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Abstract-Using hexagonal grids to represent digital
images have been studied for more than 40 years.
Increased processing capabilities of graphic devices
and recent improvements in CCD technology have
made hexagonal sampling attractive for practical
applications and brought new interests on this
topic. The hexagonal structure is considered to be
preferable to the rectangular structure due to its
higher sampling efficiency, consistent connectivity
and higher angular resolution and is even proved
to be superior to square structure in many
applications. Since there is no mature hardware for
hexagonal-based image capture and display,
square to hexagonal image conversion has to be
done before hexagonal-based image processing.
Although hexagonal image representation and
storage has not yet come to a standard,
experiments based on existing hexagonal
coordinate systems have never ceased. In this
paper, we firstly introduced general reasons that
hexagonally sampled images are chosen for
research. Then, typical hexagonal coordinates and
addressing schemes, as well as hexagonal based
image processing and applications, are fully
reviewed.

I. INTRODUCTION

Since Golay [1], the possibility of using a
hexagonal structure to represent digital images
and graphics has been studied by many
researchers. Hexagonal grid is an alternative
pixel tessellation scheme besides the
conventional square grid for sampling and
representing discretized images. Sampling on a
hexagonal lattice is a promising solution which
has been proved to have better efficiency and
less aliasing [2]. The importance of the
hexagonal representation is that it possesses
special computational features that are pertinent
to the vision process. Its computational power
for intelligent vision pushes forward the image
processing field. Dozens of reports describing
the advantages of using such a grid type are
found in the literature. Among these advantages
are higher degree of circular symmetry, uniform
connectivity, greater angular resolution, and a

reduced need of storage and computation in
image processing operations.

In spite of its numerous advantages, hexagonal
grid has so far not yet been widely used in
computer vision and graphics field. The main
problem that limits the use of hexagonal image
structure is believed due to lack of hardware for
capturing and displaying hexagonal-based
images. In the past years, there have been
various attempts to simulate a hexagonal grid
on a regular rectangular grid device. The
simulation schemes include those using
rectangular pixels, pseudohexagonal pixels,
mimic hexagonal pixels and virtual hexagonal
pixels. Although none of these simulation
schemes can represent the hexagonal structure
without depressing the advantages that a real
hexagonal structure possesses, the use of these
techniques provides us the practical tools for
image processing on hexagonal grids and makes
it possible to carry on theoretical study of using
hexagonal structure in existing computer vision
and graphics systems.

The use of hexagonal grid is also fettered by its
pixel arrangement. In the hexagonal structure,
the pixels are no longer arranged in rows and
columns. In order to take the advantages of the
special structure of hexagonal grid, several
addressing schemes and coordinate systems have
been proposed. There exist a 2-axis oblique
coordinate system, a 3-axis oblique coordinate
system, and a single dimensional addressing
scheme.

This paper is organized as follows. In Section II,
we list the major reasons to be based on
hexagonal structure for intelligent vision system.
In Section III, we introduce several typical
hexagonal simulation schemes. In Section IV,
three addressing schemes on hexagonal structure
are demonstrated. Image processing algorithms
using hexagonal grid are discussed in Section V.
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II. WHY HEXAGONAL?

Since the introduction of computer graphics,
one of the biggest problems that scientists have
to face is the fact that the physical screen is a
discrete set of points, i.e., a countable set of
isolated points, and the real world is in a
continuous environment. Moreover, in order to
store, process, display and transfer images by
digital devices, the image plane must be
quantized into spatial elements of finite
dimension, generally referred to as pixels.

Digitization, which is to convert real images into
discrete sets of points, has been therefore one of
the earliest subjects of study for computer
scientists involved in vision and graphics
research. Each point which forms an image on
the screen must be properly addressed in order to
be indexed. The disposition of the points on the
plane, called digitization scheme, however, can
take different choices. Considering technical
implementation, these points must be placed as
regularly as possible on the plane and they must
be disposed so that the coverage of the plane is
as efficient as possible.

A. Three Possible Regular Tessellation Schemes

There exist only three possible regular
tessellation schemes to tile a plane without
overlapping among the samples and gaps
between them, namely the tessellation with
hexagons, with squares, and with regular
triangles [3, pages 61-64] (see Fig. 1). Any other
types of spatial tessellation will result in either
unequal distance between neighboring pixels, or
introduce gaps or overlaps among samples. A
simple explanation is given below. For more
detailed proof, please refer to [3, page 61-64].
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We use the symbol {p, q} to denote the
tessellation of regular p-gons, of which each has
q pixels (p-gond) surrounding each vertex. It is
easy to see that the {p,q} pair s are {4,4} , {6,3}

and {3,6} for the three tessellation schemes as
illustrated in Fig. 1, where in each case the
polygon drawn in bold lines is the vertex figure,
i.e., the q -gon whose vertices are the midpoints
of the q edges connected to a vertex. A
tessellation is said to be regular if it has regular
faces and a regular vertex figure at each vertex.

