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Acoustic Factor Analysis for Robust
Speaker Verification
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Abstract—Factor analysis based channel mismatch compensa-
tion methods for speaker recognition are based on the assumption
that speaker/utterance dependent Gaussian Mixture Model
(GMM) mean super-vectors can be constrained to reside in a
lower dimensional subspace. This approach does not consider the
fact that conventional acoustic feature vectors also reside in a
lower dimensional manifold of the feature space, when feature co-
variance matrices contain close to zero eigenvalues. In this study,
based on observations of the covariance structure of acoustic
features, we propose a factor analysis modeling scheme in the
acoustic feature space instead of the super-vector space and derive
a mixture dependent feature transformation. We demonstrate
how this single linear transformation performs feature dimension-
ality reduction, de-correlation, normalization and enhancement,
at once. The proposed transformation is shown to be closely
related to signal subspace based speech enhancement schemes.
In contrast to traditional front-end mixture dependent feature
transformations, where feature alignment is performed using
the highest scoring mixture, the proposed transformation is inte-
grated within the speaker recognition system using a probabilistic
feature alignment technique, which nullifies the need for regen-
erating the features/retraining the Universal Background Model
(UBM). Incorporating the proposed method with a state-of-the-art
i-vector and Gaussian Probabilistic Linear Discriminant Anal-
ysis (PLDA) framework, we perform evaluations on National
Institute of Science and Technology (NIST) Speaker Recognition
Evaluation (SRE) 2010 core telephone and microphone tasks. The
experimental results demonstrate the superiority of the proposed
scheme compared to both full-covariance and diagonal covariance
UBM based systems. Simple equal-weight fusion of baseline and
proposed systems also yield significant performance gains.

Index Terms—Acoustic feature enhancement, factor analysis,
probabilistic principal component analysis, speaker verification.

I. INTRODUCTION

ISMATCH between training and test conditions rep-
resent one of the most challenging problems facing
speaker recognition researchers today. There can be consid-
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erable sources of mismatch present including: transmission
channel differences [1], [2], handset variability [3], background
noise [4], session variability due to physical stress [5], vocal
effort such as whisper [11], [12], Lombard effect [13], non-sta-
tionarity environment [10], spontaneity of speech, but to name
a few. Various compensation strategies have been proposed in
the past to reduce unwanted variability between training and
test utterances, while retaining the speaker identity information.
The current trend in state-of-the-art speaker recognition sys-
tems is to model the acoustic features with a GMM-UBM, use
utterance dependent adapted GMM [7] mean super-vectors [ 14]
as the features representing the speech segments, and model
the super-vectors using various latent factor analysis tech-
niques [1], [6], [15]. In [16], the aim was to identify the lower
dimensional speaker and channel dependent subspaces, termed
Eigenvoice [15], [17] and Eigenchannel [1], in the super-vector
domain. In [1], an alternative was considered where speaker
and channel variabilities were jointly modeled. The recently
proposed i-vector [6] scheme utilizes a factor analysis frame-
work [15], [18] to perform dimensionality reduction on the
super-vectors while retaining important speaker discriminant
information. This lower dimensional i-vector representation
enables the development of full Bayesian techniques [19],
[20], using a single model to represent the speaker and channel
variability.

One limitation of the conventional GMM super-vector
domain representation and subsequent factor analysis mod-
eling is that, it does not take into account the fact that the
original acoustic features contain redundancy. In general, the
speech short-time spectrum is known to be representable in a
lower dimensional subspace, which motivates a separate class
of speech enhancement methods known as signal subspace
approaches [21], [22]. Linear correlation among the speech
spectral components are quite high, which justifies the success
of these methods. This phenomenon is also valid for popular
acoustic features, such as Mel-frequency Cepstral Coefficients
(MFCC) [23], [24], even though these features are processed
through Discrete Cosine Transform (DCT) for de-correlation
before use in training or test.

A. Motivation

To motivate the proposed work, we first demonstrate that
the conventional acoustic features can be constrained to reside
in a lower dimensional subspace. For this purpose, we train a
1024 mixture full covariance GMM UBM using 60 dimensional
MFCC features on a large background speech data set.! For a

IMore details on feature extraction and development data are given in Sec-
tions V-A and V-B, respectively

1558-7916/$31.00 © 2012 IEEE
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Fig. 1. Analysis of full covariance matrices of a UBM trained using 60-dimensional MFCC feature (20 static + A 4+ AA). (a) A 3-D surface plot of the
covariance matrix showing high values in the diagonal and significant off-diagonal values indicating correlation among different feature coefficients. (b) Sorted
eigenvalues of the same covariance matrix demonstrating that most of the energy is accounted for by in the first few dimensions.

typical mixture of this UBM, the covariance matrix and distri-
bution of its eigenvalues is shown in Fig. 1. From Fig. 1(a) it
is clear that the full covariance matrix, which shows strong di-
agonal terms, has significant non-zero off-diagonal elements,
indicating that the feature coefficients are not fully uncorre-
lated. Fig. 1(b) shows the sorted eigenvalues of the same covari-
ance matrix revealing that most of it’s energy is accounted for
by the first few dimensions only. This shows that the acoustic
feature space is actually lower dimensional and features can
thus be further compacted or enhanced by using a factor anal-
ysis model. Also, it is known that the first few directions ob-
tained by the Eigen-decomposition of acoustic feature covari-
ance matrices are mostly speaker dependent (e.g. see Zhou and
Hansen [25] for a quantitative analysis), while other directions
are more phoneme dependent. In this study, considering these
noted observations on the acoustic features, we aim at investi-
gating a factor analysis scheme on acoustic features for speaker
recognition. We would like to name this method acoustic factor
analysis.

