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Reconstructing a Linear Scrambler With Improved
Detection Capability and in the Presence of Noise

Xiao-Bei Liu, Soo Ngee Koh, Xin-Wen Wu, Member, IEEE, and Chee-Cheon Chui

Abstract—In this paper, the problem of reconstruction of the
feedback polynomial in a linear scrambler is studied. Our work
contains two parts. In the first part, schemes to improve the perfor-
mance of an existing reconstruction algorithm are proposed. Sim-
ulation results show that both the detection capability and speed
of the existing algorithm are significantly improved by using our
proposed schemes. In the second part, the reconstruction of linear
scramblers in the presence of channel noise is investigated. We con-
sider flipped bits due to noise as well as insertion of bits in the
scrambled bit sequence. For both cases, factors which affect the
performance of the reconstruction algorithm are discussed.

Index Terms—Binary symmetric channel, linear feedback shift
register, scrambler.

I. INTRODUCTION

N A digital communication system, the constituent ele-

ments used by the transmitter and the specifications of each
element are normally known by the receiver. In this paper, we
consider a scenario wherein the specifications of the elements
used by the transmitter are not completely known to the re-
ceiver. The capability of reconstructing transmitter elements
when their specifications are not perfectly known is envisaged
to be an enabling technology in digital communication systems
with a flexible platform such as software defined radio (SDR),
as it will reduce the overheads needed and make the design of
the system more flexible. Similar application is also envisaged
in [1] for “multistandard adaptive receivers.”

The challenge of reconstructing transmitter elements when
their specifications are unknown has attracted considerable re-
search interests in the last few years. For example, results and
findings on recovery of error-correcting codes have been pub-
lished in [2]-[7]. In this paper, we focus on the reconstruction
of another element which is commonly used in digital commu-
nication systems, i.e., the linear scrambler. A linear scrambler
is usually used in a communication system to convert a data
bit sequence into a pseudorandom sequence that is free from
long strings of 1s or 0s. There are generally two types of linear
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scrambler, namely the synchronous scrambler and the self-syn-
chronized scrambler. Both types of scrambler usually consist of
a linear feedback shift register (LFSR) whose output sequence
(5¢)i>0 is combined with the input sequence (x;);>¢ and the re-
sult is the scrambled sequence (¥ )¢>0, i.e.,

t>0 (1)

Yt = Tt D 8¢,

where @ denotes module 2 summation. In this paper, for sim-
plicity, only the synchronous scrambler is considered. However,
our ideas on the reconstruction of synchronous scramblers with
the presence of channel noise can also be extended to self-syn-
chronized scramblers.

In most communication systems, to achieve the maximum pe-
riod for the sequences produced by the LFSRs, binary primi-
tive polynomials are used as the feedback polynomials. Recon-
structing a linear scrambler consists of reconstructing the feed-
back polynomial of the LFSR as well as its initial state in the
case of a synchronous scrambler. In this paper, we will focus on
reconstructing the feedback polynomial of the LFSR, as recon-
structing the initial state of the LFRS is a well-known problem
for stream cipher and it has been extensively studied in the liter-
ature [8]-[11]. When some input and scrambled bits are known,
the Berlekamp—Massey algorithm [12] can be used to recon-
struct the feedback polynomial of the LFSR. Recently, an algo-
rithm is proposed by Cluzeau for reconstructing the feedback
polynomial of the LFSR by using only the scrambled bits [13].
In the following, this algorithm will be referred to as “Cluzeau’s
algorithm.”

Although Cluzeau’s algorithm can be used to reconstruct
most of the feedback polynomials of the LFSR very efficiently,
it can be observed from the simulation results shown in [13]
that in some cases, the algorithm cannot make a correct de-
tection of the feedback polynomial even when the false-alarm
probability Py is set to a very small value. Furthermore, the
algorithm proposed in [13] assumed that all the scrambled bits
are correctly received. In practical situations, the communica-
tion channels always have some types of noise, which will lead
to errors in the received bits. In this paper, the above-mentioned
two problems are investigated. In the first part of this paper, a
scheme to improve the detection capability of Cluzeau’s algo-
rithm, with only marginal increase in complexity is proposed.
Following that, an approach to reduce the number of operations
required by Cluzeau’s algorithm to do the recovery without
affecting the detection capability is described. In the second
part of this paper, the problem of reconstruction of scramblers
in the presence of noise is studied. Two kinds of channel errors
are considered; one is bit flipping due to channel noise and the
second is insertion of bits in the scrambled bit sequence.

1556-6013/$26.00 © 2011 IEEE
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The paper is organized as follows. In Section II, Cluzeau’s
algorithm is reviewed. In Section III, a scheme is proposed to
improve the detection capability of Cluzeau’s algorithm. In
Section IV, the approach to reduce the number of operations
required to detect the feedback polynomial will be described.
In Section V, reconstructions of the scrambler in the presence
of channel noise is investigated. Conclusions are drawn in
Section VL.

II. CLUZEAU’S ALGORITHM FOR RECONSTRUCTING A
SYNCHRONOUS SCRAMBLER

In this section, Cluzeau’s algorithm which recovers the feed-
back polynomial P(X) of a synchronous scrambler by using
only the scrambled bits will be reviewed. In a synchronous
scrambler, s; is generated independently of «; and ¥, as shown
in Fig. 1.

