (semantical) expression-distance
function

P(els, e2) = p(it, i2) = il-i2- (4)
where is is the integer whose name (string
of n digits) is e,j= 1, 2.

A unit-distance code is one for which
P(el, e2) =1=°p(ei, e2) =1. The arrow is uni-
lateral except in the degenerate case 3= 2.

Thus the names of two consecutive in-
tegers are at unit (syntactical) distance from
each other, which for digit-distance func-
tions (1) and (2) means that they differ only
in a single digit and that those single digits
are at unit digit distance from each other.

The Gray code (13=2) is the most
familiar example of a unit-distance code.
The writer, in a paper delivered orally at a
meeting of the Association for Computing
Machinery in 1951, gave examples of codes
for 13>2 based on digit-distance functions
(1) and (2), calling the first type "reflecting"
and the second type "progressive" and
"retrogressive."

This terminology is based on the fact
that in reflecting codes the digit cycle runs
through the digits from smallest to largest,
and then reflects and runs back down again,
yielding a digit cycle of length twice the
base. In the progressive code, the digit cycle
is 13 times the base, and the digits increase to
maximum, then dwell on the largest digit
while another column changes, then they
start with 0 again and progress (increase)
until the next-to-the-largest digit, where
another dwell occurs. The dwell precesses
down to zero, at which point the digit cycle
is complete. This system might be more nat-
ural (than the reflecting system) to mecha-
nize on physical code wheels, since the
wheels would always rotate in the same
direction. A brief example is given above for
n= 2, 3=3. One complete cycle of length 9 is
shown for the least significant digit (do). The
next digit (di) has a period of 27.

The retrogressive system is similar, ex-
cept the digit cycle runs in the opposite di-
rection and the dwell precesses through suc-
cessively larger digits toward zero. It should
be emphasized that all these codes reduce to
the Gray code for 13=2.

Since the generalized reflected code has
been already discussed,' it does not seem

1 For example, I. Flores, 'Reflected number sys-
tems,1 IRE TRANS., vol. EC-5, pp. 79-82; June. 1956.

necessary here to give any conversion rules
for this code. The following conversion rules
are for the progressive and retrogressive
codes. Let di, Ai and bi be the ith digits of the
name of a number, expressed in the progres-
sive, retrogressive and ordinary number sys-
tem, respectively, all to the base 13. The 0th
place or column contains the least signtifi-
cant, or units, digit.

Then

di= 3ie, bi+i,
=i 3i±1G0 Si,

where eR represents subtraction modulo 13.
In order to convert into normal code, we
use the following equations:

k

i= E(d di,
i-

=s- d($) (- Az),
_i-

where k is any digit position such that all
digits further to the left would be zero (if
n were larger), and the addition is modulo 13.
The subscript (13) is thus a homomorphism
operator mapping the sum onto the residue-
class ring representatives 0 to 13-1.

GEORGE W. PATTERSON
The Moore School of Elec. Eng.

University of Pennsylvania
Philadelphia, Pa.

On the Order of the Differential
Equation Describing an
Electrical Network*

The question of determining the order
of the differential equation describing an
electrical network without writing down and
expanding the network determinant is quite
basic and must have been answered correctly
by many, even in the early years of network
analysis. Yet, a search through literature
failed to provide the writer with a full answer
to the problem. Hence this note, in which
the results of an investigation are presented,
rather than the complete discussion.

The order of the differential equation de-
scribing an electrical network is equal to the
number of energy-storing elements, i.e., in-
ductances and capacitances, less the number
of certain independent algebraic equations
which can be written for the network. One
type of the equations relates currents
through inductances, a second relates cur-
rents through capacitances, a third relates
voltages across inductances, and a fourth
relates voltages across capacitances. Such
algebraic equations, when dealing with the
currents, will be referred to as current-
interdependence relations, and when dealing
with the voltages, as voltage-interdepend-
ence relations.

Current-interdependence relations stem
from Kirchhoff's first law, the law of cur-
rents, and arise when all the currents flowing
between two parts of a network pass through

* Received by the IRE, March 20, 1957.
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Fig. 1-The positive direction of currents and voltage-drops is chosen upwards and from left to right.

inductances (capacitances). In other words,
a current-interdependence relation arises
whenever a number of inductances (a num-
ber of capacitances) form a cut-set.' As a
simple case of such an interdependence, con-
sider two inductances (two capacitances)
in series. For other examples, consider the
network of Fig. 1. Examination of this net-
work will show that the capacitances C2, Cs,
C4, Cs, and C7 form a cut-set, since they
isolate nodes nos. 3, 4, and 6, from the rest
of the network. This is indicated in Fig. 1
by a dotted line drawn through these ca-
pacitances. Thus, by Kirchhoff's law of cur-
rents, as applied to an isolated part of the
network rather than to a single node, we
have

IC2 + IC3 + IC4+ IC-IC7 = O. (1)

Further examination of the network will
show that the inductances L3 and L4 form
a cut-set, and therefore by Kirchhoff's law
of currents

IL, + IL = 0. (2)

We thus have two current-interdependence
relations in the network.