B. Limitations of Conventional Factor Analysis

Before proceeding with the formulation of the factor anal-
ysis scheme in the front-end features, we first defend the ar-
gument that the traditional factor analysis schemes do not take
full advantage of the acoustic feature covariances. In a standard
i-vector system, the GMM super-vectors are dimensionality re-
duced by a total factor analysis model, which is based on the
idea that utterance super-vectors lie in a lower dimensional sub-
space. Let m, denote a GMM super-vector extracted from an
utterance s, and x,, would denote the acoustic features. For a
randomly chosen utterance s, it is generally assumed that m;
is normally distributed with mean mg and covariance matrix
B [15]. Here, mg denotes the speaker independent mean vector
obtained by concatenating the UBM mean vectors myj . Let the
UBM covariance matrices be X,, where g denotes the mixture
number. The main motivation of both Eigenvoice and total vari-
ability modeling, is that the super-covariance matrix B contains
zero eigenvalues and thus some dimensions of m, can be disre-

garded. For the g-th Gaussian mixture, the utterance dependent
mean vector my,[, is estimated from the posterior mean of the
acoustic features that belong to s, that is x,, € s. This is a deter-
ministic parameter. However, for a randomly selected utterance
s, the sub-vectors my[, are normally distributed random vec-
tors having covariance matrix B,;, which is the g-th sub-ma-
trix of the super-covariance matrix B. Clearly, the matrices B,
are not related to the feature covariance matrices 3J,, since the
former represents the covariance of the mean sub-vectors 14
obtained from different utterances, while the latter represents
the covariance of the acoustic features x,, which is independent
of the utterance.? Thus, assuming that the matrix B contains
zero eigenvalues is not equivalent to assuming the same for the
3}, matrices. Though this reasoning is based on full covariance
UBM models, similar arguments can be made for a diagonal co-
variance based system.

C. Feature Dimensionality Reduction

Given that the conventional acoustic features reside in a
lower dimensional subspace, it is important now to ask the
question how we can use this knowledge to effectively extract
utterance level features. Since speaker dependent information
is contained in the leading eigen-directions of the acoustic
features [25], using all the feature coefficients for modeling
channel degraded data will result in retaining some nuisance
components along with speaker dependent information in the
GMM super-vectors and i-vectors. Therefore, we propose a di-
mensionality reduction transformation of the acoustic features
for each GMM mixture that emphasizes the speaker dependent
information in the leading eigenvectors of the corresponding
mixture covariance matrix, while suppressing some unwanted
channel components. In this manner, the GMM super-vectors
will be “enhanced” in the sense that they will be more speaker
discriminative, while the subsequently extracted i-vectors will
also inherit this quality.

2Utterance dependent covariance matrices can also be extracted through MAP
adaptation. However, we assume that each utterance GMM shares the common
UBM covariance and weights.
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Dimensionality reduction of the acoustic features for de-cor-
relation/enhancement is not a new concept. There are many
techniques found in the literature that perform this task, in-
cluding DCT, Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Heteroscedastic LDA (HLDA),
to name but a few [16], [26], [27]. The main goal for this
process has been to be able to model the features using di-
agonal covariance matrix GMM/HMMs for speech/speaker
recognition. These techniques can be classified in mainly two
groups by their mode of operation including: 1) the signal
processing domain, and 2) the model domain. In the first
scenario, some transformation (supervised/unsupervised) is
used at the signal/acoustic feature level in order to achieve
improved energy compaction. The most common technique
is the application of the DCT for the log-filterbank energies
[23] popularized by the MFCC representation. PCA can also
be used [26] by learning the principal directions from the
Eigen-decomposition of the covariance matrix trained on the
utterance data itself. In general, this class of processing only
depends on the speech data under consideration and does
not use any outside knowledge. In the second scenario, raw
acoustic features (e.g., filter-bank energies) are initially used
to train a large model, which is then used to derive the feature
transformations. One such technique used in speaker recog-
nition is HLDA [16], where first a GMM-UBM s trained on
the raw acoustic features. Each mixture is then assumed to
represent a separate class, and HLDA transformation is trained
so that discrimination between these classes is maximized. In
a similar fashion, PCA projections can also be used in each
GMM mixture as a transformation [28]. In these methods, after
the initial training phase, the acoustic features are aligned to the
mixture component providing the highest posterior probability
and the corresponding transformation is used for dimension-
ality reduction.

Both the signal processing domain and model domain
feature dimensionality reduction techniques previously used
in essence have one common property: they re-generate the
acoustic features after a dimensionality reduction. This means,
the sub-sequent procedures for the speaker recognition system
require that we begin training from these newly extracted
features. Model domain dimensionality reduction has an extra
inconvenience of mixture-alignment. Speech features are
known to be highly intertwined and overlapped in the vector
space for different acoustic conditions and generally do not
form meaningful clusters [29]. Thus, using the top posterior
probability for aligning a feature vector to a single mixture
may not be appropriate. To demonstrate this, we select MFCC
feature vectors x,, from 10 development utterances that were
used in the UBM training, and for each feature vector, we find
the highest posterior probability among the 1024 mixtures of
the UBM, max, p(g|x,). A histogram of these top mixture
probabilities is shown in Fig. 2, which clearly demonstrate
that only a few frames are unquestionably aligned to a
specific Gaussian mixture (indicated by the high peak near
max, p{g|x,) = 1). In actuality, a majority of the feature
vectors are aligned with more than one mixture, resulting in
a top mixture probability in the region of 0.3 ~ 0.8. Thus,
using the top scoring mixture for hard alignment of feature
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Fig. 2. Distribution of top posterior probabilities p(¢g|x,) obtained from a
subset of development data.

vectors to a specific mixture can introduce inaccuracies and
should be avoided if possible.

D. Further Implications of the Proposed Method

Historically, feature extraction, dimensionality reduction, en-
hancement and normalization has always been thought of as
a separate process from acoustic modeling. In this study, we
propose a new modeling scheme of the acoustic features that
bridges the gap between these two processing domains through
integrated feature dimensionality reduction and modeling. We
demonstrate that the proposed method not only performs dimen-
sionality reduction, it also removes the need for hard feature
clustering to a specific mixture, and does not require retraining
of the UBM from the new features, thereby incorporating a
built-in feature normalization and enhancement scheme. All this
is achieved using a single linear transformation derived from
a pre-trained full covariance matrix UBM and applying this in
a probabilistic fashion to the mixture dependent Baum-Welch
statistics.