Instead of searching for the feedback polynomial P(X)
directly, Cluzeau’s algorithm searched for sparse multiples of
P(X) with the degree of the sparse multiples varying from
low to high. After two multiples of P(X) are detected, it
returns the nontrivial greatest common divisor (gcd) of the two
detected multiples as the detected feedback polynomial. The
determination of whether a sparse polynomial is a multiple of
P(X) or not is based on a statistical test on the absolute value
of a variable Z, which is given by

N—-1

Z=Y (-1)*

t=ig_1

(@)

where z; is a module 2 summation of d scrambled bits, i.e.,
z = ytéBEBf‘llyf ,J,(O < dp < dg < -+ < ig-1). Let
QX)=1+ Zd ! X%, when Q(X) is a multiple of P(X),
we have

a-1

Z2t =Yt D @’ytfij
=1
d—1

=2+ D @ Lt—i;
=1

since s; @ @] 15t—i; = 0andy, = x; @ s4. According to
the statistical analysis results given in [7], when Q(X) is a mul-
tiple of P(X) and if the input bits are biased distributed with
Pr(z; = 1) = (1/2) — &, where & # 0, 2 is also biased dis-
tributed with Pr (z; = 1) = (1/2)[1—(2¢)7]. Then according to
Theorem 1 given in [7], the value of Z, i.e., Zt L; (=17 =

3

(N —ig_1)—2 Zt:id_l 7, is Gaussian distributed with mean
value ;¢ given by
p=(N—ig 1)(2e)" 4
and variance o2 given by
= (N —dg-1)(1 — (2)*)
+ df N, ((25)2<d—“> - (25)%) (5)
u=1

where N, denotes the number of pairs (z¢, 24 ), (0 < [t/ — ] <
14—1) which share exactly v terms of z;. For different Q(X ), the
values of N,, are different, and hence there is not a fixed value
of 0%, However, according to [7], an upper bound of 2 can be

derived, since in the worst case, Ny = No = -+ = Nyg_5 =0
and Ny < (N —i4_1)2d(d — 1), which leads to
0% < (N —ig 1)[1+2d(d — 1)(2¢)?
— (26)(1 + 2d(d — 1))]
<N —ig )1 +2d(d — D)1 — (26)*D).  (6)
Therefore, the upper bound o; of & is given by
o < o= (N —ia-0)1+2d(d - D](1 - (2)24)  (7)

and the normalized upper bound & is given by

- \/[1 +2d(d — 1)](1 — (26)24).  (8)

o
\/N Zd 1

According to the above description, when Q(X) is a multiple
of P(X), Z has a Gaussian distribution with mean value s and
variance o2; it is also obvious that when Q( X ) is not a multiple
of P(X),Pr(z = 0) = (1/2), implying that Z has a Gaussian
distribution with mean value 0 and variance N — ¢4_1. The two
distributions are depicted in Fig. 2.

From Fig. 2, it can be observed that when the two distribu-
tions of Z have a small enough intersection, a threshold 7" can
be used to determine whether Q(X) is a multiple of P(X) or
not: i.e., when |Z| < T, Q(X) is not a multiple of P{X); other-
wise, Q(X) isamultiple of P(X ). T depends on the false-alarm
probability Py = Pr(|Z] > T'| when Q(.X) is not a multiple of

o =



210 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

TABLE 1
SIMULATION RESULTS OF CLUZEAU’S ALGORITHM

Feedback Polynomial

e e R Ny g |

2+l + 2+ 25+ 1

w042 o et fal ot

.’l?]z+m“+,7/‘]o+f1) +m7+12+1

I A |

2+ 27 +1

P(X)) and on the nondetection probability P,, = Pr(|Z| < T|
when Q(X) is a multiple of P(X)). In the following, Cluzeau’s
algorithm is outlined for reader’s convenience.

1) Compute the threshold 7" as follows:

ala + bay)
T=——"-— )
(2le[)?
where
P
a=d1 (1 - Tf) (10)
and
b=—-d"Y(P,). (1)
In the above equations, ¢ denotes the normal distribution
function, i.e.,
O(x) ! /T ( tz)df (12)
z) = — exp | —— ) dt
V27 J—oo P 2
and d denotes the weights of the sparse multiples of P(X)
and typical values of 4 are 3, 4, and 5.
2) For (’171,..._,’17{1,1), 0 <3 < - <ig1 £DWis

the maximum degree of the sparse multiple we want to
search), compute the number of bits /V required to recover
the feedback polynomial as follows:

. ((L + bﬁ'l)z
N =1q4_ —_ 1
a1+ oy (13)
3) Initialize Z with Z = 0.
For ¢ from i4_1 to N, compute
d—1
2=y % Pui, (14)
j=1
and
Z =7+ (-1)%. (15)

4) If|Z] > T, store Q(X) = 1 + Y77 X' in a table.
5) For Q'(X) # Q(X) in the table, compute the nontrivial
ged of (Q(X), Q'(X)).

Steps 2-5 are repeated until a ged(Q(X),Q'(X)) =
PX)YP(X) # 1) is found or all combinations of
(é1,...,44—1) are tested.

