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T he open motion planning library (OMPL) is a new 
library for sampling-based motion planning, which 
contains implementations of many state-of-the-art 
planning algorithms. The library is designed in a 

way that it allows the user to easily solve a variety of 
complex motion planning problems with minimal input. 
OMPL facilitates the addition of new motion planning 
algorithms, and it can be conveniently interfaced with 
other software components. A simple graphical user 
interface (GUI) built on top of the library, a number of 
tutorials, demos, and programming assignments are 
designed to teach students about sampling-based motion 
planning. The library is also available for use through 
Robot Operating System (ROS). 

Motion Planning
Robotic devices are steadily becoming a significant part of 
our daily lives. Search-and-rescue robots, service robots, 
surgical robots, and autonomous cars are examples of 
robots most of us are familiar with. Finding paths (motion 
plans) efficiently for such robots is critical for a number of 
real-world applications (Figure 1). For example, in urban 
search-and-rescue settings, a small robot may need to find 
paths through rubble and semicollapsed buildings to locate 
survivors. In domestic settings, it would be useful if a robot 
could, for example, put away kids’ toys, fold the laundry, 
and load the dishwasher. Motion planning also plays an 
increasingly important role in robot-assisted surgery. For 
example, before a flexible needle is inserted or an incision is 
made, a path can be computed that minimizes the chances 
of harming vital organs. More generally, motion planning is 
the problem of finding a continuous path that connects a 
given start state of a robotic system to a given goal region 
for that system, such that the path satisfies a set of 
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constraints (e.g., collision avoidance, 
bounded forces, bounded acceleration). 
This article describes an open source 
software library for motion planning, 
designed for research, educational, and 
industrial applications. 

Although most of the work done 
toward the development of algorithms that 
solve the motion planning problem comes 
from robotics and artificial intelligence 
[1]–[3], the problem can be viewed more 
abstractly as search in continuous spaces. 
As such, the applications of motion plan-
ning extend beyond robotics to fields such 
as computational biology [4]–[7] and com-
puter-aided verification [8], among others. 

Early results have shown the motion 
planning problem to be PSPACE-complete [9], and existing 
complete algorithms are difficult to implement and compu-
tationally intractable. For this reason, more recent efforts 
focus on approaches with weaker completeness guarantees. 
One of these approaches is that of sampling-based motion 
planning, which has been used successfully to solve difficult 
planning problems for robots of practical interest. Many 
sampling-based algorithms are probabilistically complete: a 
solution will eventually be found with probability one if one 
exists, but the nonexistence of a solution cannot be reported 
(see [10]–[13]). 

Many of the core concepts in sampling-based motion plan-
ning are relatively easy to explain, but implementing sampling-
based motion planning algorithms in a generic way is nontriv-
ial. This article describes OMPL (http://ompl.kavrakilab.org), 
an open source C++ implementation of many sampling-based 
algorithms (including the Probabilistic Roadmap Method 
(PRM) [14], Rapidly-expanding Random Trees (RRT) [15], 
Kinodynamic Planning by Interior-Exterior Cell Exploration 
(KPIECE) [16], and many more) and the core low-level data 
structures that are commonly used. OMPL includes Python 
bindings that expose almost all functionality to Python users. 
This library is aimed at three different audiences: 

●● motion planning researchers 
●● robotics educators 
●● end users in the robotics industry. 

In the following, we will characterize the needs of these 
different audiences. 

Within the robotics community, it is often challenging to 
demonstrate that a new motion planning algorithm is an 
improvement over the existing methods, according to certain 
metrics. First, it is a substantial amount of work for a 
researcher to implement not only the new algorithm, but also 
one or more state-of-the-art motion planning algorithms to 
compare it against. Ideally, implementations of low-level data 
structures and subroutines used by these algorithms (e.g., 
proximity data structures) are shared, so that only differences 
of the high-level algorithm are measured. Second, for an 
accurate comparison, one needs a known set of benchmark 