E. Outline

This paper is organized as follows. In Section II, we for-
mulate the proposed Acoustic Factor Analysis (AFA) scheme
and derive the mixture-dependent transformation matrices.
Section III describes the various properties of the AFA trans-
formation, including normalization and enhancement. In
Section IV, we describe how the proposed scheme can be
integrated within an i-vector system followed by our system
description in Section V. Experimental results are presented in
Section VI, and finally, Section VII concludes the study.

II. ACOUSTIC FACTOR ANALYSIS

In this section, we describe the proposed factor analysis
model of acoustic features, discuss its formulation and mix-
ture-wise application for dimensionality reduction.
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A. Formulation

Let X = {x,|n = 1--- N} be the collection of all acoustic
feature vectors from the development set obtained from a large
corpus of many speakers’ recordings in diverse environment/
channel conditions. Using a factor analysis model, the d x 1
dimensional feature vector x can be represented by,

x=Wy+pu+e )

Here, W is a d X q low rank factor loading matrix that represents
g < d bases spanning the subspace with important variability
in the feature space, and g is the d x 1 mean vector of x. We
denote the latent variable vector or latent factors y ~ A(0,I),
as acoustic factors, which is of dimension ¢ x 1. We assume that
the remaining noise component ¢ ~ A’(0, a2I) is isotropic, and
therefore the model is equivalent to PPCA [18]. In this model,
the feature vectors are also normally distributed such that, x ~
N(p, o?T+ WWT),

The advantage of this model is that the acoustic factors y,
defining the weights of the factor loadings, explains the corre-
lation between the feature coefficients x, which we believe are
more speaker dependent [25], while the noise component ¢ in-
corporates the residual variance of the data. It should be empha-
sized that even though we denote the term ¢ as “noise”, when
used with cepstral features this term actually represents convo-
lutional channel distortion [30]. A mixture of these models [18]
can be used to incorporate the variations caused by different
phonemes uttered by multiple speakers in distinct noisy/channel
degraded conditions, given by,

p(x) =Y wyp(x|g) ©)

g

where for the g-th mixture,
p(xlg) =N (1, 031 + WgWZ) . 3)

Here, jiq, wy, W, and o represent the mean vector, mixture
weight, factor loading matrix, and noise variance for the g-th
AFA model, respectively.

B. Mixture Dependent Transformation

One advantage of using the mixture of PPCA for acoustic
factor analysis is that, its parameters can be conveniently ex-
tracted from a GMM trained using the Expectation-Maximiza-
tion (EM) algorithm [18]. Thus, we utilize a full covariance
UBM to derive the AFA model parameters. The proposed fea-
ture transformation and dimensionality reduction procedure is
presented below:

1) Universal Background Model: A full covariance UBM
model Ay, is trained on the development dataset X = {x,,|n =
1--- N}, given by,

M

p(x|Ag) = Z WeN (114, %) (4)

g=1

where w, represents the mixture weights, M is the total number
of mixtures, /i, are the mean vectors and X, are the full covari-

ance matrices. The mean and weight parameters of the UBM
will be identical to the mixture model of (2).

2) Noise Subspace Selection: We require to set the value of
¢, which defines the number of principal axes we would like to
select. In other words, we assume the lower d — ¢ dimensions
of the features will actually represent the noise subspace [21].
Using this value of ¢, we find the noise variance for the g-th
mixture as,

d
. 1
2 _
%= g 2 M ®
i=g+1

where A, 411 -+ Ag 4 are the smallest eigenvalues of the covari-
ance matrix ¥,. Thus, 03 is essentially the average variance lost
per discarded dimension. It may be noted that the model allows
the use of different values of ¢ for each mixture. This has been
investigated in [9] and also, we elaborate this issue in greater
detail in Section IV.

3) Compute the Factor Loading Matrix: The maximum like-
lihood estimation of the factor loading matrix W, of the g-th
mixture of the AFA model in (2) is given by,

1
W, =Uyg, (Aq, —0.I)" R, ©6)

where Uy, is a d x ¢ matrix whose columns are the ¢ leading
eigenvectors of ¥, Ay, is a diagonal matrix containing the cor-
responding g eigenvalues, and R, is a ¢ X ¢ arbitrary orthogonal
rotation matrix. In this work, we set R, = I.

4) Feature Transformation: The posterior mean of the
acoustic factors y,, can be used as the transformed and dimen-
sionality reduced version of x,, for the g-th component of the
AFA model. This can be shown to be

A
E{Yn|xn7g} = <yn|x‘nvg> = A;(X‘n - #’g) =Zpyg (7)

where
A, =W, M " and ®)
M, =01+ W] W,. ©9)

We term the matrix A, as the g-th AFA4 transform. In this op-
eration, we are essentially replacing the original feature vec-
tors x,, by the mixture dependent transformed acoustic feature
Zn,q. Each feature vector x,, can be transformed by A ,, corre-
sponding to the mixture component it is aligned with and a new
set of features can then be obtained. However, as noted earlier,
we will not regenerate the acoustic features and instead use a
probabilistic soft-alignment in our system. This is described in
Section V where we discuss the integration of AFA within an
i-vector system.

IITI. PROPERTIES OF THE AFA TRANSFORM

In this section, we discuss the general properties and advan-
tages of the proposed acoustic feature model, the resulting trans-
formation and the transformed features.

