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CHIP
The

M
oore’s law has been the
guiding principle for
defining the semiconductor
roadmap ever since it was

proposed in 1965. Here, we examine and
propose a law that plays the role of
Moore’s law in the very large-scale
integration (VLSI) computer-aided
design (CAD) field. We also examine the
difference in nature of semiconductor
productivity and design productivity.

BACKGROUND
In 1965, when Gordon Moore was direc-
tor of Fairchild Semiconductor’s
Research and Development, he observed
that, for the foreseeable future, integra-
tion level in terms of number of transis-
tors per square inch will continue to
double every year. Subsequently, this
pace slowed down, but the data density
has continued to double every 18 months
and is the present interpretation of
Moore’s law. This increase in the integra-

tion level is termed “semiconductor pro-
ductivity”; the same area of semiconduc-
tor hosts greater functionality than before
and, thereby, is getting more work done. 

Design productivity is the ability to
design a number of gates per designer
per day. Whereas semiconductor produc-
tivity keeps increasing at a steady pace
following Moore’s law, according to the
2003 International Technology Roadmap
for Semiconductors (ITRS 2003) [9],
improvements in the design productivity
is not keeping pace with the improve-
ments in semiconductor productivity,
giving rise to what is termed as “produc-
tivity gap.” According to ITRS 2003,
design productivity remains the number
one threat to continuation of the semi-
conductor roadmap.

COMPLEXITY
Three factors contribute to complexity:
number of elements, interconnection,
and lack of pattern. Semiconductor pro-
ductivity creates potential for complexi-
ty. Application demands for function
and performance exploits this potential
to create design complexity.

There are two known solutions to
reducing design complexity: partition-
ing and abstraction. Partitioning strives
to reduce the complexity by dividing
the problems into smaller, more man-
ageable problems. Problems become
more manageable because partitioning
encapsulates elements that are heavily
interconnected and have functional
coherence into new higher-level nodes.
These nodes introduce a hierarchy that
is often multilevel and allows designers
to deal with fewer elements that are less
heavily interconnected. 

Abstraction is the second mecha-
nism to reduce complexity. Whereas
hierarchy hides detail, abstraction lacks
detail. The lack of details reduces com-
plexity, and the missing details are syn-
thesized, often automatically, to create
a more refined design description. 

Whereas partitioning and hierarchy
as a mechanism to reduce complexity is
largely a manual exercise, abstraction
lends to automation: the missing details
in the abstract design description are
automatically synthesized.

Increasing abstraction has been cen-
tral to evolution of the electronic
design automation (EDA) tools and
largely responsible for improvements in
design productivity.

EDA TOOLS AND DESIGN
PRODUCTIVITY

EDA tools have evolved by successively
increasing the levels of abstraction used
to specify the VLSI systems. Naturally,
the evolution started with lower levels
of abstraction. 

The Gajski Kuhn Y chart, shown in
Figure 1, is often used to depict the
taxonomy of VLSI systems and discuss
EDA tools. It shows three domains as
axes and concentric circles as levels of
abstraction. The intersections of the
domain axes and the abstraction cir-
cles are annotated with design ele-
ments used to specify the VLSI systems
in the intersecting domain and
abstraction. Synthesis on the Gajski
Kuhn Y chart is defined as sum of
three transformations:

✦ domain transformation, often
behavior to structure but also
from structure to geometry
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✦ refinement is transformation in
abstraction from higher to
lower level

✦ optimization is transformation in
the same domain and at the same
abstraction level but more opti-
mal with respect to some objec-

tive function of complexity,
power, and performance.

The Gajski Kuhn Y Chart in Figure 1
shows synthesis associated with succes-
sively higher levels of abstraction. The
shaded arrows capture the domain
transformation and refinement. Opti-

mization is implied but not shown. Syn-
thesis refines the abstract specification
in terms of design elements in target
domain that are predesigned compo-
nents stored in a library. As granularity
increases with abstraction, synthesis
effectively increases the granularity of
design elements that are reused. This
increase in granularity with abstraction
of the design elements used to specify
and reused to realize VLSI systems
improves design productivity, and there
is some good evidence that this happens.

According to [6], design effort for a
20 K gate design, divided into three
activities, physical, logic, and system
design, showed enormous improve-
ments in design productivity as we suc-
cessively moved from lower abstraction
to higher abstraction (see Figure 2).
Before 1979, physical design was the
most time-consuming activity, and,
with the introduction of physical design
tools in 1983 and use of standard cells
to abstract away the geometry, the
design productivity for physical design
improved dramatically.