On the left is the square case {4,4}, which is
familiar and usual because it is aligned with the
standard Cartesian axes, which helps to make
operations simple and intuitive. The far right
illustrates the triangular case {3,6} , which yields
a denser packing than the square case. This
means that more information is contained in the
same area of the image. The tessellation in the
middle figure, hexagonal case {6,3} , is often
used for tiled floors and it can be seen in any
beehive. It is believed to be the most efficient
tessellation scheme among them.

B. More Efficient Sampling Schemes

No matter which sampling scheme is chosen, an
insufficient sampling rate can always introduce
unwanted effects in the reconstructed signal,
referred as aliasing. Peterson and Middleton [5]
investigated sampling and reconstructing wave-
number-limited multi-dimensional functions and
concluded that the most efficient sampling
lattice, i.e., which uses a minimum number of
sampling points to achieve exact reproduction of
a wave-number-limited function', is not in
general rectangular. Specially, when a two-
dimensional isotropic function2 is considered, the
optimum sampling lattice is the 120q rhombic
(hexagonal) with spacing of sample points equal

to t481 if the spectrum of a function is bounded
by a circle of radius 2itB in the wave-number
plane (see Fig. 2). The sampling efficiency is
90.8%, compared with 78.5% for the largest
possible square lattice.
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IWe call a function wave-number-limited if the Fourier
transform ofthe function lie within a bounded region of
spectrum space of the function [5].

An isotropic function is defined in the broad sense as
describing a spectrum which cuts off at the same wave-
number magnitude in all directions [5].
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A similar conclusion was obtained by Mersereau
[2], who developed a hexagonal discrete Fourier
transform and hexagonal finite impulse response
filters. Mersereau showed that for signals which
are band-limited over a circular region in Fourier
space, 13.4% fewer sampling points are required
with the hexagonal grid to maintain equal high
frequency image information with the
rectangular grid, thus less storage and less
computation time are required. An example is
that in image coding application, one may expect
that the coding efficiency can be increased by
using the hexagonal sampling scheme.

Recently, Vitulli, Armbruster and Santurri [6],
after investigating the sampling efficiency of
hexagonal sampling, also concluded that using
hexagonal sampling, about 13% less number of
pixels are needed to obtain the same performance
as obtained using square sampling when
sampling the same signal.

These conclusions are briefly illustrated below.
Fig. 3((a) is a generic hexagonal sampling lattice.
Goodman [6,7] showed that the Fourier
transform (FT) of a hexagonal lattice is still a
hexagonal lattice. In [7, page 12], however, it is
said that the Fourier transform of a circularly
symmetric function is itself circularly symmetric,
where the functionf can be said to be circularly
symmetric if it can be written as a function of r
alone, that is, g(r, 0) g (r) R T [7, page 11]. In
hexagonal lattices, the inverse of the sampling
steps that corresponds with the distances
between two aligned rows and columns in FT
domain are twice the corresponding steps in
spatial domain, as shown in Fig. 3(b). Similar to
square case, the FT of the hexagonally sampled
image is also composed of infinite replicas of the
spectrum G (,), the FT of the image g(x, y).
These replicas are centered in the points of the
hexagonal lattice, which is the FT of the
hexagonal sampling lattice.
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Vitulli etc. compared the Nyquist constraints,
i.e., the minimum sampling densities without
aliasing, between rectangular and hexagonal

cases. The bigger the minimum sampling density
required is, -the better the sampling performance
will be. The maximum densities to tile spectra in
spectrum space are illustrated in Fig. 4, for
rectangular grid (left) and for hexagonal grid
(right). The pixel density with hexagonal
sampling that avoids aliasing is 3 2 and thus is
lower than rectangular one.

As a result, using hexagonal grid, wider spectra
can be sampled without aliasing with the same
number of pixels, or less pixel than using square
grid.

B. Smaller Quantization Error

As mentioned earlier, in order to process an
image by a digital computer, the continuous
image in real world must be quantized into
spatial elements of finite dimensions, generally
referred as pixels. Due to the limited resolution
capabilities of image sensors, this array is
usually too small to adequately represent the
scene in real world.