A. Probability Distribution of the Transformed Features

Here, we derive the probability distribution of the trans-
formed acoustic features and show how AFA performs feature
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de-correlation. Let z,, = {(yn»|xn,g¢) indicate the AFA
transformed feature vector for the g-th mixture. We have the
following mean vector of z,, 4,

Mzg :E {<Y'n|xn/g>}

=E{Al(x, —pg)} =0 (10)
and its corresponding covariance matrix,
z:zg =F {Zn,gz"rz:,g} - .u'z_q .“'Z:I
= Agj;E {(Xw - Ng)(xn - Ug)T} Ay
=AlT A, (1D

For further simplification, we first substitute the value of W,
from (6) into (9) and use R, = I to obtain,

M, =01+ W, W,
=021+ (Aq, — 021) 7 UL Uy, (Ag, — 021)

= Aqg,. (12)

[T

Next, substituting the values of W, and M, from (6) and (12)
into (8) we have,

T
Pl

AT = A, (Aq, —o)T)T UL . (13)
Using this expression of AgT in (11) we obtain,
—1 2 2 2 L —T
zzg :Acl_q (Aqg - UyI) : Aqy (Aqﬂ - UQI) ’ ACl_q
2 -T
= (ACIQ - O'gI) AQg
=T-o.A, . (14)

Here, we utilize the expression Ung ¥,Uq, = Aq, and take ad-
vantage of the diagonal system. Thus, we show that for a given
mixture alignment g, the posterior mean of the acoustic factors,
or the transformed feature vectors z,, , follow a Gaussian distri-
bution with zero mean and a diagonal covariance matrix given
by I — agA;gl. Thus, the AFA transformation de-correlates the
mean normalized acoustic features in each mixture.

B. Acoustic Feature Enhancement

In the g-th mixture, the AFA transformation matrix AZ ex-
pression given in (13) can be expressed as:

%
A7 =M, (A, —oiT)7 UG

g
=A,2G, Uy (15)
where we introduced a diagonal gain matrix given by:
T
Gy =A,7 (Ag, —02T)7 . (16)
The i-th diagonal entry of G is given by,
Agi—02
G (i) = M (17)
h )\g,i

Keeping aside the term A;q(l/ ? in (15), we observe that
the transformation operation performed by A;{ in (7) first
computes the inner product of the mean normalized acoustic
feature with the ¢ principal eigenvectors of ¥, then for each
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Fig. 3. Input SNR [dB] ({) vs. Wiener gains. Wiener gain and square-root
Wiener gain are shown with a solid ( —) and dashed ( — —) line, respectively.

i-th eigenvector direction applies the gain function defined
by G,(i). The second term in (17) can be identified as a
square-root Wiener gain function [31]. This becomes clearer if
we define the classic speech enhancement terminology a priori
SNR ¢ as [21], [32],

L 2
=9 e (18)

and use this to express the gain equations. The Wiener gain G,
and the square-root Wiener gain (7 5; are given by:

b=

GVV = ff—;l and G\/W = (f—é}-——l> (19)
Wiener and square-root Wiener gain functions are plotted
against £ in Fig. 3. As discussed in [31] page 179, Sec 6.6.3), in
case of additive noise, the square-root Wiener filter is applied,
when instead of the magnitude spectrum, the power spectrum
of the filtered signal and the clean signal are desired to be
equal. The operation performed by the AFA transformation
in (15) can be interpreted as a gain function operating on a
transformed space defined by the i-th eigenvector to obtain a
clean eigenvalue A, ; — 0'3 from the noisy eigenvalue A, ; [9].
Since the eigenvalues can be interpreted as a power spectrum
obtained from the principal components [33], it is understand-
able why GG N arises in this scenario instead of GG.,. Due to
this square-root operation on the gain function, the square-root
Wiener obviously shows lower attenuation characteristics
compared to the standard Wiener filter, as depicted in Fig. 3.
It may be noted that conventional factor analysis techniques
in the super-vector space can also be interpreted using similar
Wiener like gain functions as discussed in [34].

In the signal subspace speech enhancement method [21],
a similar gain function is obtained by starting from the same
model in (1), except for the standard normal assumption on the
latent factors y. In that work, the term Wy + 1 2ain (1) was
interpreted as the “clean signal”, x as the noisy signal and € as
the additive noise. The goal was to find an estimate of the clean
signal & by finding the posterior mean of a given the noisy
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signal x and noise variance. However, in the AFA scheme, the
goal is to estimate the posterior mean of the latent factors y
for an “enhanced” and more compact version of the “noisy”
(channel degraded) acoustic features x [18]. This difference
between the two approaches yield two different optimization
criteria and their resulting gain functions.

Another contrast between the speech enhancement schemes
and AFA transformation is the interpretation of noise. In con-
ventional speech enhancement methods the noise statistics are
estimated from silence regions between speech segments [35],
and thus for the signal subspace based method, noise variance
03 is assumed to be known in the model (1). In our case, the
noise we are attempting to remove or compensate for is actu-
ally an additive distortion in the cepstral domain, which will
not exist in the silence regions. In addition, even if the silence
segments were modeled in the UBM, it is very unlikely that the
mixture components modeling the silences would be useful in
determining the noise level in other components. Thus, even
though the AFA dimension ¢ is related to the noise variance,
we resort to set the value of ¢ arbitrarily and compute the cor-
responding noise variance for each mixture using (5).

C. Acoustic Feature Variance Normalization

Going back to (15), the term A;g(l/ ) normalizes the vari-
ance of the acoustic feature stream in the ¢-th eigen-direction,
since A, ; is the expected feature variance along this direction
[36]. This means, the AFA transformation assumes that the fea-
tures that are closely aligned with the g-th mixture, originates
from the same random process, and performs this normalization
in addition to the enhancement mentioned in the previous sec-
tion. This process is interestingly similar to the cepstral variance
normalization frequently performed in the front-end. However,
feature domain processing considers the temporal movement of
the features in performing these normalizations assuming that
the feature streams are independent, while AFA groups the fea-
tures together in a mixture irrespective of their time location
and performs the normalization in an orthogonal axis derived
from the corresponding mixture covariance matrix. It would
be interesting to see how AFA systems perform if the feature
domain normalizations are removed from the front-end. Re-
cent studies [37] show that in the full-covariance UBM based
i-vector scheme, a very basic scale normalization technique out-
performs Cepstral Mean and Variance Normalization (CMVN)
and feature Gaussianization [38]. This may be due to the un-
correlated assumption among feature coefficients inherently as-
sumed while applying these normalization schemes. We have
yet to perform experiments on comparative feature normaliza-
tion schemes using AFA and suggest this as a future work.