According to [7], if using the algorithm described above, for
arandomly chosen primitive polynomial P (X ) of degree L, the
number of operations performed by the algorithm is

((1,+b5'l)2

W, =d.2F
P (25)211

(16)

Detected polynomial Time
22+t a2 +1 13.7s
29+ a8+ 25+ 1 40.9s
@+ 2" + 1 49.8s
219+ 212 41 34.2s
23 2181 50.8s

2 + 22+ 1 1 min 19.2s

TABLE 11

MULTIPLES OF THE FEEDBACK POLYNOMIALS

Feedback Polynomial
Pl N e QA |
29+ 26+t a3 +1
20428 a5 a3+ ae? 441
2+ 2l 42104 o 2T + 2%+ 1
z23+x18+1
29 F 2 11

Detected Trinomial Multiples
2T+ 20+ 1, 2P+ + 1
20+ 29+ 1, 22 a5 + 1
B T+ LB 2% 11
0 122 11, 28 + 222 + 1
2B 12 11, 20 1 250 1+ 1
229 122+ 1, a8 f ot + 1

To test the accuracy and runtime of Cluzeau’s algorithm, it is
applied to some feedback polynomials and results are shown in
Table I. We will propose improved reconstruction procedures
in the following sections. To make a fair comparison with
Cluzeau’s algorithm [13], we run Cluzeau’s algorithm with the
parameters ¢ = 0.1, false-alarm probability Py = 2 - 107,
nondetection probability P, = 108, and weight of the sparse
multiples of the feedback polynomial d = 3, which are the
same as those in [13].

In Table I, the first, third, and last feedback polynomials are
the same as those shown in Table III in [13]. Due to the dif-
ference in hardware (Intel dual core, 2.5 GHz), when testing
Cluzeau’s algorithm, the runtimes are a bit different from those
presented by Cluzeau. In the following sections, we will test
our improved reconstruction algorithm and compare the results,
using the same parameters and hardware as those for Table I.

III. IMPROVE THE DETECTION CAPABILITY OF
CLUZEAU’S ALGORITHM

From Table I, it can be observed that the third and fourth poly-
nomials are not correctly recovered. To further understand why
the original feedback polynomials are not detected, we look into
the detected multiples of the feedback polynomials and results
are shown in Table II.

From Table I1, it can be observed that for the third and fourth
feedback polynomials, their second detected trinomial multiple
is a multiple (square) of the first one. Therefore, their ged is the
first detected multiple instead of the feedback polynomial. For
the feedback polynomials z%* + z'® 4+ 1 and z%° + 2% + 1,
their second detected trinomial multiple is also a multiple of
the first one. However, as shown in Table I, they are correctly
detected. This is because their first detected trinomial multiples,
ie, 22 + ¥+ 1and z%° + 22 + 1, are exactly the feedback
polynomials already.

Based on the above observation, to avoid making the wrong
detection, the second detected multiple of the feedback polyno-
mial should be ignored if it is a multiple of the first one. The only
exception is that when the first detected multiple of the feed-
back polynomial is irreducible, then the feedback polynomial is
nothing else but the detected multiple itself. Consequently, we
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Fig. 3. Comparison of Cluzeau’s and improved algorithms.

can modify sightly Cluzeau’s algorithm with an improved per-
formance as follows:

1) Follow the algorithm described in Section II until a sparse
multiple Q(X) is found.

2) If Q(X) is irreducible, then stop and return Q(X) as the
detected feedback polynomial; otherwise, store Q(X) in a
table and go to the next step.

3) Search for another sparse multiple Q' (X); if @Q'(X) is a
multiple of Q(X), ignore it and keep on searching until
a (X)) which is not a multiple of Q(X) is found. Store
@’(X) in the table.

4) Compute ged (Q(X),Q (X)) = P(X). If P(X) # 1,
return P{X) as the detected feedback polynomial. Other-
wise, go to Step 3.

In the following, the algorithm described above will be called
“improved algorithm,” to differentiate it from Cluzeau’s algo-
rithm. The improved algorithm includes two extra steps, as com-
pared with Cluzeau’s algorithm. The first is to determine if the
detected multiple is irreducible. The second is to determine if
the second multiple is a multiple of the first one. The second
step is rather simple because the number of operations (XORS)
used by it is bounded from above by O(d - D). For the first step,
there are a lot of algorithms proposed in the literature to test the
reducibility of a binary polynomial [14], [15]. We use the algo-
rithm proposed in [15] and the number of operations is bounded
from above by O(d - D?). Compared with Cluzeau’s algorithm,
for which the number of operations is bounded from above by
O((D?1)/((2¢)?%)), the increase in complexity is trivial.

To evaluate the performance of the improved algorithm, the
scrambler using each of all the primitive polynomials of de-
grees from 8 to 16 as the feedback polynomial is simulated. The
weight of the sparse multiple is chosen to be d = 3 and the re-
sults obtained are plotted in Fig. 3.

From Fig. 3, it is apparent that the detection performance
is significantly improved by using the improved algorithm.
It should be noted that there are still feedback polynomials
which cannot be correctly recovered by using the improved
algorithm. This situation occurs if the first detected multiple

is Q(X) = P(X)F(X)D(X), where F(X) and D(X) are
any binary polynomials not equal to 1, and the second detected
multiple is Q'(X) = P(X)F(X)D'(X). If D/(X) is not a
multiple of D(X), Q'(X) is not a multiple of Q(X) either.
Therefore, @@’(X) will not be ignored in the improved algo-
rithm, and the ged of Q(X) and Q' (X) is P(X)F(X) instead
of P(X) itself. In any case, if the detected feedback polynomial
is not primitive, say it is equal to P(X)F(X), we can find the
correct feedback polynomial by trying to recover the source
bits using the polynomials P(X)F(X), P(X) and F(X) as
the feedback polynomials, respectively, and see which one
would lead to a sensible source sequence. The procedure above
includes the factorization of P(X)F'(X) which can be easily
achieved with Berlekamp’s algorithm [16].