Ten years later, in 1993, when
logic/resistor-transistor logic (RTL)
synthesis tools saw widespread adoption
and raised the level of abstraction to
RTL objects, the logic design activity
saw productivity improvement compa-
rable to that of physical design in 1983.

Published in March 1992, Michel et
al. [6] forecasted that behavioral synthe-
sis will provide a similar productivity
boost for system design, as logic and
physical synthesis have done in the past.
Instead of behavioral synthesis, intellec-
tual properties (IPs) have found
widespread use and improved productivi-
ty. This is confirmed by ITRS 2003 [9],
which states that in 2003 improvements
in design technology allowed the design
cost of system-on-chip low-power to be
US$20 million instead of the projected
US$630 million had there been no inno-
vation in design technology. From mid
1990s to early 2000s, many improve-
ments in design technology have con-
tributed to improvement in design
productivity, but the single most impor-
tant factor has been widespread adoption
of IPs as design elements.

The discussion so far has created an

1. Gajski Kuhn Y Chart.
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impression that automatic synthesis is
the only element of design technology
that makes progress and improves
design productivity. This is clearly not
the case. The primary reason to keep
the discussion synthesis centric was
that abstraction and synthesis, in many
respects, epitomizes a design technolo-
gy node, and the secondary reason was
to not clutter the discussion. As
abstraction level is raised, verification
tools, analysis tools, estimation and
planning tools, design entry, and repre-
sentation all progress, and only when
all of them combine to create a mature
methodology, a new design technology
node is created and finds widespread
adoption among the practitioners. As
one would expect, before their
widespread adoption, components of a
new design technology node get adopt-
ed, starting with a few isolated pioneer-
ing design groups and then gaining
momentum as their success stories
spread together with progress in devel-
opment of the missing methodology
components, maturing of the existing
ones, and successful integration of
them in a methodology.

A comprehensive history of EDA
tools is beyond the scope of this article
and is covered very well by [2]–[5].
IBM has been a pioneer in the field of
EDA, and its contributions has had and
continues to have impact on the entire
EDA industry, as presented in [2]. The
evolution of EDA from an industrial
perspective is presented in [3]. History,
cycles in EDA industry, and future
challenges was presented in an inspir-
ing presentation as a keynote speech at
40th DAC in 2003 and subsequently
published as [5].

MOORE’S EDA LAW
A pattern has been observed in the evo-
lution of EDA tools based on raising
the abstraction level. This is proposed
as a law:

“Granularity of widely reused
design elements for VLSI systems
increases by two orders of magni-
tude every decade.”

— Moore’s EDA Law

This was first presented in August
1998 [7] and later repeated in March
2002 [8]. At the 2003 Design Automa-
tion Conference (DAC 2003), Prof.
Alberto Sangiovanni Vincentelli present-
ed many instances of ten-year cycles in
the EDA industry and also confirmed
that raising abstraction is central to
improving productivity and, approxi-
mately, the move to higher levels of
abstraction happens at decade intervals. 

To substantiate the proposed law, it
is expanded backward over time to ver-
ify its correctness in light of the VLSI
design automation history and used to
predict the future. This is shown in
Table 1, which shows a timeline of
major design technology nodes at
intervals of a decade and associates it
with the design elements, relative
granularity of the design elements, and
the chip architecture style.

The 1970s
VLSI design was largely manual and the
design element was polygon.

1980s
This was the first decade when a major
design technology node can be said to
have taken a foothold. Simple logic
functions and sequential devices were
the design elements realized as standard
cells or in gate arrays. Standard cells
and gate arrays helped abstract away the
device level geometry and structured
and regular placement enabled automat-
ic synthesis of place and route details. In
Table 1, these design elements are con-
sidered as base elements, and the
increase in granularity of other design

technology is expressed in multiples of
these elements.

The 1990s
Logic synthesis in development since
the 1970s saw commercialization in
1987, but the widespread adoption hap-
pened in the early 1990s when the use
of hardware description languages
(HDLs) for specifying VLSI systems
gained popularity. Tools unifying RTL
and logic synthesis emerged, and the
design elements were microarchitec-
tural RTL components, like arithmetic
units, registers, multiplexors for datap-
ath, and finite-state machines (FSMs)
for control logic. Though microarchi-
tectural components vary considerably
in size, the typical gate count for an
RTL design element is hundreds of
gates, i.e., two orders of magnitude
higher granularity compared to design
elements in the previous decade.