IV. AFA INTEGRATED I-VECTOR SYSTEM
In this section, we describe how the proposed method can be
incorporated into a conventional i-vector system [6].
A. UBM and AFA Model Training

First, a full covariance UBM model, Ay given by (4), is
trained on the development data vectors. Next, the AFA di-
mension ¢ is set, which defines the number of principal axes

847

to retain from each mixture component. Using the value of g,
we find the noise variance for the g-th mixture using (5). The
factor loading matrix W, and transformation matrix A, are
then calculated using (6) and (8), respectively. After applying
the transformation as in (7), the posterior means of the acoustic
factors 2, , = (¥n|Xn,g) are used as mixture dependent
transformed acoustic features.

B. UBM Transformation

Following the discussion from Section III-A, and using (10)
and (14), the AFA transformation would require a new trans-
formed UBM Ay that models z, 4 instead of x,,, such that,

M

plzlAg) = Z wyN (0, f)g)

i=1

(20)

where ig =1- agA;gl = X,,. This UBM is not an actual
acoustic model used to calculate the posterior probabilities or
other statistics. Eq. (20) simply indicates how the UBM parame-
ters should be modified/replaced compared to the original UBM
Ag given in (4). This transformation only affects the hyper-pa-
rameter estimation.

C. Baum-Welch Statistics Estimation

In this step, the zero and first order Baum-Welch statistics
are extracted from each feature vector with respect to the UBM.
Using the AFA transformed features, extraction of the statistics
can be accomplished as follows. The probabilistic alignment of
feature x,, with the ¢g-th mixture is given by:

p(xn |g>/wg
= n) = ————2 21
Vg(n) = plglxn) ) 21
For an utterance s, the zero order statistics is extracted as:
Ni(g) = 4(n), (22)

nes

which follows the standard procedure [6], [15]. Conventionally,
the first order statistics are extracted as:

F.(y) = Z Vg (1)Ko,

neEs

Howevg:r, with the present AFA transform, the first order sta-
tistics F5(g) is extracted using the transformed features in the
corresponding mixtures instead of the original features.

ﬁs(g) = Z’Vg(“)zn,g = Z’yg(’n)AZ(Xn ~ Hg)

nes nes

=Al [F.(9) — No(9)ug) = AT F(g)

where F(g) is the centralized first order statistics [20]. This
transformation of statistics is somewhat similar to the approach
in [39], where it was done to normalize the UBM parameters to
zero means and identity covariance matrices. However, in [39]
the goal was to simplify the i-vector system algorithm, theoreti-
cally preserving the procedure results with added computational
benefits; whereas in this work, we are performing feature trans-
formation and dimensionality reduction for possible improve-
ment of the i-vector system performance.
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Fig.4. Ablock diagram of the proposed AFA integrated i-vector system. The system is shown in two phases: (a) development and (b) evaluation. In the evaluation
phase, only i-vector extraction procedure is depicted assuming an arbitrary classifier. For details on the PLDA classifier used, refer to Section V-D.

D. Hyper-Parameter Estimation

Training of the Total Variability (TV) matrix T for the
i-vector system follows a very similar procedure as discussed
in [6]. In this system, an utterance dependent super-vector s is
expressed as,

m, = Iy +TW€

(23)

where the M d dimensional vector m denotes the speaker in-
dependent mean super-vector (i.e., concatenation of the UBM
means jt; = myjy)), T is an Md x R low rank matrix (R <
Md) whose columns span the total variability space, and w
is a normal distributed random vector of size R, known as the
total factors. The posterior mean vector of w, given an utter-
ance data is know as an i-vector.

1) Initialization: Depending on the AFA parameter ¢, the
size of the matrix T needs to be defined. In the AFA based
i-vector system, the super-vector dimension becomes K = Mg
instead of M d. Thus, the T matrix size needs to be setto A x R,
and randomly initialized. We define a parameter, super-vector
compression (SVC) ratio « = K/Md = ¢/d, measuring com-
paction obtained through AFA transformation.

2) EM Iterations: For each utterance s € S, R x R precision
matrix L and R x 1 vector B, are estimated as [40]:

M g
L. =1+ NJ(g)T{;E, Ty and

g=1

24

M
L1
B.= > N.J(¢)T[3, F.(g) (25)
g=1
respectively, where T[4 is the g-th sub-matrix of T of dimen-

sion ¢ x R, X, is the ¢ X ¢ AFA transformed UBM covariance
matrix. The total factors for the utterance s are estimated as:

w, = L;'B,. (26)

In each iteration, the g-th block of the T matrix is updated using
the following equation:
1

Ty =Y Fgw! D@L +wowl) Ng)| @)

5€S s€S

which follows the same procedure as a conventional i-vector
system [6], [40].

V. SYSTEM DESCRIPTION

We perform our experiments on the male trials of the NIST
SRE 2010 telephone and microphone conditions (core condi-
tions 1-5, extended trials). A standard i-vector system [6] with
a Gaussian Probabilistic Linear Discriminant Analysis (PLDA)
[41] back-end is used for evaluation. Specific blocks of the base-
line system implementation and details of the proposed scheme
are described below. An overall block diagram of the proposed
system is included in Fig. 4.

A. Feature Extraction

In order to remove the silence frames, an independent
Hungarian phoneme recognizer [42] combined with an energy
based voice activity detection (VAD) scheme is used. A 60-di-
mensional feature vector (19 MFCC + Energy + A + AA)
is extracted using a 25 ms analysis window with subsequent
10 ms shifts, and then Gaussianized utilizing a 3-s sliding
window [38].

B. UBM Training

Gender dependent UBMs having full and diagonal-covari-
ance matrices with 1024 mixtures are trained on telephone
utterances selected from the Switchboard II Phase 2 and 3,
Switchboard Cellular Part 1 and 2, and the NIST 2004, 2005,
2006 SRE enrollment data. We use the HTK toolkit for training
with 15 iterations per mixture split. The UBM full covariance
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values were floored to 10~ using the —wv option in HTK
HERest toolkit [43].