Quantization error, thus, is inevitable. In
computer vision, quantization error is a very
important measurement to investigate the merits
of different types of sensory configurations in
order to find which spatial sampling would
introduce less quantization error into
computations. Kamgar-Parsi [8-11] developed
formal expressions for estimating quantization
error in hexagonal spatial sampling and found
that, for a given resolution capability of the
sensor, hexagonal spatial sampling yields smaller
quantization errors than square sampling. Fig 4.
Spectral packaging for best rectangular and
hexagonal sampling [6]
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C. Consistent Connectivity Definition

Connectivity between pixels is a fundamental
concept that simplifies the definition of
numerous digital image concepts, such as
regions and boundaries. To decide if two pixels
are connected, it must be determined if they are

54



neighbors and if they satisfy a specified criterion
of similarity [12, pages 66-67].

On a square grid, there are two possible ways to
define neighbors of a pixel. We can either regard
pixels as neighbors when they have a common
edge or when they have at least one common
comer, so that four and eight neighbors exist
(referred as a 4-neighborhood and an 8-
neighborhood). Accordingly, on a square grid,
object connectivity can be defined as 4-way to
any of the four nearest neighbours, or 8-way if
connectivity to diagonal neighbours is permitted.
This is illustrated in Fig. 5.
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Correspondingly, background connectivity must
be 8-way if object connectivity is four-way or 4-
way if object connectivity is 8-way [13].
Verification ofthis statement is presented below.

Consider the pattem shown in Fig. 6(a).
Assuming 4-way connectivity for both the object
and the background, the number of vertices V in
the pattem is 16, the number of edges E is 16,
and the number of faces F is 4.

Application of the Euler formula V= E+ F to the
pattem should give its genus. Thus, by the above
formula the genus isl6-16+4 = 4. However, the
pattem has four objects and the background has
two, so that the genus (the number of object
components minus the number of background
components +1) is 4 - 2 +1= 3. A similar
disagreement in the value of the genus arises
when 8-way connectivity is assumed. For then
the number of vertices V in Fig. 6(a) is 12, the
number of edges E is 16, and the number of faces
F is 4. Thus, by Euler's formula, the genus is 0,
whereas in fact it should be 1.

(a) (b)
FS. 6. Squme gnd and hexagonal rid

However, if 4-way connectivity is assumed for
the object and 8-way connectivity for the
background then, according to Euler's formula,
the genus is 4. Since the number of background
components is now I (not 2), the value of the
genus obtained by counting the number of
components is also 4. Similarly, when we
assume the pattern to be 8-neighbor connected
and the background to be 4-neighbor connected,
both methods of calculating the value of the
genus, which is 0, agree.

The hexagonal grid, however, offers no
connectivity choice. We can only define a 6-
neighborhood. Neighboring pixels have always
one common edge and two common comers (see
Fig. 6(b)). The absence of such choice in
hexagonal grid results in easier and more
efficient algorithms, such as thinning algorithm
[13][14][15], since fewer connectivity situations
have to be accounted for. Accordingly,
connectivity in hexagonal objects is consistent as
it is six-way to either of the nearest neighbours
for both the object and the background image
components [16, 17].

Assuming 6-neighbor connectivity, the number
of vertices V in Fig. 6(b) is 24, the number of
edges E is 30 and the number of faces F is 6.
Using the Euler formula, the genus is equal to 0.
Since the number of components of the pattem is
I and the number of components of the
background is 2, the genus has the valuel-2+1=
0. Thus, both values ofthe genus agree.

D. Equidistance

With the introduction of neighbourhood relation,
distance function can be easily measured. In
square grid we have two types of distances,
where the distance between adjacent pixels in the
diagonal direction is 42 times of that in the
horizontal (or vertical) direction (see Fig. 7(a)).

55



(A) (b)
Fig. 7. Dismce in a upue grid mad exagoal gad

While in hexagonal case, each hexagonal pixel
has and only has six neighboring pixels and each
pixel is equidistantly adjacent to their six
neighbors along the six sides of the pixels. The
centroid of the middle pixel is at the same
distance from the centroids of the six adjacent
pixels (see Fig. 7(b)).

E. Greater Angular Resolution

Image processing on a hexagonal lattice is
advantageous is also believed due to its greater
angular resolution to represent curved objects. It
has been noted that hexagons offer greater
angular resolution as the nearest neighbors of the
same type are separated by 60q instead of 90q
[1]. An example showing a familiar curved
figure and a representation on square and
hexagonal lattices is shown in Fig. 8.