IV. IMPROVE THE SPEED OF CLUZEAU’S ALGORITHM

According to (13) and (16), the number of bits and operations
required to recover the feedback polynomial depends on the nor-
malized upper bound ;. The bigger the value of &y, the larger
the number of bits and operations required. In the following, we
will show that the upper bound of o can be improved, and a new
upper bound o, which approaches the actual value of o more
closely, will be derived.

As described in Section II, o2 becomes the maximum value
in the worst case, i.e., Ny = Ny = --- = Ny_5 = 0 and
Nyg1 <(N—ig1)2d(d—1),where N,(u=1,2,...,d—1)
denotes the number of pairs (z;., 2y ) which share exactly « terms
of z4. It is obvious that NV, also denotes the number of pairs
(X*Q(X), X* Q(X)) which share exactly u terms of X?. Let
M, denote the number of pairs (Q(X), X"Q(X)),(0 < n <
iq_1), which share exactly u terms of X*(i = i1,49,...iq_1).
Since at each time instant £, (X*Q(X), X Q(X)), (iq_1 <
t<t' < N-1,0<#—1t<1i4 1),canbe taken as a time shift
version of (Q(X), X"Q(X)),(0 < n <i4_1), we have

Ny =2(N —ig_1)M,. 17)
The factor 2 in (17) arises because ¢ and ¢’ are interchangeable.

In the following, the number of terms that the pair
(Q(X), X"Q(X)) have in common is studied. Q(X) and
X"Q(X) are denoted by Q(X) = 1+ X"t + X2 4. -4 X1
and X"Q(X) = X" 4 X nta + X tie 4+ -4 Xn+'id_1’
respectively. Obviously, the constant term 1 will not be shared
by the pair (Q(X), X"Q(X)). So, first, how many times
X" appears in X"Q(X) is studied. It can be observed that
there is only one time, i.e., when n = 21, X g appears in
X" Q(X). Then, for X*, there are two times it appears in
X"Q(X), ie., whenn = iy or n = iy — iy, X* is shared
by the pair (Q(X), X"Q(X)). For the same reason, for X",
X' ..., X%~ the number of times they appear in X" Q(X)
are 3,4, ...,d — 1, respectively. In Table III, a summary of the
terms that the pair (Q(X), X"Q(X)) have in common, with
their shared times and the corresponding values of n are shown.

Obviously, Table III includes all the terms that the pair
(Q(X), X"Q(X)) share for 0 < n < i4_1. It is also noted
that for the same shared term, the possible values of n are
different since 0 < 47 < i9 < --- < i4_1. It means that there
is no double counting of the shared terms. Therefore, the total
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TABLE III
SHARED TERMS OF THE PAIR (Q(X), X™Q(X)) AND THE CORRESPONDING
VALUE OF n
Shared term | Shared times Value of n
1 0 N.A

X 1 i1

X2 2 12, 19 — 11

X 3 i3, i3 — 11, i3 — 2

Xtd—1 d—1 Td—1,0d—1 — V1yens td—1 — td—2

number of shared terms for the pair (Q(X), X"Q(X)) for
0<n<igis

o LH@-Dd-1 _dd-1)

2 2

(18)

For different shared terms, the value of n may be the same,
e.g., when iy = iy — iy = i3 — io, Q(X) and X2 Q(X) will
share X%, X?2 and X% i.e., three terms. Obviously, the max-
imum number of terms (X ) and X™Q(X) can share for the
same value of n is d — 1. Since M,, denotes the number of pairs
(Q(X),X"Q(X)),(0 < n < i4_1) which share exactly u
terms of X, we have

d-1
d(d -1
> u-M, =M= (T) (19)
u=1
Based on (17) and (19), we have

d—1 d—1

S u-Ny=2(N—ig1)y u-M,

u=1 u=1

=(N—ig_1)-d-(d—1). (20)

From (5) and (20), it can be observed that the maximum value
of ¢ can be achieved only when

u<d—1
u=d-—1.

when

0,
M= { (N —ig_1)d, when (21)

Put the value of u = d — 1 and N,, = (N — i4_1)d into (5), we
get

o® < (N —ig1)(1 — (26)*%)
+ (N —ig_1)d((2e)? - (26)*)

< (N —dg-1)[L+d((2¢)” — (2¢)*)]. (22)

According to (22), the new upper bound o} of o is given by

o = \/(N —ig-1)[1+d((26)* = (22)*)]  (23)
and the new normalized upper bound 7 is given by
7
—/ U] ¢
g = ———— = /1 +d((22)% — (2¢)24). 24
[= e =L@ - ). 09

To see how closely the new upper bound of o derived above
approaches the actual value, the Gaussian distributions with /s
calculated by using (4) and standard deviation o equal to o,
and o7}, respectively, are plotted in Fig. 4. In Fig. 4, the actual
distribution of Z, which is obtained by using Q(X) = 1 +

-3

x 10

5 T T

— — — Actual distribution
45} - —. — . Gaussian distribution with 0=0, 4

Gaussian distribution with G=<s'|
|

41 X g
35} 8

Probability
N
[,

1.5

05

O 1
-1500 -1000

Fig. 4. Distribution of Z with different o(N = 10000,2,_; = 21,¢ = 0.1,
d = 3).