Voltage-interdependence relations stem
from Kirchhoff's second law, the law of volt-
ages, and arise when a closed loop exists
which consists of inductances only (ca-
pacitances only). As a simple case of such an
interdependence relation, consider two in-
ductances (two capacitances) in parallel.
This is the case with the inductances L5 and
Ls in Fig. 1. Thus, we have by Kirchhoff's
law of voltages

VL6 + VL, = 0. (3)
A capacitance loop is created in this network

1 For a definition of a cut-set, see E. A. Guillemin,
'Introductory Circuit Theory,' John Wiley and Sons.
New York, N. Y., p. 21; 1953.

by capacitances Cs, C6, C7, and Cs. By
Kirchhoff's law of voltages, we have

Vc5+ Ve + VC7-Vc5= 0. (4)

Thus, there are two voltage-interdependence
relations in the network.

The order of the differential equation de-
scribing the network of Fig. 1 will be 14 (the
number of energy-storing elements), minus 4
(number of independent interdependence re-
lations), or 10.

In most cases, as in the above example,
the order of the differential equation can be
obtained by rather simple inspection. For
large and complicated networks, the ques-
tion of counting all the independent inter-
dependence relations is not a simple one.
Care should be taken that dependent inter-
dependence relations, i.e., interdependence
relations which are a linear combination of
interdependence relations already counted,
are not included. The procedure outlined
herewith enables one to count quite easily
the number of independent interdependence
relations, even for large and complicated
networks. The procedure applies to planar
and nonplanar networks, including networks
which cannot be mapped on a sphere.

Redraw the network, short-circuiting all
the voltage sources and removing all the
current sources. Disregard any mutual in-
ductive coupling. Eliminate the ideal trans-
formers by connecting the output from the
secondary windings in parallel to the input
of the primary. A network redrawn in this
way will be referred to as the simplified net-
work. Then follow these steps:

1) Count the number of the energy-
storing elements.

2) Obtain the number of current-inter-
dependence relations for capacitances
by redrawing the simplified network,
replacing any element other than a

capacitance by a short-circuit. Count:
the total number of nodes.2 If n is the
total number of nodes, then n= nt-1
will be the number of independent
node-pairs,' which is equal to the
number of current-interdependence
relations for capacitances in the origi-
nal network.

3) Obtain the number of independent
current-interdependence relations for
inductances by following step 2) and
reading inductance, inductances, for
capacitance, capacitances.

4) Obtain the number of independent
voltage-interdependence relations for
capacitances by removing from the
simplified network all elements other
than capacitances.4 Let b be the num-
ber of elements, n the number of
nodes, and s the number of separate
parts in this final network. The num-
ber of independent loops of this final
network is given by l=b-n+s, the
number of independent voltage-inter-
dependence relations for capacitances
of the original network is equal to 1.

5) Obtain the number of independent
voltage-interdependence relations for
inductances by following step 4) and
reading inductances for capacitances.

6) Subtract the numbers obtained in
steps 2)-5) from the number obtained
in step 1).

The order of the differential equation de-
termines the number of the independent
voltage and current initial conditions that
we are free to specify, and which determine
all the currents and voltages in the network
for t >0. Moreover, from a mathematical
standpoint we can specify a number of
"petrified" conditions which are superim-
posed on the solution and which remain con-
stant unless forced to change by appropriate
generators. These are dc currents circulating
in loops of inductances, infinite frequency
currents circulating in loops of capacitances,
infinite frequency voltage-drops between
parts of network separated by inductance
cut-sets, and dc voltage-drops between parts
of a network separated by capacitance cut-
sets. Of these four cases, it seems that cer-
tain physical significance can be attached
only to the last case.

JOSEPH OTTERMAN
Eng. Res. Inst.

University of Michigan
Ann Arbor, Mich.

I We define a node as a junction of two or more
elements, or a junction of two ends of the same ele-
ment, or an isolated end of a single element.

8 The discussion here is limited to the case when
the simplified network consists of a single separate
part. When this is not the case, determine the order of
the differential equations separately for each separate
part and add the results.

4 The removal from the resulting network of all
the capacitances that do not form part of any loop will
simplify the count of elements and nodes but does not
affect the answer.
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