Fig. & Cuived figmu repmweed in beaanal gridV nd
trxagmIS6nd

Notice that the hexagonal case, on the left of Fig.
8, appears to have smoother curves than the
square case. There are several reasons for this.
The first is due to the consistent connectivity in
the hexagonal lattice. This means that all
neighbours are uniform distances away from
each other and leads to the smoother curvature.
Another reason is what is known as the oblique
effect in human vision (see web link
http://www.ecs.soton.ac.uk/-ljm/hip.php). This
means that we have a visual preference for lines
at oblique angles. This also helps to make the
hexagonal curves look smoother.

As a matter of fact, the theory developed and the
simulation done on a physical screen in [4]
showed that hexagonal grids represent a

reasonable alternative to conventional square
grid display techniques not only for circle
drawing, which was somehow predictable, but
also for straight lines.

On the hexagonal grid, digitizations display a
better connectivity and are perceived as being
approximated by small polylines, whereas on the
square grid, digitizations are still perceived as
being approximated by pixels. Such a perception
of single pixels disturbs the impression of
continuity of the discretized line. This is due to
the fact that in the square grid neighbors of a
pixel are not placed all at the same distance.
Moreover, two diagonal neighbors in the square
grid have only one point in common, whereas
two horizontal or vertical neighbors of the square
grid, and all the neighbors of a pixel in the
hexagonal grid, have one segment in common
with their neighbor. This fact produces thickness
variations in square digitizations, leading to
greater edge busyness and to a thinner average
width in a line digitization.

F. Higher Symmetry

Serra [19] has developed many of morphological
operators that were currently used for image
processing. He prefers the hexagonal grid to the
rectangular because ofthe connectivity definition
and the higher symmetry, which lead to simpler
processing algorithms. It can be seen in Fig. 6
that the cluster of hexagonal pixels possesses the
same symmetry about the three different lines
connecting pairs of two pixels and the central
pixel. This symmetry degree is one higher than
that of square grid. This symmetric feature
makes image processing more accurate. For
example, when an image on a hexagonal grid is
rotated, more image information will be retained
compared to the same rotation is performed on
square grid.

G. Other Features ofHexagonal Grid

The research done in the biological domain of
animal vision clearly demonstrates that in animal
vision systems the arrangement of rods and
cones in the fovea more nearly approximate a
hexagonal tessellation than a rectangular one.
Specifically the research by Hubel [20] shows
that the fovea can nearly be described by a
regular hexagonal tessellation. Another
compelling reason to investigate other
tessellations of the plane is the well known
paradox concerning the definition of the nearest
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neighbor network such that edges are continuous
and that the inside of an object not be connected
to the outside of the same object. [21]

III. HEXAGONAL IMAGE
REPRESENTATION

In spite of the many advantages of
hexagonal structure, the hexagonal based image
processing has not been used widely in
intelligent vision area. The main reason is that
currently there is no hexagonal-based device
available to capture and display digital images on
hexagonal grids. So how to simulate hexagonally
sampled images on common square display
equipments has once become a serious problem
that affects the advanced research on hexagonal
architecture in the field of computer vision and
graphics.

Fortunately, there have been several ways to
simulate a hexagonal grid on a regular
rectangular grid. We list three most common
simulations as follows. The use of these
techniques allows us to take the advantages of
hexagonal grids for computer vision and
computer graphics.

A. Mimic Hexagonal Pixels Using Square Pixels

Horn [22] has described how a practical
hexagonal data may be captured by delaying
sampling by half a pixel width on altemate TV
scan lines in horizontal direction (see Fig. 9). In
his scheme, the pixel shape is square. In other
words, the sampling intervals in horizontal and
vertical directions are identical. This scheme
simplifies the hardware design by setting
identical sampling intervals in both horizontal
direction and vertical direction. However, the
equidistance property of hexagonal pixels is not
preserved. A shown in Fig.9, if we denote the
distance between any two neighbors in
horizontal and vertical direction as I unit, the
distance between any two neighboring pixels in
diagonal direction will be 43/2.