-3

x 10
5 T
— — — Actual distribution
45H — —- Gaussian distribution with 6=c, -
Gaussian distribution with c=c’l ;

4 4
35 5

3r J

Probability
N
(92}

0.5

0
-1500

Fig. 5. Distribution of Z with different o(N" = 10000,2,_; = 31,¢ = 0.1,
d = 4).

210 + 221 N = 10000, ¢ = 0.1, and d = 3, is also plotted. A
total of 50 000 values of Z are collected and a low-pass filter is
used to smooth the curve. Other trinomials for (X ) are also
tested in our simulations and it is found that there is no big
difference in the distribution of Z for different trinomials of
Q(X). Therefore, the dashed curve in Fig. 4 can be taken as
an approximation of the actual distribution of Z for any Q(X)
with d = 3.

From Fig. 4, it can be observed that the Gaussian distribu-
tion with o = o7 approaches the actual distribution of Z very
closely. The Gaussian distribution with ¢ = ¢; deviates from
the actual distribution by quite a margin, as shown in Fig. 4.
It should be noted that when d increases, o; deviates even more
from o, as shown in Fig. 5, but o7 still approaches o very closely.
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TABLE IV _ B
SIMULATION RESULTS OF THE IMPROVED ALGORITHM USING 1" AND .V INSTEAD OF 7" AND N
Feedback Polynomial Detected polynomial Time (using T&N) | Time (using T&N)
S+t a3 2241 B+t 232241 13.7s 3.0s
29+ a2+t 2+ 1 29+ 2+t 2+ 1 40.9s 9.0s
20+ a8+ 22+ 23+ 2%+ +1 2V + 2+ 2+ 23+ 2%+ +1 1 min 40.7s 22.5s
22+ 2T+ 20+ 28 27+ 2?7+ 1 | 2P+ 2T + 20+ 28 + 27 + 22 + 1 5 min 48.4s 1 min 16.7s

28+ 2+ 1 223 2B 41 12.3s 2.7s
229 22 + 1 29 22 41 18.8s 4.1s

213

When using the new upper bound, both the threshold 7, the
number of bits IV, and the number of operations W), required
by the algorithm can be reduced and consequently, the runtime
of the algorithm can be reduced. The new threshold T' can be
obtained by replacing &; in (9) by &} and the result is given by

alo + bay)

(2le])?
_a? +aby/1+d((2:)% -
B (2lel)?

Similarly, the revised number of bits N and operations Wp re-
quired by the algorithm are given by

T =

(2)*7)

(25)

(a +by/T+ d((26)2 — (25)2d))2
N=144_1+

(2&-)2d

(26)

and

) ((1 +by/T+d((2e)2 — (2@%))2

W,=d-2
4 (26)2d

@7

Comparing (16) and (27), it can be observed that the reduction
factor E for the number of operations required to recover the
feedback polynomial is given by

W, . +a)?

R=—
w,  (1+q)?

(28)

where v = /1 + 2d(d — 1) and ¢ = (a/b).

In Fig. 6, the values of I? against d are plotted. According to
the simulation setup described in Section II, ¢ ~ 1.2. It can be
observed that I? increases with the increase in d. This is because
~ increases with the increase in d.

In the following, the improved algorithm which uses T and N
instead of T" and IV are tested by using the same feedback poly-
nomials as those in Table I, and results are shown in Table IV. In
the second and third column of Table IV, the detected feedback
polynomials and runtime required by the improved algorithm
are shown. In the fourth column of Table IV, the runtime re-
quired by the improved algorithm using T and N instead of T
and N is shown.

First, we compare the first three columns of Table I with
Table IV. It can be seen that for the first and second feedback
polynomials which are correctly detected by using Cluzeau’s
algorithm, they can still be correctly detected by using the im-
proved algorithm and the runtime is not affected. For the third
and fourth feedback polynomials which are wrongly detected by
using Cluzeau’s algorithm, they are correctly detected by using
the improved algorithm, while the runtime is also increased. For

Fig. 6. Reduction factor (&) for the number of operations for different values
of d(q = 1.2).

Xt Yt Yt
—»| Scrambler »> BSC

Fig. 7. Chain of scrambler and channel.

the last two feedback polynomials, the runtime is even reduced
by using the improved algorithm, because they are irreducible
and the algorithm is stopped after the first step. We then com-
pare the third and fourth columns in Table I'V. It can be observed
that the time required to do the detection is reduced by a factor of
about 4.5 for all the primitive polynomials, when using 7' and N
instead of 7" and IV in the detection process. This result matches
very well with the reduction factor for the number of operations
required to recover the feedback polynomial shown in Fig. 6. It
should be noted that when using 7 and N, the detected polyno-
mials are still the same as those shown in the second column of
Table IV. In general, comparing Tables I and IV, it is clear that
with our proposed schemes, both the detection capability and
speed of Cluzeau’s algorithm are improved significantly.