C. Total Variability Modeling

For the TV matrix training, the UBM training dataset is uti-
lized. Five iterations are used for the EM training. We use 400
total factors (i.e., our i-vector size was 400). All i-vectors are
first whitened and then length normalized using radial Gaus-
sianization [41].

D. Session Variability Compensation and Scoring

A Gaussian probabilistic linear discriminant analysis (PLDA)
model with a full-covariance noise process is used for session
variability compensation and scoring [41]. In this generative
model, an R dimensional i-vector w extracted from a speech
utterance s is expressed as:

w,=wo+®F+n (28)
where wy is an B x 1 speaker independent mean vector, @ is
the R X Npgy rectangular matrix representing a basis for the
speaker-specific subspace/eigenvoices, (3 is an Ngy X 1 latent
vector having a standard normal distribution, and n is the R x 1
random vector representing the full covariance residual noise.
The only model parameter here is the number of eigenvoices
Ngy, that is the number of columns in the matrix ®. I-vectors
extracted from the UBM training dataset and additional micro-
phone data selected from SRE 2004 and 2005, are utilized to
train this PLDA model.

VI. EVALUATION RESULTS

A. Performance Evaluation of AFA Systems

In this experiment, in four different runs we retain ¢ =36,
42 and 48 coefficients from the d = 60 dimensional features
using the proposed AFA method. We vary the number of eigen-
voices Ngy in the PLDA model from 50 to 400 in 50 step in-
crements. The performance metrics used are %Equal Error Rate
(EER) and minimum Detection Cost Functions (DCF) defined
in NIST SRE 2008 [44] (DCF,;4) and NIST SRE 2010 [45]
(DCF e ). The results are summarized in the plot shown in
Fig. 5 and a subset of these results, organized by performance
metrics, is also shown in Table I. The proposed systems are
compared against our baseline full-covariance and diagonal co-
variance UBM based i-vector systems, referred to as “Baseline
full-cov” and “Baseline diag-cov”, respectively.

From Fig. 5(a)—(c), we observe that for ¢ = 42 and for almost
all values of Ngy, the proposed AFA system performs better
than both baseline systems with respect to all three performance
metrics. For ¢ = 48, the AFA system is superior to the baselines
in DCF,,..,, but very close with respect to the other performance
measures. For ¢ = 42 and Ngy = 200, we achieve the best
EER performance of 1.73% which is 11.28% lower relative to
the corresponding Baseline full-cov system EER. The results in
Fig. 5 and Table I indicate that the proposed AFA transformation
of the acoustic features are successfully able to reduce nuisance
directions in the feature space, producing i-vectors with better

Baseline Full-cov

— — — Baseline Diag-cov
------- AFA-Fix (q = 36)
= = = AFA-Fix (q = 42)
————— AFA-Fix (q = 48)

%EER

L 1 == 3
50 100 150 200 250 300 350 400

Eigenvoice dimension, Npy

Fig. 5. Performance comparison between proposed AFA and baseline i-vector
system with respect to (a) %EER, (b) DCF,,4 and (¢c) DCF,,.., for different
eigenvoice size Ny of the PLDA model. Evaluation is performed on NIST
SRE 2010 core condition-5 using the extended trials.

TABLE 1
PERFORMANCE COMPARISON BETWEEN BASELINE I-VECTOR AND PROPOSED
AFA SYSTEMS FOR DIFFERENT VALUES OF N gy AND ¢. EVALUATION
PERFORMED ON NIST SRE 2010 CORE CONDITION-5 EXTENDED TRIALS

PLDA Baseline system AFA system

Ngy | full-cov diag-cov | ¢ =36 q¢qg=42 ¢q =48
% Equal Error Rate (EER)

100 2.0274 24896 | 2.1706 2.0115 19117

150 2.0396 2.5548 | 2.0632 1.7944 19554

200 1.9535 24750 | 19756 1.7322 1.9706

250 1.9551 24854 | 2.0216 1.8233 19183

300 1.9467 2.5343 | 2.0980 1.8497 1.9422
DCF 4 (NIST SRE 2008)

100 0.1145 0.1348 | 0.1110 0.1073 0.1120

150 0.1124  0.1285 | 0.1039 0.1014 0.1037

200 0.1033 0.1229 | 0.1071 0.1015 0.1040

250 0.1053 0.1237 | 0.1090 0.1017 0.1035

300 0.1061 0.1247 | 0.1092 0.1009 0.1024
DCFpew (NIST SRE 2010)

100 04050 04526 | 04103 04056 0.4057

150 0.4056  0.4365 | 0.3928 0.3869 0.3635

200 0.4093 0.4444 | 03678 03732  0.3468

250 0.4251 0.4501 | 0.3639 03765 0.3620

300 04234 04428 | 0.3844 03750 0.3473

speaker discriminating ability. We also note that our full-covari-
ance baseline system and AFA based systems perform signifi-
cantly better than the diagonal-covariance system.

B. Effect of Different AFA Dimension

In Fig. 6, AFA system performance is compared with the
Baseline full-cov system for different values of g, keeping the
parameter Ngy- fixed at 150. Here we use ¢ = 24, 30, 36, 42,
48 and 54, yielding super-vector compression (SVC) ratios of
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= © = %RI in DCFyy
'=0F %RI in DCFyeyy
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36 42 48 54
AFA dimension, ¢

Fig. 6. Performance comparison of AFA system for different values of ¢ with
respect to % Relative Improvements (RI) in %EER, DCF ;4 and DCF,,.,,
compared to the corresponding baseline system performance metric. Evaluation
is performed on NIST SRE 2010 core condition-5 using the extended trials. The
figure clearly reveals that the system performance drastically degrades as the
value of ¢ is reduced.

a =0.4,0.5,0.6,0.7,0.8 and 0.9, respectively. From this figure,
we observe that the system performance is quite sensitive to the
¢ parameter of the proposed AFA method, though performance
improvement is achieved compared to the baseline system in al-
most all cases. If the value of ¢ is too low, some speaker depen-
dent information is removed by the AFA transform and system
performance degrades. Values of ¢ close to feature dimension d
yields performances similar to the baseline system. We observe
consistent improvements in the system performance by setting
g close to 42 ~ 48 for the AFA systems. In this region, relative
improvement values of all three performance metrics are in the
range of 4 ~ 12%. We believe the fluctuation of performance is
due to the fact that a different value of ¢ is suitable for each mix-
ture component. Thus, methods of selecting the optimal AFA di-
mension can be a viable future work, especially since the model
allows different values of ¢ for each mixture.