Fi 9. U ing hf-pixtl shifd esquat pzxelsepit hexagonal
stuc

Later on, Staunton [23] described a hexagonal
data structure with a rectangular shape, where
the sic neighboring pixels of a pixel all lie on a
circle with the centre of the circle being at the
sampling point of the central pixel, as illustrated
in Fig. 10. The major advantages with this
structure are that, all sampling points are
equidistant from their nearest neighbors, the
angle subtended by two nearest neighboring
points is 60', and Ithe horizontal sampling
distance is 2/43. The pixel size is one by 2/43
and thus for systems employing an equal number
of pixels horizontally and vertically, the image
aspect ratio would be 2/43 :1

I -

0t 0

Pig., 10. Rectangular pixels on a hexagnal smling ridX

B. Pseudo Hexagonal Pixel

Wuthrich [4] proposed a pseudo hexagonal pel
(see Fig. l 1) in order to evaluate the visual effect
of hexagonal pixel and square pixel. A
comparative simulation of two screens based on
the 'quare and the hexagonal lattices has been
made. A hexagonal pixel, called a hyperpel, is
simulated using a set of many square pels and
the simulated square grid had to be adapted in
order to make its density comparable with the
hexagonal grid. This results in a great loss in the
screen resolution and to an inexact simulation of
the square grid, reducing it to a rectangular grid.
In order to approximate the square and the
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hexagonal grids, two ideal lattices has been

selected, that is A6=A((N5:/2,142 o1i)) and
A-- AtI2,P2,0100) as an approximation of
A4. A has been chosen such that the points of
the two lattices have the same density, i.e., the
same number of points per unit of surface. As
there is no way to display exactly the point

(03/2,V2)on the square grid, in the practical
simulator the lattices hat have been actually
drawn on the simulator are thus
A\4 A((7/8,O.l0J))
and
AX = A(t7/8,1/2).(O1
respectively for the square and the hexagonal
lattices. The resulting hyperpels, which are
illustrated in Fig. 11 were displayed at a
resolution of60 u 60 pels.

This idea has been adopted by Yabushita in [18]
who designed a similar pseudo hexagonal picture
(hexelement), which is also composed of small
square pixels and which aspect ratio is 12:14.

hexagonal pixel consists of four traditional
square pixels and its grey level value is the
average of the involved four pixels (see Fig. 12).
This mimic scheme preserves the important
property of hexagonal architecture that each
pixel has exactly six surrounding neighbours.
However, because the grey-level value of the
mimic hexagonal pixel is taken from the average
of the four corresponding square pixels, this
mimic scheme introduces loss of resolution. In
addition, we know that according to hexagonal
structure theory the distance between each of the
six surrounding pixels and the central pixel is the
same. However, this property is lost in the mimic
Spiral Architecture.
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Simulated hyper pixel Middleton and
Sivaswamy [24, 25] proposed a framework for
practical hexagonal-image processing, where a
process known as image re-sampling is
employed to generate a hexagonally sampled
image from normal square image.

D. Virtual Hexagonal Structure

Later, Wu [27] constructed a virtual hexagonal
structure which is an important milestone for the
theoretical research and the practical application
exploration of this architecture. Using virtual
Spiral Architecture, images on rectangular
structure (or called square grid as indicated in
Fig. 13) can be smoothly converted to Spiral
Architecture. Such virtual Spiral Architecture
only exists during the procedure of image
processing. It builds up a virtual hexagonal grid
system on memory space on computer. Then,
processing algorithms can be implemented on
such virtual spiral space. Finally, resulted data
can be mapped back to rectangular architecture
for display (see Fig. 13). Unlike the previously
proposed mimicking methods, this mimicking
operation nearly does not introduce distortion or
reduce image resolution, which is the most
remarkable advantage over other mimicking
methods, while keeping the isotropic property of
the hexagonal architecture.

C. Mimic Hexagonal Structure

He [26] proposed a mimic hexagonal structure,
called mimic Spiral Architecture, where one
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B. Three-Coordinate Symmetrical Coordinate
Frame
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IV. HEXAGONAL STRUCTURE
ADDRESSING

Obviously, no matter which kind of
simulating scheme is chosen, there exists another
big problem that the hexagonal pixels cannot be
labeled in normal column-row order as in
rectangular grid. In order to properly address and
store hexagonal images data, different coordinate
systems have been proposed. In this section,
typical coordinate systems are reviewed.

A. 2-Axes Oblique Coordinate Addressing
Scheme

Using two oblique axes (see Fig. 14) to address
hexagonal structure is firstly suggested by
Luczak and Rosenfeld [28], also referred as
skewed coordinate system in [4], and h2 system
in [29], where two basis vectors are not
orthogonal. With such an oblique coordinate
system, each hexagonal pixel can be addressed
by an ordered pair of unit vectors, u and v, as
illustrated in Fig. 14, which indicate a horizontal
deflection and an upright deflection respectively.
The system has been shown to have the
following properties:
1. Complete: Be sufficient to represent any point
in a 2-dimensional space;
2. Unique U: Any ordered pair corresponds to
exactly one point;
3. Convertible t: It can be easily converted to and
from Cartesian coordinate; and
4. Efficient: It is a convenient and efficient
representation.

