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Review of Theories of Scattering of Elastic 
Waves by Cracks 

EDGAR  A.  KRAUT 

Abmuct-The  detection  of  cracks  with  the aid of ultrasonics is an 
important  nondestructive  evaluation (NDE) technique. The correspond- 
ing theoretical problem  of  the  scattering of elastic  waves  by  cracks  has 
alsu been  studied  by  scientists  working in many  different  fields. Con- 
tributions  to our knowledge  of  the  subject  have  come  from  such  diverse 
areas as geophysics,  applied  mathematics,  electrical  engineering,  and 
continuum  mechanics.  Many of the  results  obtained  by  workers in 
those fields  are also of  interest  to  the NDE community  and  for  that 
reason a review is presented  here  of  current  results  and  profitable  direc- 
tions  for future research. 

T 
I .  INTRODUCTION 

HE ULTRASONIC detection  of  cracks  in  the  interior of 
an  elastic  solid  by  the use of  surface  transducers is a 

fundamental  Nondestructive  Evaluation  (NDE)  problem.  The 
presence of cracks  may  be  detected  either  by observing the 
back  scattered  elastic waves  using the  launching  transducer as a 
receiver or by observing  obliquely scattered waves with  a 
separate receiving transducer  located elsewhere on  the  surface. 
Unfortunately,  most of the  theoretical  work on  the  scattering 
of elastic  waves  from  cracks  has  been  confined to  the case of  a 
crack  in an unbounded  elastic  solid,  a  situation  far  different 
from  the  experimental  one. Even in  that case, exact  results  are 
available only  for  a  crack  occupying  a  half  plane.  Exact  results 
for  cracks having a  finite  surface  area,  such  as  a  penny  shaped 
crack,  are  not available, although  many  approximate  calcula- 
tions have been  published,  particularly  in  the  low-frequency 
limit. Before  delving into  the  mathematical  details  of  scatter- 
ing from  cracks,  it is important  to recognize that idealized 
cracks  and real cracks  may  differ  substantially  in  their  be- 
havior.  For  example,  a  cracked  specimen  may  show  different 
ultrasonic  scattering  characteristics  depending  on  whether it is 
loaded or not.  Such  differences may  be attributable to  the 
closing of  cracks  under  compression or the  opening  of  cracks 
under  tension.  Important as such  considerations  are,  they 
have  received little  attention  from  theorists.  Consequently, 
until  a  better  description  of  the  boundary  conditions  at  a 
crack  becomes  available,  the  idealized  theory  must  be 
employed. 

11. IDEALIZED DESCRIPTION OF CRACKS 
From  the  theoretical  point of view, a crack is a  two-dimen- 

sional  surface  of  finite  or  infinite  area  located  in  the  interior of 
an  elastic  solid. For  example, a penny  shaped  crack  can  be 
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Fig. 1. Geometry of the  scattering  problem  for  a  penny  shaped  crack. 
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Fig. 2. Geometry  of  the  scattering  problem  for  a  crack  occupying  a 
quarter  plane. 

thought  of as the result of removing a thin disk  shaped  section 
of material  from  the  interior  of  a  solid.  Boundary  conditions 
are  now  applied  at the surfaces  of  the void  which  has  been 
created.  In  the case  of a  weak  crack,  the  surfaces  of  the void 
are  taken as free  surfaces  where  the  stress  must  vanish.  In  the 
case of  a rigid crack,  the void is imagined to be filled with a 
completely rigid material  which  pins the walls of the crack so 
that  the  displacement is zero  everywhere.  In  each  case, the 
finite  thickness  of the disk is neglected  and  both  faces are 
thought  of as occupying  the same  plane.  This  approach,  while 
mathematically  convenient, avoids the  question of how  the 
faces of the  crack  interact  with  one  another  and  whether  the 
crack is open or closed.  Typical  examples of two-dimensional 
cracks  are  shown in Figs. 1 and 2 .  