The complexity that could be inte-
grated in a VLSI system in much of the
1990s was algorithm(s) and character-
ized by hardwired computation and
interconnect. Apart from some marginal
reconfigurability, these systems were
truly application specific integrated cir-
cuits (ASICs), alternatively they could be
termed algorithm(s) on a chip.

The 2000s
Behavioral synthesis was commercial-
ized in mid 1990s but failed to get
widespread acceptance. IPs emerged in
late 1990s as a solution to improve pro-
ductivity. Typical IPs are reduced-
instruction set computer (RISC) or
digital-signal processor (DSP) cores,

Table 1. Design technology nodes according to Moore’s EDA law.

Decade Design Technology Node Design Element Granularity Chip Architecture

2010s Communication centric Subsystems, commn. 106 X NOC
platform based design centric platforms

2000s IP/Processor centric IPs, e.g., RISC/DSP cores, 104 X SOC
platform based design USB, DSP functions

1990s RTL/Logic synthesis RTL objects, e.g., 102 X Algorithm on a chip
arithmetic units,
registers, multiplexors

1980s Physical synthesis Std. cells, e.g., logic X
gates, flops, latches

1970s Manual Polygons
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DSP and communication functionalities
like Viterbi, fast Fourier transform
(FFT), discrete cosine transform (DCT),
audio and video coders and decoders
(CODECS), Ethernet Media Access Con-
trol (MAC), universal serial bus (USB),
etc. Though their usage started in late
1990s, they found widespread accep-
tance starting from the early 2000s and
have since become standard design ele-
ments. IPs vary a lot in their gate
counts, but the typical figure would be
of the order of tens of thousands of
gates, thus upholding the proposed law.

IPs as design elements differ from
the design elements used by previous
technology nodes. Design elements of
previous generations got instantiated in
an implementation as part of automatic
refinement. IPs, on the other hand, are
manually instantiated.

As if to compensate for the lack of
automatic refinement, IPs that are pro-
cessor cores have introduced a new
dimension of reuse, the programmabili-
ty, making them processor-centric plat-
forms that can be reprogrammed to
implement different applications. VLSI
systems with processor cores are often
termed system-on-a-chip (SOC). SOCs
are characterized by programmable
computation, while interconnect is usu-
ally hardwired, which limits the extent
to which they can be reused.

The 2010s
IPs make it possible to reuse large com-
putational and storage functionalities.
This has shifted the design bottleneck to
designing the chip level harness to inte-
grate the IPs and hardware macros that
are still designed using RTL methodolo-
gy. Processor-centric platforms are the
first step in a more generic platform
based design methodology whose
essence is to separate architecture from
function. The architecture consists of a
hardware platform, which standardizes
the rules for integrating the hardware
IPs, and a software platform, which
serves as the application program inter-
face (API) for the different applications
that the platform hosts. One such novel
communication centric platform, called
network on a chip (NOC) [13]–[16], is in
early stages of development and likely to

mature in a few years time and see
widespread adoption sometime after
that. While SOCs made computation
programmable, NOCs make intercon-
nect programmable and, thus, reusable.
If the proposed law holds, early 2010
will see widespread use of multimillion
gate subsystems and communication-
centric platforms like NOC as reusable
design elements. Early evidence of this
trend can already be seen as some
groups like the one at Philips Semicon-
ductors, where the author works are
already pioneering the use of large mul-
timillion gate processor subsystems to
succeed processor IPs as reusable ele-
ments. PrimeXsys from ARM, SOCit
from MIPS Technologies, and Core-
Ware from LSI Logic are other exam-
ples that substantiate the trend
towards subsystems as reusable ele-
ments. The trend is not limited to
infrastructural subsystems typified by
processor subsystems but also extends
to functional subsystems like modems
and protocol stacks for various telecom
standards. The WILD product family
from NewLogic for IEEE 802.11 is a
good example of a functional subsystem
IP. Philips Research’s Aethereal [16] ini-
tiative is a serious research effort to
bring the NOC concept to industrial
usage. These pioneering efforts are pre-
cursors to widespread adoption of these
design technology elements.