problems. Finally, collecting various performance metrics for 
several planners with different parameter settings, running on 
several benchmark problems, and storing them in a way that 
facilitates easy analysis afterward is a nontrivial task. We, as 
developers of planning algorithms, have run into the above 
issues many times. We designed OMPL to help with all these 
issues, and make it easier to try out new ideas. Moreover, the 
library is designed in a way that facilitates contributions from 
other motion planning researchers and provides benchmark-
ing capabilities to easily compare new planners against all 
other planners implemented in OMPL (see “Benchmarking 
with OMPL”). We have developed a streamlined process that 
gives contributing researchers appropriate credit and mini-
mizes the burden of writing code that satisfies our library’s 
application programmers interface  (API). At the same time, 
our aim is to make such contributions easily available to users 
of OMPL. This is achieved by releasing the code under the 
Berkeley Software Distribution license (one of the least 
restrictive open source licenses), releasing frequent updates, 
and making the code available through a public repository. To 
foster a community of OMPL users and developers, we have 
set up a mailing list, a blog, and a Facebook page. 

For robotics educators, we have designed a series of exer-
cises or projects around OMPL aimed at undergraduate  
students. These exercises help students to realize the com-
plexity of motion planning in practice, to develop an under-
standing of how sampling-based motion planning algo-
rithms work, and to learn evaluation of the performance of 
planners. We have also designed open-ended projects for 
undergraduate and graduate students. OMPL is structured 
to have a clear mapping between the motion planning con-
cepts used in the literature and the classes that are defined in 
the implementation. The separation between abstract base 
classes that only specify the interface and derived classes 
that implement the specified functionality also helps stu-
dents to understand general concepts in motion planning 
before focusing on details. 

From the beginning, OMPL was intended to be useful in 
practical applications. This requires that planning algorithms 

(a) (b) (c)

Figure 1. Real-world applications of motion planning. (a) An urban search-and-
rescue robot from Carnegie Mellon University’s (CMU’s) Biorobotics Lab. (b) The 
HERB robot from CMU’s Personal Robotics Lab picking up a bottle. (c) A PR2 robot 
folding laundry in the University of California at Berkeley’s Robotics Learning Lab. 
Images used with permission from Prof. Choset, Prof. Srinivasa, and Prof. Abbeel, 
respectively. 
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can solve motion planning problems for systems with many 
degrees of freedom at interactive speeds. An additional 
requirement is the ability to cleanly integrate OMPL with other 
software components on a robot, such as perception, kinemat-
ics, and control. Through a collaboration with Willow Garage, 
Menlo Park, California, OMPL is integrated within ROS [17] 
and serves as the motion planning back-end for the arm plan-
ning software stack. The availability of OMPL in ROS makes it 
easy for end users in the robotics industry to stay up-to-date 
with advances in sampling-based motion planning. 

Background
There has been much work done on both algorithm develop-
ment and software development for motion planning. This 
article only discusses aspects pertaining to sampling-based 
motion planning. 

Sampling-Based Motion Planning Definitions 
Sampling-based motion planning algorithms relaxed 
completeness guarantees and demonstrated that many 
interesting problems can be solved efficiently in practice, 
despite the theoretically high complexity of the problems 
[2], [3]. The fundamental idea of sampling-based motion 
planning is to approximate the connectivity of the search 
space with a graph structure. The search space is sampled 
in various ways, and selected samples end up as the verti-
ces of the approximating graph. Edges in the approximat-
ing graph denote valid path segments. 

There are two key considerations in the construction of 
the graph approximation: the probability distribution used for 
sampling states and the strategy for generating edges. An 

enormous amount of research has been performed toward 
the development of efficient algorithms that account for these 
issues [18]. 

We will not go into the details of various sampling-based 
motion planning algorithms, as such details can be found 
elsewhere [2], [3]. Instead, we describe the common com-
ponents sampling-based algorithms typically depend on, as 
these relate to the implementations of such algorithms: 

●● �State Space: Points in the state space (or configuration 
space) fully describe the state of the system being planned 
for. For a free-flying rigid body, the state space consists of 
all translations and rotations, while for a manipulator with 
n rotational joints, the state space can be modeled by an 
n-dimensional torus. 

●● �Control Space: A control space represents a parameteriza-
tion of the space of controls. This is only required for sys-
tems with dynamics. For most systems of practical interest, 
one can think of the control space for a system with m con-
trols simply as a subset of Rm. For geometric planning, no 
controls are used. 