V. RECOVERY OF SCRAMBLER IN THE PRESENCE
OF CHANNEL NOISE

A. Recover the Scrambler With Flipped Bits

In the algorithm described in Section II, the scrambled bit
sequence ¥, (¢ > 0) is assumed to be correctly received at the
receiver. In this section, we consider the situation that channel
noise is present, as depicted in Fig. 7.
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In Fig. 7, the channel is modeled as a binary symmetric
channel (BSC). The input to the BSC is denoted by y; and the
output of the channel is denoted by ¥;, which is given as

Y=y B e (29)
where e; is the channel error at time instant ¢. Suppose the
channel error probability (or crossover probability) is p, then
at each time instant ¢ we have

Pr(e;=1)=p (30)
and
Pr(e; =0)=1-p. 31
Similar to (14), we have
d—1
Z=y 2Py,
j=1
d—1
=y Des @ Yi—i; Deri; (32)
j=1

where y; = t €B $¢. When Q(X) is a multiple of P(X), w
have s; © EBj 1 $t—i; = 0 and thus

d—1
B=m®e®EPri De,. (33)
j=1
Suppose z; = @+ & e, (33) becomes
d—1
j=1
Comparing with the noiseless case, in which we have
d-1
2t =2 D @ Tr—i; (35)
i=1

we can see that the only difference is that x; is replaced by 7,
which can be taken as passing z; through a BSC channel. As
stated previously, the reconstruction of the scrambler is based
on the assumption that x; is biasedly distributed with Pr (z; =
0) = (1/2) +=. When z; is replaced by 2}, we need to look into
the distribution of z} and see if it is biasedly distributed also.

Let us introduce another variable ¢ such that § = (1/2) —
We then have

1
Pr(e, =1) = 3~ o (36)
and
1
Pr(e; =0) = 5 + 6 37
According to the distribution property of x; and e, we have
1
Pr(z, =1) = 5~ 2eb (38)
and
1
Pr(z} =0) = 3 + 2eé. (39)

From the above equations, we can see that z} is also bias-
edly distributed, with a new bias ¢/ = 2e6. It means that when
channel noise is present, we still can recover the synchronous
scrambler by using the method proposed for noiseless condi-
tion. The only difference is that the source bias is changed from
£ to 2e6, where ¢ is determined by the channel error probability
.

Asp <0.5andé = (1/2) —p,wehave 0 < 26 < 1or2z6 <
. The “="" sign only holds when § = 0.5 or p = 0. Therefore,
when p > 0, we will have ¢’ < . According to (26) and (27),
the smaller the bias, the larger the number of bits and operations
are required in the reconstruction. Therefore, when ¢ is changed
to &', the number of bits required in the reconstruction becomes
larger and the time required to do the detection becomes longer.
When N > iq_;, which is usually true for practical systems,
the factor of increase (I) in the number of bits can be derived as

1 1
I= = .
2p)*

(26)2F (1 -

In Fig. 8, the values of I are plotted for different values of p
and d when channel errors are present. It can be observed that
the factor of increase in the number of bits used in the recon-
struction grows with increases in p and d. In practical situations,
the channel error probability can vary from a very small value to
about 0.2 when £, /N, = 0 dB [17], and, therefore, / may vary
from 1 to 100 depending on the values of p and d. To make an
appropriate choice of I, an accurate estimation of the statistical
properties of the channel is, therefore, needed.

Next, the impact on Py and P, when channel errors are
present but the number of bits used is not increased correspond-
ingly is investigated. According to (10) and the new upper
bound of ¢ derived in Section IV, we have

a:(Dl< _&>:L.
2 N_

-1

(40)

(41)

As T and N are precalculated, they will not change with the
change in the source bias; therefore, P; will not be affected by
the channel noise.

According to (11) and the distribution of Z, we have

T—p
a

where T is given by (25), 11 by (4), and & by (22). When channel
noise is present, the source bias will change from e to 2e6.
Therefore, the ¢ in (4) and (22) must be replaced by 226, and
the resulting new mean value p. of Z is

’17(1,1)(466)51

—b=dYP,) =

(42)

pre = (N — = (26)'p (43)

and the new upper bound o, of the standard deviation of Z is

o= /(N = ia 1)1 + d((4e6)? -

N7 - —/
AN —ig 10

From (43) and (44), it can be observed that when channel noise
is present, the standard deviation of Z will not be significantly

(428)*T)]
(44)
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Fig. 8. Factor of increase (I) of the number of bits for different p and d when
channel errors are present (N > i4_1).
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Fig.9. Values of P? for different values of p and d(z = 0.1, Py = 2.1077).

affected, but the mean value of Z will become smaller. This
will result in a smaller value of b, and thus P,, will increase. As
26 < 1, we have

T — pie _ T — (26)%u S (26)4(T — 1)

a a a

= (26)4(—D).
(45)

Therefore, the new value of P,, when noise is present, i.e., P},
can be roughly estimated by

o= (T - ’) > B ((28)'(~1).

g

(46)

In Fig. 9, the values of P, are plotted for different values of p
and d. The number of bits N used in the recovery is set to satisfy
the condition that when p = 0, the nondetection probability is
equal to 1075,

From the figure, it is clear that with the increase in the
channel error probability, the nondetection probability P;

increases rapidly if the number of bits used in the recovery
process is not increased correspondingly. When the channel
error probability is 0.1, more than half of the sparse multiples
of the feedback polynomial will not be detected. When the
channel error probability becomes equal to or larger than 0.15,
almost all the sparse multiples will not be detected. Therefore,
as stated before, in practical situations, channel estimation
should be used to make sure that the number of bits used in the
recovery process is properly chosen.