111. SCATTERING OF ELASTIC WAVES BY A CRACK 
OCCUPYING A HALF  PLANE 

There  are  two  features  of  a  crack  that are  essential in deter- 
mining  its  behavior  as  a  scatterer  of  elastic  waves.  The first is 
that  a  crack  represents  a  two-dimensional  surface across  which 
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i = I n c i d e n t   c o m p r e s s i o n a l  wave 

i I  = R e f l e c t e d   c o m p r e s s i o n a l  wave 

111 = R e f l e c t e d   s h e a r  wave 

I V  = D i f f r a c t e d   c o m p r e s s i o n a l  wave 

V = D i f f r a c t e d   s h e a r  wave 

VI = D i f f r a c t e d   c o n i c a l  wave 

U = Compressional wave a n q l e  of  i n c i d e n c e  

us = Shear   wave   ang le   o f   re f l ec t Ian  

B = C r i t i c a l   a n q l e   a r c s i n   ( v s / v  ) 

P 

P 
vD,vs = Compressional  and  shear  wave  speeds 

Fig. 3.  Diffracted  and  reflected  wavefronts  produced by an incident 
compressional wave on a  half-plane  crack. 

the stress or displacement (or both) can  be  discontinuous.  The 
second is that  cracks have  edges which  generate  diffracted 
waves.  The scattered waves produced  by an incident  com- 
pressional wave striking  a  half-plane  crack  are  shown in Fig. 3 .  
For  the case of  a  weak  crack,  in  addition to  the wavefronts 
shown,  there will also  be a Rayleigh wave propagating  away 
from  the edge  of the  crack  and  confined  to  the plane  of the 
crack.  The  first  exact  solution  for  scattering  by  a rigid half 
plane  crack  was  given  by  Fridman [ l ]  in  1948.  The  corre- 
sponding  problem of the  scattering  of  time  harmonic  shear 
and  compressional  waves  by  a  weak  half  plane  was  solved 
exactly  by Maue [ 2 ]  in 1953.  A very  detailed  exact treat- 
ment  of  the  diffraction  of  incident  shear  and  compressional 
pulses  by  weak  and rigid half  planes  was  presented by 
De Hoop  [3]  in  1958.  The  half-plane  problem is particularly 
simple  because  displacements  parallel to  the edge of the half 
plane  are  decoupled,  making  the  remaining  problem  two- 
dimensional.  Since the  exact  solution is known,  the  half- 
plane  problem  provides  a  convenient  means of testing  various 
approximate  solutions  such as the Kirchoff  approximation. 
Experimentally,  scattering  from  a half  plane  can be modeled 
as shown in Fig. 4 .  This  corresponds to  the  theoretical  prob- 
lem  of  scattering  from a half  plane  at  a  finite  depth  beneath 
the  free  surface of an  elastic  half  space.  In  addition to  the 
types  of  scattered waves  shown in Fig.  3  there is now  also the 
possibility of  multiple  scattering, waveguiding, and  the  excita- 
tion  of  Lamb waves  in the region between  the half  plane  and 
the  free  surface.  The  corresponding  theory  does  not  seem to 
have been  worked  out  in  any  detail,  and because  of the ease 
with  which  the  problem  can  be  modeled,  further  work  seems 
worthwhile. 

Fig. 4 .  Experimental  models  for  scattering  and  diffraction  from  stress 
free  and rigid half-plane cracks. 