●● �Sampler: A sampler is needed to generate different states 
from the state space. For control-based systems, a sepa-
rate sampler is needed for sampling different controls. 
Some planning algorithms (e.g., [12], [16]) only require 
a control sampler and do not need a state sampler. 

●● �State Validity Checker: A state validity checker is a 
routine that distinguishes the valid part of the state space 
from the invalid part of the state space. For example, a 
state validity checker can check for collisions and 
whether velocities and accelerations are within certain 
bounds. 

Benchmarking with OMPL

A seemingly simple but often ignored part of motion planning 
software is benchmarking planning code. OMPL includes 
benchmarking capabilities (through a class called Benchmark) 
that can be simply dropped in and applied to existing planning 
contexts. In very simple terms, a Benchmark object runs a number 
of planners multiple times on a user-specified planning context. 
Although simple, this code automatically keeps track of all the 
used settings and takes all the possible measurements during 
planning (currently, tens of parameters are recorded for every 
single motion plan). The recorded information is logged and can 
be postprocessed using a Python script included with OMPL. The 
script can produce MySQL databases with all experiment data so 
that the user can write their own queries later on, but it can also 
automatically generate plots for all of the performance metrics. 
For real- and integer-valued measurements, it generates box plots: 
plots that include information about the median, confidence 
intervals and outliers. An example is shown in Figure S1. For binary-
valued measurements, it generates bar plots. A more elaborate 
example of what can be done with the Benchmark class can 
be found at http://plannerarena.org, a Web site currently being 

developed to establish standard benchmark problems and report 
performance metrics for various planners on those problems.
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Figure S1. A sample box plot generated by OMPL’s benchmark 
script. 
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●● �Local Planner: When planning with controls, the local 
planner is a mean of computing the evolution of the 
robotic system forward (and sometimes backward) in 
time. When planning solely under geometric con-
straints, the local planner often performs interpolation 
between states in the state space. 

Software Packages for Motion Planning 
Several other packages for motion planning are available. 
Some, such as the Motion Strategies Library (MSL, http://msl.
cs.uiuc.edu), the Motion Planning Kit (MPK, http://robotics. 
stanford.edu/~mitul/mpk), and VIZMO++ [19] are no lon-
ger maintained. KineoWorks (http://www.kineocam.com) 
provides commercial motion planning software for academic 
research and industrial applications. In 2007, our group 
released the Object-Oriented Programming System for 
Motion Planning (OOPSMP) [20], which is also no longer 
maintained. 

Another software package that is complementary to 
OMPL is OpenRAVE [21]. OpenRAVE is open source, 
actively developed, and it is widely used. It is important to 
understand the difference in design philosophy behind 
OMPL and OpenRAVE. OpenRAVE is designed to be a com-
plete package for robotics. It includes, among other things, 
geometry representation, collision checking, grasp planning, 
forward and inverse kinematics for several robots, controllers, 
motion planning algorithms, simulated sensors, and visual-
ization tools. OMPL, on the other hand, was designed to 
focus completely on sampling-based motion planning with a 
clear mapping between theoretical concepts in the literature 
and abstract classes in the implementation. This high level of 
abstraction makes it easy to integrate OMPL with a variety of 
front-ends and other libraries. Some integration examples are 
described in section describing the integration with other 
robotics software. To some extent, the integration with ROS 
[17] gives a user many of OpenRAVE’s features that are pur-
posefully not included in OMPL. It may also be possible to 
use OMPL as a motion planning plug-in in OpenRAVE. As a 
result of the narrower focus in OMPL, we have been spending 
more resources on implementing a much broader variety of 
sampling-based algorithms than what is currently available in 
OpenRAVE, as well as benchmarking capabilities to facilitate 
a thorough comparison of existing and future sampling-based 
motion planners. 