C. Effect of UBM Variance Flooring

It is known that full covariance UBM based speaker recogni-
tion systems can be very sensitive to small values in the UBM
covariance matrices [20]. In [20], a variance flooring algo-
rithm [46] was used to tackle with this issue. As mentioned in
Section V-B, we performed UBM variance flooring by limiting
the minimum value of a covariance matrix component to 10 ~°
using HTK. We refer to this flooring method as “vFloor-1”. To
observe the effect of an alternate variance flooring on the AFA
systems, we trained the UBM as described in [20]. In each EM
iteration, the full covariance matrices were processed using the
flooring function described in Table II [20], [46]. We used the
floor matrix F = f32, where

(29)

is the average covariance matrix, and f = 0.1 is set as in [20].
We refer to this flooring method as “vFloor-2”. Baseline and
AFA system results using these two different UBM flooring
methods are summarized in Table III. In this experiment, PLDA
size Ngy was set to 150.

TABLE II
UBM COVARIANCE MATRIX FLOORING FUNCTION (VFLOOR-2) [20]

Function: S = floor (S, F)

1. Cholesky decomposition: F = LL”

2. Normalize target matrix: Q <+ s’

3. Eigenvalue decomposition: Q = uDU”

4. Obtain diagonal matrix D by flooring D to 1:
di; = max(d;;, 1)

Return to full matrix: Q « UDU7T

6. De-normalization: S + LQL”

W

TABLE III
PERFORMANCE COMPARISON BETWEEN BASELINE I-VECTOR AND DIFFERENT
AFA SYSTEMS USING ALTERNATE UBM FLOORING. EVALUATIONS
PERFORMED ON NIST SRE 2010 CORE CONDITION-5 EXTENDED TRIALS

System | EER  DCF,y DCF,.y

UBM variance flooring using vFloor-1

Baseline full-cov | 2.03961 0.11236  0.40556
q=36 | 2.04234 0.10417 0.35646
AFA | ¢=142 | 1.79444 0.10143 0.38688
q=48 1.95537 0.10375 0.36349
q="54 1.90054 0.09884 0.39321
UBM variance flooring using vFloor-2 [20]
Baseline full-cov | 1.93923 0.10315 0.41917
q =36 1.90352 0.11016  0.39275
AFA | ¢=142 | 2.05354 0.10328 0.38583
q=48 | 2.00150 0.10168 0.38034
q="54 1.92451 0.10138  0.39755

From the results, we observe that the variance flooring
vFloor-2 [20] provides slightly improved baseline system
performance compared to vFloor-1, with respect to %EER
and DCF,;4 but degrades in DCF,,.,, measure. The proposed
AFA transformation achieves much better performance over
the baseline system when using vFloor-1. AFA provides im-
provement over the baseline system using vFloor-2 only for
q = 54, whereas performance improvement is observed for
q = 42, 48 and 54 when vFloor-1 is used. This deterioration of
AFA system performance can be expected, since the vFloor-2
algorithm modifies the eigenvalues of the covariance matrices
on which the AFA approach directly relies on. Noting that
AFA with vFloor-1 provides the best overall performance and
vFloor-2 does not provide sufficient advantage over vFloor-1,
we use VFloor-1 method in all of our subsequent experiments.

D. Performance in Microphone Conditions

In this section we present evaluation results of the proposed
systems on the NIST SRE 2010 core conditions 1-4 using the
extended trials. In these experiments, additional microphone
data from SRE 2005 and 2006 corpora was included for UBM
and TV matrix training. The PLDA model was trained using
both telephone and microphone data as before. The results are
given in Tables IV-VIL. We compare the following systems:
Baseline full-cov, and AFA with ¢ = 36, 42, 48 and 54. The
PLDA parameter Ngy was set to 150. We did not evaluate the
diagonal UBM system in these conditions.

From the results, again we observe that the proposed AFA
systems consistently outperform the baseline system, especially
for conditions 1-3. However, it seems a single parameter setting
of ¢ does not always provide the best performance across all the
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TABLE 1V
PERFORMANCE COMPARISON BETWEEN BASELINE I-VECTOR AND DIFFERENT
AFA SYSTEMS. EVALUATION PERFORMED IN NIST SRE 2010 CORE
CONDITION-1 EXTENDED TRIALS

System EER DCF,; DCF,.,
Baseline full-cov | 2.09767 0.08539  0.31712
qg=36 | 226966 0.08024 0.28560
AFA | 47 42 | 2.07210 0.07921  0.28063
g =48 | 193024 0.07849 0.28756
g=>54 | 201850 0.07914 0.33058

TABLE V

PERFORMANCE COMPARISON BETWEEN BASELINE I-VECTOR AND DIFFERENT
AFA SYSTEMS. EVALUATION PERFORMED IN NIST SRE 2010 CORE
CONDITION-2 EXTENDED TRIALS

Sy stem EER DCF(}M DCanU
Baseline full-cov | 3.75464 0.16353  0.53167
qg=36 | 3.78150 0.16862 0.48979
AFA | 947 42 | 3.58186 0.15783  0.48376
qg=48 | 3.67975 0.16186 0.50176
qg=>54 | 3.80477 0.16084 0.50948

TABLE VI

PERFORMANCE COMPARISON BETWEEN BASELINE I-VECTOR AND DIFFERENT
AFA SYSTEMS. EVALUATION PERFORMED IN NIST SRE 2010 CORE
CONDITION-3 EXTENDED TRIALS