IV. SCATTERING OF ELASTIC WAVES BY A Two 
DIMENSIONAL CRACK OF ARBITRARY  SHAPE 

IN AN UNBOUNDED  ELASTIC MEDIUM 
Consider the  scattering  of an arbitrary  incident wave by  a 

crack Z of finite  extent  and vanishing thickness. In an elastic 
solid C is a  two-dimensional  region  across  which  the  displace- 
ment  and  stress  may  be  discontinuous.  Both  the  incident  and 
scattered elastic waves  satisfy  the  homogeneous wave equation 

With the aid  of  Green's theorem,  the  scattered  displacement 
field us can  be  expressed in terms of the  jumps across C in the 
displacement  and  stress.  Let nt and nT denote  the  unit  vectors 
in the  direction  of  the  normal  to C+ and C-, respectively; E+ is 
one face of C and C- is the  other  face.  The positive  sense of 
nf and n,: is taken  towards C ;  hence, n; = -HT. The  jump in 
displacement is  given by 

[ U i ] ?  = u t  - U; (4.2) 

and  the  jump  in  the  stress is  given by 

[ T . . ]  +R? = (T?. - TT.) H? 
- I 11 11 I (4.3) 
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where 

In the time  harmonic case the  scattered field u f ( x l ,  x 2 ,  
x 3 ,  u)e iwf  is given by  [3] 

The first term  on  the  right-hand  side  of (4.4) is the displace- 
ment  due  to a single layer  distribution  on C. The  second  term 
is the displacement  due to  a double  layer  distribution  on C. 
The  term  due  to  the single layer  distribution leads to  a dis- 
placement which is continuous  across C but gives a  stress 
which  jumps  across C by  the assumed amount.  On  the  other 
hand,  the  term  due  to  the  double  layer  distribution  leads  to  a 
displacement  which jumps across C by  the assumed amount 
but gives a continuous  stress  across C. The  tensor  Green’s 
function Gii for  the  elastic wave equation (4.1) is well known 
[3] and is given by 

where 

k p  = wiu,, k, = w/u,, p$ = X f 2 p ,  and pv,” = p  

The  unknown  stress  and  displacement  discontinuities  in  the 
integrands  of (4.4) are  determined  by  applying  boundary  con- 
ditions to the  scattered field u f ( x l ,  x 2 ,  x ) ,  W )  at  the surface 
of the  crack.  The  resulting  integral  equations have been solved 
exactly for the case  where C is a half  plane [ l ]  - [ 3 ]  . For 
cracks  of  more  general  shape,  only  approximate  solutions  are 
known. 

V .  KIRCHOFF’S  APPROXIMATION 
In the  Kirchoff  approximation,  specific  assumptions are 

made  about  the  jumps  in  the  stress  and  displacement  across  a 
crack.  This  permits  the  direct  evaluation  of (4.4) without 
having to  solve any  integral  equations. We are  interested  here 
in the  errors  introduced  by  this  approximation.  Kirchoff’s 
original theory  assumes  that  the wave function  and  its  normal 
derivative  are determined  entirely  by  the  incident wave on the 
geometrically  illuminated  part  of  the  scatterer.  The wave 
function  and  its  normal derivative  are  assumed t o  vanish on 
the  dark  part  of  the  scatterer.  The  corresponding  assumptions 
for  the  scattering  of elastic waves are  that  the  amounts  by 
which  the  stress  and  displacement  jump  across  a  crack  are 

numerically  equal to  the corresponding values of  the  incident 
wave at  the  illuminated  surface  of  the  crack. When this 
assumption is made  it is found [3] that all the reflected waves 
are  lost  in the  solution.  The critical angle head wave  is also 
lost. Only the  incident wave and  the  diffracted waves gener- 
ated  by  the edge of the  crack are obtained.  This  explains  why 
the  Kirchoff  assumptions  are  supposed  to solve diffraction  by 
a perfectly  absorbing  scatterer (in optical  terms  a  black  screen). 
The  Kirchoff  approximation  can  be  modified  in  such a way 
that  the  correct  reflected waves are  obtained  [3] , [4], how- 
ever, the critical angle head waves rre always lost.  One  can 
think  of  the  Kirchoff  approximation as a  method of specifying 
the physical  properties  of a crack  in  terms  of  the  jumps  in 
displacement  and  stress  across it.  If these  jumps are numeri- 
cally equal to  the  corresponding values of  the  incident wave 
at  the  crack  surface,  the  crack is perfectly  absorbing or 
“black.” In general,  however, the  theories of Kirchoff  and 
modifications  of  it are poor  substitutes  for rigorous diffraction 
theory (wave equation  plus  boundary  conditions)  because  they 
do  not  correctly  describe  the field in  the vicinity of  the  scat- 
terer  and  in  the  long-wavelength  limit  because  they  entirely 
fail to  predict  the  correct  order  of  magnitude  of  the field  far 
from  the  scatterer [4 ] .  