The Interconnect
As the design elements that are (re)used
as building blocks increase in granulari-
ty, the input/output (I/O) of these
design elements also increase in num-
ber and complexity. The I/O of an ARM
processor is considerably more complex
compared to that of a NAND gate real-
ized as a standard cell. To contain the
increase in complexity due to increase
in complexity of I/O, the design tech-
nology and chip architectures have pro-
gressed as follows:

✦ When gates and flip-flops were
replaced by RTL microarchitectural
design elements, wires were
replaced by signal vectors or buses.
This was supported first by
schematic capture and later by
HDLs.

✦ When HDLs became popular,
automatic synthesis of intercon-
nect elements between design
elements saw further progress as
data and control flow analysis
allowed synthesis tools to infer
and instantiate both multiplexors
and tristate buses, depending on
the language constructs used.

✦ Interface synthesis is a neat idea
to automate synthesis of inter-
connects among larger IP-size
design elements but has unfortu-
nately not been successfully com-
mercialized so far [10]–[12].

✦ Widespread acceptance of RISC
core, like ARM, has created a de
facto standard for interconnect-
ing IPs and subsystems in SOCs.
These de facto standards, like the
advanced microprocessor bus
architecture (AMBA), enables
third-party IP providers to devel-
op IPs that can be easily plugged
into such systems, thus absorb-
ing away the interconnect-relat-
ed complexity.

✦ Platform-based design, especially
the communication-centric plat-
form like NOC, holds potential to
further increase the granularity of
the interconnect elements that
will be reused by making the chip
level interconnect programmable.

Moore’s Law Versus
Moore’s EDA Law

Moore’s law roadmaps semiconductor
productivity, and a law has been pro-
posed to chart the design productivity.
Are they related?

Moore’s law, over a decade, makes
available 210/1.5 ≈ 100 times more
devices, and, according to the proposed
law, progress in EDA enables reuse of
two orders of magnitude bigger design
elements over a decade. In other
words, the number-of-elements factor
in complexity remains constant over a
decade and cannot cause increase in
design complexity.

The previous text substantiates that
the reused interconnect elements have
also similarly increased in granularity
and is an unlikely explanation for the
productivity gap.
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EXPLAINING THE
PRODUCTIVITY GAP

To understand the productivity gap, we
will take a closer look at verification
and differences in the nature of semi-
conductor and design productivity.

Verification
The last five years has seen a steady rise
in verification cost of VLSI systems to
the extent that, today, it is widely per-
ceived as the bottleneck and a major
source of delays in ASIC/SOC projects.

The increasing granularity of
reusable design elements, both compu-
tational and interconnect, in principle,
should benefit not just implementation,
but also verification. The task of design-
ing becomes easier and more produc-
tive, because the designer has to deal
with fewer elements and details. Simi-
larly, the verification task also becomes
easier because the verifier only needs to
verify the more abstract, less detailed
specification; the reused design ele-
ments are not only predesigned, they
are also preverified. Since the test
bench is also written at the same level
of abstraction as the abstract specifica-
tion, it, too, benefits from ignoring the
same details that are ignored by the
specification (see Figure 3). This works
because the synthesis tool is assumed to
embody the correct-by-construction
principle. This nice property of auto-
matic synthesis has been broken with
the use of IP and processor-centric,
platform-based design technology node.

With IP-based design, the refined
implementation is synthesized manually
and requires verification at the more
detailed level and does not benefit from
the efficiency of verifying at the higher
abstraction level (see Figure 3). There
may be a more abstract executable spec-
ification that roughly corresponds to the
more refined specification, but since it is
not automatically synthesized, there is
no assurance that the two are equiva-
lent. This is a major reason for the veri-
fication task becoming a bottle neck.

What is required is
✦ a language abstract enough to

have its atomic operations
refined to building blocks of IP-
level granularity

✦ a synthesis process that can
refine the abstract atomic opera-
tions in terms of IPs or map the
atomic operations/functions to
processor IPs by synthesizing the
software for processor IPs

✦ synthesizing the interface among
IPs or program/configure the
interconnect IPs in an NOC-like
platform

✦ synthesizing a memory hierarchy
to hold global and local data

✦ a set of system-level constraints
that can be used to guide the
refinement process.

Today, rudimentary versions of
such systems exist but need consider-
able progress to fully meet these
requirements and are far from wide-
spread adoption.