B. Recovery of Scrambler When Insertion of Bits Occurs

During the data transmission, there is another kind of error,
namely insertion/deletion of one or more bits into/from the
scrambled bit sequence. In this section, for simplicity, only
insertion of one bit is considered. However, our ideas can easily
be extended to insertion of more than one bits and also deletion
of one or more than one bits. Suppose ¢, is inserted at time
index ¢,,(t, > 0), the received sequence becomes

Yo, Y1: 92y - - Y. — 15 Cas Yty Yt -1, - -

Suppose the received sequence is denoted by %, we have

Yt 1<t —1
Y = { R (47)
Y1, t2>t,+ 1
For (i1,....%4-1), whent < ¢, — 1, we then have
d—1 d—1
%=u9Du i, =u oDy, (48)
j=1 j=1
Whent > t, +iq_1 + 1, we will have
d—1 d—1
(49)

EAESTALS @ ?Ji—i_j =Y-1 D @ Yt—i;—1-
j=1 i=1

Comparing with the noiseless case, in which we have
2 = Y D @;};11 Yt i;, we can see that z; = z; when
t <t,—1,and z; = z; 1 whent > t, + ¢4 1 + 1. As the
final decision is based on the value of Z, we are more inter-
ested in the difference between the summations Zf;il z¢ and

f\;dl_l z;. Assuming the number of bits of {z;, ,,...,z5 4}
that are different from {z] | e 2% _,} is dz, then the den-
sity, Py, 15 (d.)/(N —ig_1), is dependent on the
values of £, i4_1, and N. For different values of ¢,., i4_1, and
N, P(tvr, a1 ) has the following four diff?rent expressions:

1) 0<t, <igr+landt, +i41 <N -1

. N—-1 .
In this case, »,_; " 2z can be written as

N-1 tetig_a N-1
W I W

DD DR D DR
t=i4_1 t=i4_1 t=t,+74-1+1

te+tig_1 N-2

’
= z + E Zg- (50)
t=i4_1 t=1,+74-1

Considering the worst case, i.e., z; is independent of
ze(Pr(z; = z¢) = 0.5) wheniy 1 <t < #, +1i4-1, it
can be seen that the number of bits that are different in
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0.5(ig—1+1)
N—ia—1

P(’ zsid—1,N)

i i

0 idz—1 +1 N - (ta—1 +1) N

ts

Fig. 10. Variations of P, ; &) versus t,(N > 208,y +1)).

Z;\;dl_l z and Zi\:jdl_l z; is approximately 0.5(¢, + 1)
and P(tm,'id_lﬂ) is given by

0.5(t, + 1)

p o =05t
(tz,ig—1,V) N — idfl

(5D
2) 0<t, <ig_i+landt, +igq >N —1.
In this_case, the number of bits that are different

. N1 No1oo, .
mn Zt:qﬁd_l z; and Zt:id_l Zr 18

(N —ig1)/(2)and P, ; . &y is given by

approximately

Py, iv iy =05 (52)
3)ig 1+ 1<t,<Nandt, +ig 1 < N -1,
. N-1o .
In this case, >3,_;  # can be written as
N-1 t,—1 todig_1 N-1
! 4 ! !
2 A= D At 2 oAt D A
t=i,4_1 t=ig_1 t=t, t=to+ig_1+1
t,—1 tytia—1 N-2
=D DEEES SIEED ST
t=tg_1 t=t, t=ty+iq_1
The number of bits that are different in Z?::dl,l 2

and Zj;}il z; is approximately 0.5(iy—; + 1) and
Py, i 1 &) is given by

0.5(ig_1 + 1)
Pinoiy = 102 (54)
(trv ,1,71,N) N —i41
4)ig 1 +1<t,<Nandt, +ig1>N—1.
In this case, Zt\:;dl,l 2z} can be written as
N-1 t,—1 N-1
DI ADIE
t=ig_1 t=ig 1 t=t,
t,—1 N-1
=2 mt) % (55)
t=ig_1 t=t,

Jid |»N)

0 N — (ig-1 +1)

i1 +1 N
12

Fig. 11. Variations of P, , . ) versus 1o (N < 2(ig_1 + 1)),

The number of bits that are different in Zt\:;lil z¢ and

Z?;j_l 2} is approximately 0.5(N —¢,,) and P, v im
is given by

0.5(N — t,)

p. . =T
te,ia—1,N 7 . .
(foria—1.¥) N —ig

(56)

In Figs. 10 and 11, the variations ofP(tm iy
cording to our analysis above are depicted. When N > 2(i; 1 +

1), the variation of P( ty.ig_1, A7) VOISUS t, will follow the curve

shown in Fig. 10 and when N < 2(ig_1 + 1), the variation of

P(tr g1, A7) Versus t,. will follow the curve shown in Fig. 11.
From both figures, it can be observed that the insertion of one

Ky versus t, ac-
N

bit will have the least impact to the summation Zf\:;{l z when
the bit is inserted at the two ends of the bit sequence. When the
insertion point moves from the two ends to the middle of the bit
sequence, the impact will increase and finally reach a maximum
value, which depends on the values of 7;_; and N. According
to [7], for a randomly chosen primitive polynomial of degree L,
the minimum value of ¢4_1 is

1 L

ig1=((d-1hd—1lad—1,

(57)

For a small value of L, normally N > 2(ig—1 + 1) will hold
and from Fig. 10, it can be observed that the maximum value of
P )18 (0.5(2a—1 +1))/(N —i4_1). When L increases in
value, and as ¢4 increases exponentially with L, finally N <
2(iq—1+1) will be satisfied. In this case, when N-— (ig-1+1) <
bty < ig—1+1, P(tm,id_lﬂ) will be as high as 0.5.