VI. SCATTERING FROM A PENNY SHAPED CRACK 
The  scattering  of  elastic waves by a  penny  shaped  crack  in  an 

unbounded  elastic  solid has been  treated  by several  investi- 
gators [S] - [ 1 S] . Some  of  the earliest work is that  of 
Filipczynski  [S] (1961) who  treated  the  problems  by  separa- 
tion  of variables in  an  axially  symmetric  oblate  spheroidal 
coordinate  system. Use of  that  coordinate  system  permits a 
simple  statement  of  the  boundary  conditions  on  the  surface 
of a disk  since  a  disk is one of the  coordinate  surfaces.  The 
case  considered by Filipczynski  [S] is that of the  scattering  of 
a normally  incident  plane  compressional wave by a  disk  in the 
limit  in  which  the  radius  of  the  disk is much  shorter  than  the 
wavelength of  the  incident wave (long  wavelength or Rayleigh 
limit ka -+ 0). In  this  case,  the  Kirchoff  approximation is ex- 
pected to  be  poor.  Far away from  the  disk in Fig. 1 ,  the 
reflected waves can  be  referred to  a  set of spherical coordinates 

x 3  = R  cos e 
x2 = R  sin 0 sin $ (6.1) 

xI = R  sin 0 cos $. 

When a plane  compressional wave is normally  incident  on  the 
penny  shaped  crack  in Fig. 1 ,  then axial symmetry  permits  the 
scattered  displacement  field to  be  represented  by  the  gradient 
of  a scalar potential  ip2nd  the  curl  of a vector  potential having 
only  one  component A = e,  A ,  so that, 

-+ 

8 = Bp f VX(2@A,) .  (6.2) 

Filipczynski’s expression  [5]  for ip and A ,  in  the long-wave- 
length  far-field  limit  are 

e 
cp=Cpo - cos 8 (6.3) 

- ikLR 

R 
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where 
2a (kLa)’ 

PO=-- 3ll l+-(-) 3 kT ’ 
4 kL 

3n 

The  longitudinal  and transverse  wavenumbers  are kL and kT,  
respectively.  The  corresponding  displacement  components 
U R  , U0 , and U@ to  order R-’ are 

-ikLR 

U R  = -ikLpO - e 
R 

cos e 
- ikTR 

Ug = ikT A .  - 
e 

R 
sin 0 

U@ = 0. (6.9) 

Different  expressions  for  the far-field displacements  due to 
diffraction  of  elastic waves by rigid and  weak  circular  disks 
have  been obtained  by Mal [7] - [ 1 l ]  , and  formulas  for  the 
corresponding  scattering  cross  sections  appear in the  works 
of  Robertson  [6]  and  Filipczynski  [5] . Details of  the  com- 
putation  of  the  scattering cross  section  when  plane  time  har- 
monic  compressional  or  shear  waves  are  incident  on  two- or 
three-dimensional  obstacles in an  infinite  elastic  solid  have 
been  discussed by several authors [ 161 - [ 191 . Except for 
Filipczynski’s work, all the  other  cited  results have  been ob- 
tailed  in  cylindrical  coordinates  by  iteratively  solving  integral 
equations  for  the  scattered field in the long-wavelength limit. 
The  work  of  Roberston  [6] is particularly  interesting. He 
assumed that  the  scattered field due  to  a  plane  compressional 
wave normally  incident  on  a  penny  shaped  crack  could  be 
modeled  by  a  harmonically  oscillating  piston on  the  surface 
of a semi-infinite elastic solid. He thus replaced the  problem 
of calculating the  scattered field from  a disk  shaped  flaw  in  an 
unbounded  elastic  medium by the  problem  of  calculating  the 
radiation field of  a disk  shaped  transducer on  the surface  of 
an  elastic  half  space.  Robertson  considered  the  case  where  a 
time  harmonic  normal stress is prescribed  at  the disk  surface 
and the displacements  are  zero  elsewhere on  the  boundary 
[6] . He  also treated  the  complimentary case  where the dis- 
placement is prescribed  at the disk  surface  and  the stresses  are 
zero elsewhere on  the  boundary  [20] . In both  of  these cases, 
the  fact  that  stress is prescribed  over one  portion  of  the 
boundary  and  the  displacement is prescribed  over  the  remain- 
ing portion  leads  to  integral  equations  which have  only  been 
solved approximately in the  long-wavelength  limit. 