SyStem EER DCF(»Z(I DCFn(:'ur
Baseline full-cov | 3.17154 0.15207 0.45750
q = 36 345395 0.16002 0.48452
AFA q=42 3.15838 0.14754 0.44873
q =48 3.10171 0.14656  0.42633
q=>54 2.89653 0.14827 0.43774

TABLE VII

PERFORMANCE COMPARISON BETWEEN BASELINE I-VECTOR AND DIFFERENT
AFA SYSTEMS. EVALUATION PERFORMED IN NIST SRE 2010 CORE
CONDITION-4 EXTENDED TRIALS

System EER DCF,; DCF,.,
Baseline full-cov | 2.05830 0.09356  0.26975
=36 | 201237 0.09314 0.30255

AFA | 17 42 | 2.01237 0.09314  0.30255
q =48 | 1.80459 0.09456 0.28637

q=>54 1.82594 0.08728 0.27816

performance metrics. Considering the best %EER values, the
proposed systems achieved 8.14%, 6.43%, 8.67% and 12.33%
relative improvements in conditions 1, 2, 3 and 4, respectively.
These results demonstrate the effectiveness of the proposed
scheme in the microphone mismatched conditions as well.

E. Fusion of Multiple Systems

We select three of our systems for fusion: (i) Baseline full-
cov, (ii) AFA (¢ = 42) and (iii) AFA (¢ = 48). The PLDA Ngy
parameter was set to 150 for all systems. Simple equal-weight
linear fusion was used with mean and variance normalization
of individual system scores to (0, 1) for calibration. Results are
shown for NIST SRE 2010 core condition 5 and pooled condi-
tion (combining all trials from condition 1-5) in Tables VIII and
IX, respectively.

From the results, fusion performance of systems (i) and (ii)
clearly reveal that AFA and baseline system have complemen-
tary information, since %EER and the DCF values improve.
This is observed for both telephone and pooled condition. The
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TABLE VIII
LINEAR EQUAL-WEIGHT SCORE FUSION PERFORMANCE OF BASELINE
I-VECTOR AND PROPOSED SYSTEMS FOR NIST SRE 2010 CORE CONDITION-5

Individual system performances

System %EER DCF,; DCF,.,

(i)  Baseline full-cov 2.03961 0.11236  0.40556

(ii)) AFA (¢ =42) 1.79444  0.10143  0.38688

(iii) AFA (¢ = 48) 1.95537 0.10375 0.36349
Fusion system performances

1 Fusion of (i) & (i) | 1.77162 0.09704 0.36610

Fusion of (i) - (iii) | 1.70258 0.09610  0.34839

TABLE IX
LINEAR EQUAL-WEIGHT SCORE FUSION PERFORMANCE
OF BASELINE I-VECTOR AND PROPOSED SYSTEMS FOR
NIST SRE 2010 CORE CONDITIONS 1-5 POOLED

Individual system performances

System %EER DCF,; DCF,.,

(i)  Baseline full-cov 3.02720 0.13995  0.46022

(ii) AFA (¢ =42) 2.86091 0.13316  0.43030

(iii) AFA (¢ =48) 2.88596 0.13615 0.43086
Fusion system performances

1 Fusion of (i) & (ii)) | 2.69742 0.12199 0.41459

2 Fusion of (i) - (iii)) | 2.61094 0.12035 0.40591

T T T T T T T

Baseline full-cov

O RS ...... ........ — — —AFA (¢=142)

Fusion

Miss probability (in %)

s e & e s T T S

01 02 05 1 2 5 10
False Alarm probability (in %)

Fig. 7. Performance comparison of baseline, AFA and fusion systems using
DET curves. Evaluation is performed by pooling results of the core conditions
1-5 of NIST SRE 2010 extended trials. (i) Baseline i-vector system using Full
Covariance UBM (Baseline full-cov), (ii) AFA i-vector system (g = 42), and
(iii) Equal-weight linear fusion of systems (i) and (ii).

best result is achieved by fusing systems (i)—(iii), to obtain
16.52%, 14.47% and 14.09% relative improvement in %EER,
DCF ;4 and DCF,,.,,, respectively, compared to the baseline
system in condition-5. In the pooled condition, this fusion
provides 13.75%, 14.0% and 11.80% relative improvement in
%EER, DCF ;4 and DCF,, ., respectively. Performance com-
parison of the systems (i), (ii) and their fusion for the pooled
condition is shown in Fig. 7 using Detection Error Trade-off
(DET) curves. Here, again we observe the superiority of the
proposed AFA system over the baseline system while the fusion

of these systems consistently provide further improvement in
the full DET range.
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F. Computational Advantages

In our experiments, we observe that the TV matrix training
process using the AFA transform is computationally less ex-
pensive compared to the conventional process. This is expected
since the computational complexity of an i-vector system is pro-
portional to the super-vector size M d [39], which is reduced to
Mg for an AFA based system. Thus, the computational com-
plexity of the proposed system is theoretically reduced by a
factor of 1/ex (0 < « < 1) compared to the baseline system.

VII. CONCLUSIONS

In this study, we have proposed an alternate modeling tech-
nique to address and compensate for transmission channel
mismatch in speaker recognition. Motivated by the covariance
structure of conventional acoustic features, we developed a
factor analysis technique which operates within the acoustic
feature domain utilizing a well trained UBM with full covari-
ance matrices. We advocated that conventional super-vector
domain factor analysis methods fail to take advantage of the
observation that speech features reside in a lower dimensional
manifold in the acoustic space. The proposed acoustic factor
analysis scheme was utilized to develop a mixture-dependent
feature transformation that performs dimensionality reduction,
de-correlation, normalization and enhancement at the same
time. Finally, the transformation was effectively integrated
within a standard i-vector-PLDA based speaker recognition
system using a probabilistic feature alignment technique. The
superiority of the proposed method was demonstrated by ex-
periments performed using the NIST SRE 2010 extended trials
of five core conditions. Measurable improvements over two
baseline systems were shown in terms of EER, min DCFs and
DET curves.
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