In [30,311, Her developed a symmetrical
hexagonal coordinateframe, denoted as *R3, for
hexagonal grid, which uses three coordinates x,
y, z, instead oftwo, to represent each pixel on the
grid plane, as shown in Fig. 15. The three
coordinates at any pixel has a relationship among
them:

x +y + z =0.

Here the distance between two neighboring grid
points is defined as one unit.

FR. 15. Synmmi hexagonl hRm *R3

The major advantage of this coordinate system is
that there is a one-to-one mapping between *R3
and the 3-dimensional Cartesian frame R3, as
illustrated in Fig. 16, where, x, y and z are the
three orthogonal axes of R3. Due to this reason,
many geometrical properties of R3 can be readily
transferable to *RJ. Moreover, since the x and y
coordinates of a point of this symmetrical
hexagonal coordinate frame*R3 are actually the
two coordinates used in the oblique coordinate
frame (see Fig. 14), theories and equations
previously developed for the oblique coordihate
frame can directly be used in*R3. Moreover, in
[32], the use of this symmetrical hexagonal
coordinate frame is demonstrated to derive
various affme transformations.
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Due to the physical relationships between the
symmetrical hexagonal coordinate frame and the
3-dimensional Cartesian frame R3, geometric
transformations on the hexagonal grid are
conveniently simplified and the beautiful
symmetry property of the hexagonal grid is
successfully preserved.

(14

FIg. 16. Relation between ftmns *R3 ana R3
This three-axis coordinate system is used in [33]
for mathematically handling the hexagonal
structure, for example, numerically calculating
the distance of two objects. This three-axis
coordinate system reflects the geometrical
symmetry of the grid.

C. Single Indexing System

Sheridan [34] proposed a one-dimensional
addressing system, as well as two operations
based on this addressing system, for hexagonal
structure. This system is called Spiral
Architecture (see Fig. 17). Spiral Architecture
(SA) is inspired from anatomical consideration
ofthe primate's vision system.

Fig, 17. Spiti akhessn

Sheridan [34] presented a one dimensional
indexing scheme, called Spiral Addressing, to
address each hexagon on the image. This address
grows from the centre of image in powers of
seven along a spiral like curve. This addressing
scheme combined with two later proposed

mathematic operations, spiral addition and spiral
multiplication is the basic of Spiral Architecture
[26,34]. The spiral addition and spiral
multiplication correspond to image translation
and image rotation respectively.

Middleton and Sivaswamy [24,25] also proposed
a similar single-index system for pixel
addressing by modifying the Generalized
Balanced Ternary system, as shown in Fig. 18.

4 X041 2 1$ _44S*1 a
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Neighbourhood operations are often used in
image processing. Finding the neighbour in a
hexagonal image makes use of the spiral addition
operation, of which details can be found in [34].
In a seven-pixel cluster, the neighbourhood
relation can be determined by spiral addition as
follows.

a, 4

'-'TN-.

RS, 19. Neigbbowr<od relationsip within Spial Ardiiedtr.
(a) Nobohd Rel:obis* (b) An ampe cf

Let the spiral address of the central pixel, as
shown in Fig. 19(a), be denoted by a,. Then the
spiral address of its neighbour pixel can be
described by spiral addition denoted by +, with a
certain number of displacements, as shown in
Fig. 19 (a). An example is given in Fig. 19(b).

For the whole image, following the spiral
rotation direction, as shown in Fig. 20, one can
find out the spiral address of any hexagonal pixel
with centre on a certain hexagonal pixel whose
spiral address is known.
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The Spiral Architecture has some distinguishing
features compared to the square image
processing. First, the one dimensional addressing
scheme leads to an efficient storage and the
placement of the origin at the centre of the image
simplifies geometric transformations of a given
image. Finally, the hexagonally sampled image
allows non-traditional neighbourhoods with
consistent boundary connectivity, which is useful
for many computer vision applications.

V. HEXAGONAL IMAGE PROCESSING

Although hexagonal image representation
and storage has never yet come to any standard,
theoretical studies on hexagonal image
processing have never ceased.