Semiconductor Versus
Design Productivity

Semiconductor productivity is machine
centric; when a foundry moves to a new
technology node, the semiconductor
productivity, devices/mm2, is machined
into the fabrication line and does not
change with time, place, or the opera-
tors. Design productivity is human cen-
tric; when a new design technology is
adopted, it usually involves a steep
learning curve. As the new technology is
mastered over time, design teams
become more productive. Different
design teams use the same technology
with varying degrees of success, depend-

ing on their experience and background.
Therefore, design productivity does
change with time and place.

Semiconductor productivity impr-
oves by replacing the previous genera-
tion process. When a new process is
operational, it does not require the previ-
ous generation process. Design produc-
tivity improves by adopting a new design
technology with new level of abstraction,
but it does not replace the previous gen-
eration technology. On the contrary, the
new technology often builds on the pre-
vious generation technology. For
instance, when the design community
adopted logic synthesis, physical synthe-
sis did not become redundant. Instead, it
became the back-end to logic synthesis,
and remains an essential part of the
entire design flow.

The previous differences reflect in
the differing life cycles of the semicon-
ductor and design technologies. Semi-
conductor technology progresses
steadily at a rate dictated by Moore’s
law, creating new nodes every 18
months. Design technology, on the
other hand, while matching the overall
rate of progress in semiconductor tech-
nology as per the proposed law, pro-
gresses at an uneven pace, spread over
three phases in a ten-year cycle.

The first phase is like childhood and
has some teething problems. A new
design technology is adopted for its
potential to improve design productivi-
ty, but often the first time it is applied,

3. Manual Refinement requires verifying a more detailed specification.
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it proves to be less productive than the
previous generation design technology.
This is why most companies have pilot
projects to iron out the wrinkles with a
new design technology before it is
applied to a time-critical real project. 

The second phase is like youth. The
technology is mastered and yields pro-
ductivity gains, which improves with
successive applications as the intrica-
cies of the new flow are better under-
stood and tools and methods mature
and get better integrated.

Youth does not last forever, and old
age descends when the design technolo-
gy starts getting overwhelmed by com-
plexity and issues not present with the
previous generations of semiconductor
technologies. Productivity falls, but old
habits die hard, and designers resist
adopting a new design technology.

Productivity gap is a symptom observed
starting from the old age of the previous
generation EDA node and continues up to
the youth of next generation EDA node
and is often reported for the most chal-
lenging and complex designs done in the
latest semiconductor technology.

This analogy explains the differing
design productivity in different phases
of the EDA cycle, but old age in humans
should not be strictly compared to the
old age of EDA cycles. Old age in
humans is followed by death, but in the
case of EDA, old age becomes the foun-
dation or the back-end for the next gen-
eration technology. As semiconductor
technology progresses, new issues crop
up that require considerable progress in
the EDA technology associated with
lower levels of abstraction as it is hap-
pening now: physical design tools in
recent times have seen considerable
upgrade in their functionality to effec-
tively serve as a back-end.

CONCLUSION
Complexity in VLSI systems can be
traced to progress in semiconductor
technology as per Moore’s law. The EDA
industry has responded to the increas-
ing complexity by successively moving
to higher levels of abstraction, which
increases the granularity of predesigned
and preverified design elements that are
reused by the synthesis for refining the

abstract specification. Together with
the granularity of design elements, the
granularity of I/O has also increased.
This improves productivity.

A pattern has been observed in the
rate at which design technology pro-
gresses, and this is expressed as a pro-
posed law. This proposed law is
substantiated by evaluating it in light of
design technology history, and in the
process, design technology nodes in the
past, present, and future are defined.

According to the proposed law,
progress in design technology equalizes
the increase in complexity due to
Moore’s law over periods of ten years.
As a result, we should not see increase
in complexity or a productivity gap.

Productivity gap is partly a transient
phenomenon that occurs due to differ-
ences in the nature of semiconductor
and design technologies, which is
reflected in their life cycles. Whereas
semiconductor technology progresses
at a steady pace and has a short 18
month cycle, design technology pro-
gresses at an uneven pace and has a
decade long life cycle.

Another factor that has contributed
to the present productivity gap is the
verification problem. It is analyzed as a
result of design technology departing
from automatic synthesis. To address
this problem, design technology inno-
vators will have to raise the abstraction
of the specification language and devel-
op synthesis methods to deal with the
new abstraction. Unless this happens,
the design technology might develop
more than a transient productivity gap.
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