In the following, the impact of P(t,,,,id_l,N') on the perfor-
mance of the reconstruction will be discussed. For simplicity,
we consider insertion of one bit in the scrambled bit sequence
to be equivalent to passing y,; through a BSC channel with
channel error probability peq. Let P, ) denote the density
of the number of different bits in {z;, ,,..., Zz 4+ and

teyig_1,N
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{z, - ,} when passing g through a BSC with
channel error probablhty Peq; from (32) and (35), we have

Py = Priz; @z = 1)
d-1 1
= Pr e P @ 815,7'&7. =1 5 [1 — (269(1) ]
7=1
(58)
wh§re beq = 5 — Peq- Let Py, y = Py ;.| §y, it can be
derived that
1 d
beq = 7 [1=2F, ., . (59)
and consequently we have
1 . 1
Pea = 5 — bea = 5 (1- 1P i) (60)

According to (60), for each value of P, , &, there is
a corresponding channel error probability Pp(1 The bigger
the value of P(t:r:id—la ) the bigger the value of p.,. Details
on the impact of the channel error probability on the perfor-
mance of the reconstruction can be found in Section V-A.
For most practical systems, we have N > tgq—1 and
(0.5(ig 1 + 1))/(\7 —ig-1) = 0. According to Fig. 10,
P, i1 iy < (0.5(ta—1 + 1))/ (N — iq—1); therefore, for any
value of ¢, we have Py, i, ..~y = 0and hence poq = 0. It
means that when N >> i,_1, the performance of the reconstruc-
tion will not be affected by the insertion of one bit, no matter
where the bit is inserted. However, when ¢;_1 becomes larger,
especially whenig_1 > 0.5N, the value of Peq Will vary from 0
to 0.5 depending on where the bit is inserted. In the worst case,
1.e., peq = 0.5, the reconstruction will never succeed no matter
how big the bias ¢ is, because as described in Section V-A,
when p.q = 0.5, we have 6.4 = 0 and after passing through the
BSC channel, the new bias becomes 2e6., = 0. In this case, the
two distributions depicted in Fig. 2 will overlap and, therefore,
no multiple of the feedback polynomial can be detected.

VI. CONCLUSION

Cluzeau’s algorithm is very promising in reconstructing the
feedback polynomial of the LFSR used in a linear scrambler.
In this paper, a scheme to improve the detection capability
of Cluzeau’s algorithm is proposed. Simulation results show
that the detection capability is significantly improved by using
the proposed scheme. A tighter upper bound for ¢ which
approaches the actual o more closely has also been derived. By
using the new upper bound, the number of bits and operations
required by Cluzeau’s algorithm to reconstruct the feedback
polynomial of the LFSR can be reduced significantly without
affecting the detection capability. As the number of operations
is reduced, the time required for reconstruction is also reduced.
According to our analysis, the higher the weight of the sparse
multiples to be searched, the higher the time reduction factor.

It should be noted that even with the improved algorithm,
the value of ¢ will affect the number of bits and operations and

in turn the running time of the algorithm significantly. For ex-
ample, when the source bias is reduced from 0.1 to 0.01, the
number of operations required to do the reconstruction will in-
crease by at least 10° times. In this case, even for a feedback
polynomial of very small degree, the time to do the detection
will become very long. For example, for the first feedback poly-
nomial in Table IV, the detection time will increase from 3 s to
about 35 days! Fortunately, for natural source in practical situ-
ations, the typical values of ¢ are 0.1 and 0.05 [7].

Another issue investigated in this paper is on how to recover
the scrambler in the presence of noise. Our analysis results show
that when passing the scrambled bits through a BSC channel,
the feedback polynomial of the LFSR still can be recovered by
using the same method as the one proposed for the recovery of
the LFSR in noiseless condition. The only difference is that the
effective source bias is changed which depends on the channel
error probability p. As the effective source bias is smaller than
the original source bias when bit errors are present, the number
of bits required in the reconstruction becomes larger in order to
maintain the detection capability. The larger the value of p, the
larger the number of bits required for the reconstruction. As the
factor of increase in the number of bits varies a lot for different
values of p and d, channel estimation is proposed to be used to
get the statistical properties of the channel.

We have also investigated the problem of reconstruction of
the scrambler when there is an insertion of one bit in the scram-
bled bit sequence. What we have found is that when the number
of bits used in the reconstruction (N ) is much larger than the
minimum degree of the multiple of the feedback polynomial
(i4-1), the performance of the reconstruction will not be af-
fected by the insertion of one bit no matter where the bit is in-
serted. However, with the increase in the degree of the feedback
polynomial, the degradation in the performance of the recon-
struction algorithm will vary a lot depending on where the bit
is inserted. When the bit is inserted at the two ends of the bit
sequence, the performance degradation is small. When the in-
sertion point moves from the two ends to the middle of the bit
sequence, the performance degradation increases until a max-
imum is reached, and the maximum performance degradation is
dependent on N andi 14—1. In the worst case, i.e., 141 > 0. 5N
and the insertion of the bit is at the mid point of the sequence,
the reconstruction will never succeed even though only one bit
is inserted.
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