Relationship with Other Robotics Software 
There have also been many efforts to create robot simula-
tors such as Player/Stage [22], Player/Gazebo [23], Webots 
[24], and MORSE [25]. Microsoft Robotics Developer 
Studio [26] also contains a robot simulator. Typically, such 
simulators do not include motion planning algorithms, but 
they can provide a controlled simulated environment to test 
motion planners in various environments, on various 
robots with different sensing and communication capabili-
ties. They often simulate the dynamics of the world (includ-
ing the robots themselves) using physics engines such as 

Bullet (http://bulletphysics.org) and the open dynamics 
engine (ODE, http://ode.org), among others. 

Hardware platforms typically require complex software 
configurations and use various forms of middleware to accom-
modate this requirement 
(e.g., ROS [17], Orocos 
(http: //www.orocos.org), 
OpenRTM-aist [27], 
OPRoS [28], Yarp [29]). 
Such software systems 
typically include their own 
visualization system, colli-
sion checking, etc. OMPL 
fits naturally and easily 
into such systems as it 
only provides sampling-
based motion planning 
and its abstract interface 
should accommodate a 
variety of low-level 
implementations. 

Conceptual Overview 
of OMPL
OMPL is intended for use in research and education, as well 
as in industry. For this reason, the main design criteria for 
OMPL were as follows:
1)	� Clarity of Concepts: OMPL was designed to consist of a set 

of components as indicated in Figure 2, such that each 
component corresponds to known concepts in sampling-
based motion planning. 

2)	� Efficiency: OMPL has been implemented entirely in C++ 
and is thread-safe. 

3)	� Simple Integration with Other Software Packages: To 
facilitate the integration with other software libraries, 
OMPL offers abstract interfaces that can be imple-
mented by the “host” software package. Furthermore, 
the dependencies of OMPL are minimal: only the Boost 
C++ libraries are required. Optionally, OMPL can be 
compiled with Python bindings, which facilitates inte-
gration with Python modules. 

4)	� Straightforward Integration of External Contributions: 
We strive for minimalist API constraints for planning 
algorithms, so that new contributions can be easily 
integrated.
As opposed to all other existing motion planning soft-

ware libraries, OMPL does not include a representation of 
workspaces or of robots; as a result, it also does not include a 
collision checker or any means of visualization. OMPL is 
reduced to only motion planning algorithms. The advantage 
of this minimalist approach is that it allows us to design a 
library that can be used for generic search in high-dimen-
sional continuous spaces subject to complex constraints. 
Instead of defining valid states as collision-free, which would 
require a specific geometric representation of the environ-
ment and robot as well as support for a specific collision 

Many of the core concepts 

in sampling-based motion 

planning are relatively 

easy to explain, but 

implementing sampling-

based motion planning 

algorithms in a generic way 

is nontrivial. 
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checker, OMPL leaves the definition of state validity com-
pletely up to the user (or the software package in which 
OMPL is integrated; see the section about the relationship 
with other robotics software). This gives the user an enor-
mous design freedom: the user can defer collision checking 
to a physics engine, write a state sampler that constructs only 
valid states, or define state validity in completely arbitrary 
ways that may or may not depend on geometry. 

To make OMPL as easy to use as possible, various para-
meters needed for tuning sampling-based motion planners 
are automatically computed. The user has the option to over-
ride defaults, but that is not a requirement. 

Implementation of Core Concepts
In the following we will give an overview of the implementa-
tion of the core motion planning concepts in OMPL. Figure 2 
gives a high-level overview of the main classes and their rela-
tionships. We will use the following notation. Classes are writ-
ten in a sans-serif font (e.g., StateSpace), while methods and 

functions are written in a monospaced font [e.g., isSatis-
fied()]. For conciseness, the arguments to methods and 
functions are omitted.

States, Controls, and Spaces
To maximize the range of application for the included 
planning algorithms, OMPL represents the search spaces, 
that is, the state spaces (StateSpace), in a generic way. State 
spaces include operations on states such as distance evalu-
ation, test for equality, interpolation, as well as memory 
management for states: (de)allocation and copying. 
Additionally, each state space has its own storage format 
for states, which is not exposed outside the implementa-
tion of the state space itself. To operate on states, the plan-
ning algorithms implemented in OMPL rely only on the 
generic functionality offered by state spaces. This approach 
enables planning algorithms in OMPL to be applicable to 
any state spaces that may be defined, as long as the 
expected generic functionality is provided.