A. Hexagonal Image Transformation

For the purpose of efficient and fast processing
and analysing, digital images that are originally
defined in spatial domain usually need to be
transformed into another domain with certain
transformation and take use of some unique
characters of the transformed domain to process
the transformed image in the domain. Image
transformation is the basis of many image
processing and analysing techniques. After
transformation, processing in spatial domain can
be converted into the corresponding processing
in transformed domain, which has many
advantages. Among them, the most important
ones are the computation will be greatly reduced
and various image filtering techniques can be
applied for image processing. For example,
convolution operation becomes more
computationally efficient when computed in
frequency domain. Further examples include
transform coding for image compression purpose
and filter design.

Among various image transformations, one of
the most widely used is Fourier transformation,
which transforms images from spatial domain to
spectrum domain. Standard fast Fourier
transform (FFT) algorithms, however, are not
applicable to non-rectangularly sampled data.

Mersereau [35] developed a two-dimensional
fast Fourier transform (2-D FFT) for use with
hexagonally sampled data. Nel [21] followed his
derivation and corrected a number of algebraic
errors in his derivation and derived the 2-D
Walsh transformation. They were all derived in
non-orthogonal axes. Later, Ehrhardt [36]
claimed that Mersereauts 2-D FFT algorithm
would require an additional interpolation step,
which might introduce artifacts. He presented a
separable fast discrete Fourier transform
algorithm where the data space is sampled with
hexagonal grids and transform space is sampled
with rectangular grids. In [37], Middleton
derived a Fast Fourier Transform (FFT) for the
hexagonal lattice based upon the Cooley-Tukey
approach [38] and the radix-7 decimation in
space algorithm.

In [39], a hexagonal discrete cosine transform
which can be used in the applications of image
coding is described and showed that the
proposed HDCT is more efficient in energy
compaction than the HDFT.

B. Edge Detection on Hexagonal Structure

When a scene is observed by a human, the
human visual system first segments the scene.
Edge detection is an important approach for
image segmentation in computer vision systems.
This approach measures the rate of change and
decides the existence of an edge at each point.
The basic assumption used in most edge
detection algorithms is that the edges are
characterised by large (step) changes in intensity
(or color in color images case). Hence, at the
location of an edge, the first derivative of the
intensity function should be a maximum or the
second derivative should have a zero-crossing.

Middleton [24] investigated the performance of
using a hexagonally sampled structure for
implementing classical edge detectors, including
Prewitt, Laplacian of Gaussian (LoG) and the
Canny edge detector. Images that contain curves
and straight lines along with a variation in
contrast are used for test. Equivalent edge
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detection masks have been designed for
hexagonal images, where the horizontal mask for
the hexagonal case is equivalent to the square
case, the vertical direction gradient mask is
approximated by a combination of two masks
oriented at 60- and 120- to the horizontal. Fig. 21
and Fig. 22 give different masks used in the
Prewitt edge detector implementation.

Cho [40] applied the edge relaxation to the
hexagonal grids. His experiments showed that
hexagonal edge relaxation can detect better
edges than conventional edge relaxation. This
comes from the advantages of hexagonal
sampling and unambiguous classification of edge
types.

Furthermore, if a closed boundary is reached,
then it is unchanged permanently and the open
boundary is weakened as the iteration proceeds
from the tail of the boundary. Therefore the
overall results are reliable in finding the edges in
the given edges.
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Several papers on edge detection based on Spiral
Architecture have been proposed since 1996. In
[41], an overview on edge detection within
Spiral Architecture was given. In [42], edge
detection using edge focusing technique was
proposed. The second edge detection method
proposed by Zhou et al [43] applied a bilateral
filter which combines a domain filter with a
range filter to suppress image noise for edge
detection. Another method for edge detection on
Spiral Architecture, as shown in [44], was based
on triple-diagonal gradient. The gradient of grey-
level function was defined as a combination of
three vectors in three diagonal directions of

hexagonal image structure. This method is a
more accurate detection mechanism where the
gradient is implemented in a more accurate way
in the discrete image space.

Results of edge detection on hexagonal images
show that an edge map with better fidelity for
curved objects is obtained than with square
images. In the case of straight edged objects the
edge-maps are of similar quality. This is due
mainly to the connectivity of the individual
hexagonal pixels generating more consistent
contours. Furthermore, using Spiral Architecture
for edge detection has computational advantages
in order to achieve similar detection results. In
particular, convolution operations which are
routinely used in edge detection can be
implemented with great efficiency. The two
together make a strong case for hexagonal based
edge detection and seem to reinforce the point
that hexagonal image processing can be a viable
alternative to conventional square image
processing.