There is another  kind  of disk  shaped  transducer  problem 
that has  been  solved  exactly  by Miller and Pursey [21] . It is 
the  problem of the field due to  an  oscillating  normal  stress 
applied  over  a  disk  shaped  region on an  otherwise  free  surface 
of a semi-infinite  elastic  solid.  Since  in  this  case  the  stress 
alone is specified on  the  boundary,  the  problem can  be  solved 

exactly.  The  solution  obtained  by Miller and  Pursey  [21] 
given in  terms of the  potentials @(r, z) and $(r, z) is 

m 

(2k’ - k;) 
P 

exp (-vz) J 1  (ka) Jo(kr) d k  

nca . 

$(r,  z) = t jo F ~ )  exp (-VIZ) J1 (ka)  Jo(kr)  dk (6.10) 
2v 

where 
V = d m  

VI = d v  
F(k) = ( 2 k Z  - k i ) 2  - 4 k 2  VU’ (6. l 1) 

and k, ,   kp  are  the  compressional  and  shear  wavenumbers, re- 
spectively.  The  radius  of  the  disk is r = a and  the  modulus of 
rigidity of  the solid is p.  The  displacements U,, and U, and  the 
stresses T,, and T,, are  related to  the  potentials  by 

Tzz = -Xk;$+   2p  -. au, 
az (6.12) 

The  boundary  conditions  satisfied  by  this  solution  are 

[T, , ] ,=,  = 1, for r < a  

[7‘,,],~0 = 0, for r > a  

[T,,] z = o  = 0, for 0 r < W. (6.13) 

In  the  spherical  coordinate  system  of  (6.1),  the far field 
asymptotic  form of the  solution valid for large R and small a 
is given by 

(6.14) 

where  the  compressional  wavenumber k,  has  been  replaced  by 
unity  in  (6.14)  and  the new  shear  wavenumber < is  given by 

= kp/k, .  The  function F,({) is defined  by 

Fo(c) = (2{’ - l’)’ - 4 c 2 ( t 2  - - tz)1/2. (6.16) 

The  corresponding  expressions  obtained  by Mal [7] , [ 1 l ]  for 
the  asymptotic  scattered fields due to rigid and  weak  disks  in 
unbounded elastic solids  are 

- ik ,R i cos 0 e 
uR =- -  

Pa2 
P(k, sin e )  - 

R 

i sin 6 e -ikpR 

ue = - P(kp sin e )  - 
PP2 R 

(6.17) 



166 

Fig. 5 .  Radiation field of  the  diffracted  compressional  and  shear waves 
produced  by a normal  incident  compressional wave.on a penny 
shaped  crack.  (From Mal [ 11 1 .) 