C. Hexagonal Thinning

Thinning is the process which is used to reduce
the amount of data of an object to obtain its
skeleton, which contains single pixel wide lines
and can represent the shape of the object.
Thinning has been applied to a great variety of
patterns in the field of machine recognition [451.
Wide range of applications show the usefulness
of reducing patterns to thin-line representations,
which can be attributed to the need to process a
reduced amount of data, as well as to the fact that
shape analysis can be more easily made on line-
like patterns. The thin-line representation of
certain elongated patterns, for example,
characters, would be closer to the human
conception of these patters; therefore, they
permit a simpler structural analysis and more
intuitive design of recognition algorithms. A
skeleton should have the following properties
[14, 15]:
1. It contains a number of single pixel lines;
2. Each element is connected to at least one other
with no gaps in its structure;
3. Skeletal legs are preserved;
4. It is accurately positioned;
5. Noise induced perimeter pixels are ignored
and limbs are not formed towards them.

Thinning algorithms for use with rectangular,
hexagonal, and triangular arrays has been

62



investigated by Deutsch [13]. He used the same
approach to develop each algorithm, where
unnecessary pixels were iteratively deleted until
no more pixels can be removed. Experimental
results on handwritten character recognition
showed that the algorithm operating in the
hexagonal grid was the most computationally
efficient. The resulting thinned images which are
obtained using the triangular array contain the
least number of points per image, since on this
array the neighbors span the largest distance. The
ratio of the maximum distances of any neighbor
on the rectangular, hexagonal, and triangular
arrays is 1: i 2: 3 / J 2 . However, the increased
size of the basic window renders the processing
on a triangular array, and thus the resulting
image, very sensitive to edge irregularities and,
more important, to noise. From this point of
view, the hexagonal array is preferential, since
all its neighbors, theoretically at least, are
equidistant. Moreover, if the thinned image is to
be chain encoded the number of direction
vectors, in the triangular array is 12, which
means that the maximum number of bits required
to represent a single direction vector is four; this
compares with the three bits required for the
other two arrays. So for storage or transmission
of a complete resulting line drawing, the
triangular array will only be useful if the quarters
the number of points in the image on the
hexagonal array.

Staunton [14] presented an analysis of the
thinning operation from hexagonally sampled
images and compared the algorithm
experimentally to a similar parallel algorithm
designed for a rectangular grid. He defined a set
of structuring masks in order to decide whether a
pixel could be deleted from the object border.
The hexagonal thinning algorithm requires only
six masks containing seven elements each, while
the rectangular algorithm requires eight masks
containing nine elements each. This greatly
reduced the processing time for 55% of that
required to process the rectangular scheme
skeleton. Experimental results also showed that
the hexagonal skeleton exhibited more accurate
corner representation, noise immunity.

D. Hexagonal Interpolation: Hex-splines

Van De Ville etc. [46,47] constructed a new
family of hex-splines which are specifically
designed for hexagonal lattices and make use of
these splines to derive the leastsquare
reconstruction function. Hex-splines are a new

type of bivariate splines that are especially
designed for hexagonal lattices. Inspired by the
indicator function of the Voronoi cell, they are
able to preserve the isotropy of the hexagonal
lattice (as opposed to their B-spline
counterparts). They can be constructed for any
order and are piecewise-polynomial (on a
triangular mesh). Analytical formula have been
worked out in both spatial and Fourier domains.
For orthogonal lattices, the hexsplines revert to
the classical tensor-product B-splines. While the
standard approach to represent two-dimensional
data uses orthogonal lattices, hexagonal lattices
provide several advantages, including a higher
degree of symmetry and a better packing density.
They discussed how to advantageously apply
them for image processing. We show examples
of interpolation and least-squares resampling.

Yabushita [18] investigated the performance of
image reconstruction on hexagonal grid.
Conventional image reconstruction methods are
implemented on square structure. However, on a
square grid, the distance between adjacent pixels
is different in the horizontal (or vertical)
direction from that in the diagonal direction. This
difference introduces inconsistency when
neighboring pixel values are interpolated with a
spherically symmetric weighting function which
weight depends on the distance between a given
position and the central pixel. Yabushita
compared the accuracy of the reconstructed
images and compared the results with those
obtained on square grid. His experimental results
on disc-shaped images showed a better
reconstruction quality on hexagonal grid than
that on rectangular grid.
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