0.8,- 

k 

Fig. 6 .  Amplitude  factors  for  the  far  field  radiation  pattern  produced 
by  scattering  from a penny  shaped  crack. (From Mal [ 1 l ]  .) 

for rigid disks  [7] , and 
i k,R e P(k, sin U )  
R sin U 

U R  = const. - (i* - 2 sin2 e )  
ikpR e P(kp sin U )  

u0 = const. - sin 28 
R sin 8 

(6.18) 

for  weak  disks [ 1 l ]  . 
The  amplitude  factor P(k) is obtained  from  the  approximate 

or numerical  solution of  the integral  equations  for  the  scattered 
field.  In  these  expressions, p is the  density  of  the  solid  and a 
and 0 are  the  compressional  and  shear wave velocities,  respec- 
tively.  The  far field radiation  pattern  and  the  amplitude  factor 
P(k) obtained  by Mal [ l  l ]  are  shown  in Figs. 5 and 6.  

VII. RELATED  DIFFRACTIONAL A N D  

SCATTERINti  PROBLEMS 
The  diffraction  of  plane elastic waves by two-dimensional 

straight  strips or cracks  of  finite  width  has  been  treated  by 
Ang and  Knopoff  [22] , [23]  and  by  Loeber  and  Sih  [24] , 
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[25] . More recently, Keer and  Luong  [26] have considered 
the  diffraction  of waves and  stress  intensity  factors  in  cracked 
layered  composites.  Nonaxisymmetric  scattering  of  plane 
compressional  elastic waves by a rigid disk  has  also  been ex- 
amined  by  Datta  [27] . Related  numerical  work using the 
finite-element  approach to  acoustic  scattering  from  elastic  and 
rigid disks  immersed  in  water  has  recently  been  published  by 
Hunt er al. [28] . Their results complement  those  of  Ermolov 
[29]  and  Cohen  [30]  based  on  analytical  approximations  to 
acoustic  scattering  by  disks. A comprehensive review of 
acoustic  (and  electromagnetic)  scattering  from  disks  and 
other  simple  shapes  has  been  compiled  by  Bowman,  Senior, 
and Uslenghi [3 l ]  and  some  useful  information  on  the  diffrac- 
tion  of elastic waves is contained  in  a  selected review by  Pao 
and Mow [32].  In  addition  to  the  problems  of  scattering  of 
elastic waves from  half-planes,  disks,  and  strips,  another  two- 
dimensional  scattering  surface  of  interest  is  a  crack  occupying 
a  quarter  plane, i.e., one  quadrant  of  an ( x , y )  plane.  This 
problem  and  the  solution  of  related  integral  equations  has 
been discussed in  a  series of  papers  by  Kraut  [33] - [36].  
Unfortunately,  an  exact  analytical  solution  of  the  quarter- 
plane  scattering problem for elastic waves does  not  appear  to 
be  possible. 

VIII. CONCLUSION 
In  a brief review such as this  a great many  topics  of  current 

interest  in  elastic wave propagation have to  be  omitted. These 
include  recent  advances  in  finite  difference  [37] , [38]  and 
finite  element  methods  [39] , application  of Keller’s geometric 
theory  of  diffraction  [40] , [41]  to elastic wave propagation 
problems  [42] , first motion  methods in the  scattering of 
elastic pulses [43] , variational methods  [44] , numerical  solu- 
tion  of  integral  equations arising in  scattering  problems, 
applications of  the J.W.K.B. and Born approximations  to 
elasticity, use of  the Watson transformation  [31] , asymptotic 
expansions,  perturbation  methods, as  well  as long,  short,  and 
intermediate  wavelength  approximations  in  general. 

Many problems  of  interest t o  NDE involve scattering  from 
cracks  and  flat  bottom  holes  in  bounded or semi-infinite 
elastic  solids as opposed  to  unbounded solids. The  presence, 
in  addition  to  a  crack,  of  one or more  extra free  surfaces 
greatly  complicates  the  mathematics  of  the  scattering  problem. 
The  development  of  effective  approximate  methods t o  solve 
such  problems  and  comparison  of  the  results  obtained  with 
experiment  can  contribute significantly to  progress  in  NDE. 
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