ControlSampler
Implements Sampling

of Controls for a 
Specific ControlSpace

StateSpace
Represents the State

Space in which Planning
is Performed; Implements

Topology-Specific Functions:
Distance, Interpolation,

State (De)allocation

StateSampler
Implements Uniform

and Gaussian Sampling
of States for a Specific

StateSpace

ProjectionEvaluator
Computes Projections from
States of a Specific State-

Space to a Low-Dimensional
Euclidean Space

SpaceInformation
Provides Routines Typically
Used by Motion Planners;

Combines the Functionality
of Classes it Depends on

StateValidityChecker
Decides Whether a Given

State from a Specific
StateSpace is Valid

MotionValidator
Provides the Ability to

Check the Validity of Path
Segments Using the

Interpolation Provided by
the StateSpace

ValidStateSampler
Provides the Ability

to Sample Valid States

Planner
Solves a Motion

Planning Problem

Goal
Representation

of a Goal

ProblemDefinition
Specifies the Instance of
the Planning Problem;

Requires Definition of Start
States and a Goal

SimpleSetup
Provides a Simple Way
of Setting up All Needed
Classes Without Limiting

Functionality

Path
Representation of a Path;

used to Represent a Solution
to a Planning Problem

User Code

only when planning with differential constraints 

User Must Instantiate This Class
User Must Instantiate This Class Unless SimpleSetup Is Used
User Can Instantiate This Class, but Defaults Are Provided

A      B A Is Owned by B

ControlSpace
Represents the Control
Space the Planner Uses
to Represent Inputs to

the System Being
Planned for

StatePropagator
Returns the State Obtained

by Applying a Control to
Some Arbitrary Initial State

DirectedControlSampler
Sample Controls that

Take the System Towards
a Desired State

Figure 2. Overview of OMPL structure. Class names correspond to well-understood concepts in sampling-based motion planning. 
More detailed documentation is available at http://ompl.kavrakilab.org. 
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Furthermore, OMPL includes a means of combining state 
spaces using the class CompoundStateSpace. A combined state 
space implements the functionality of a regular state space on 
top of the corresponding functionality from the maintained 
set of state spaces. This allows trivial construction of more 
complex state spaces from simpler ones. For example 
SE3StateSpace [the space of rigid body transformations in 
three-dimensional (3-D)] is just a combination of 
SO3StateSpace (the space of rotations) and RealVectorStateSpace 
(the space of translations). Instances of CompoundStateSpace 
can be constructed at run time, which is necessary for con-
structing a state space from an input file specification, as is 
done, for example, in ROS. For a mobile manipulator, one 
could construct a CompoundStateSpace with the two arms and 
the mobile base as substate spaces. An arm typically has a 
number of rotational joints and can be modeled by either a 
RealVectorStateSpace (if the joints have limits) or a 
CompoundStateSpace with copies of SO(2). The state space for 
the base can simply be SE(2) (the space rigid body transfor-
mations in the plane).

State spaces optionally include specifications of projections 
to Euclidean spaces (ProjectionEvaluator). Low-dimensional 
Euclidean projections are used by several sampling-based 
planning algorithms (e.g., KPIECE [16], SBL [30], EST [12]) 
to guide their search for a feasible path, as it is much easier to 
keep track of coverage (i.e., which areas have been sufficiently 
explored and which areas should be explored further) in such 
low-dimensional spaces. 

In addition to states and state spaces, some algorithms 
in OMPL require a means to represent controls. Control 
spaces (ControlSpace) mirror the structure of state spaces 
and provide functionality specific to controls, so that plan-
ning algorithms can be implemented in a generic way. The 
only available implementations of control spaces are the 
Euclidean space and a space for discrete modes, because so 
far there has not been a need for control spaces with more 

complex topologies. However, the API allows one to define 
such control spaces.

State Validation and Propagation
Whether a state is valid or not depends on the planning con-
text. In many cases, state validity simply means that a robot is 
not in collision with any obstacles, but in general any condi-
tion on a state can be used. In OMPL.app (see the section on 
OMPL.app: A GUI for OMPL) we have predefined a state 
validity checker for rigid body motion planning. We have also 
implemented a state validity checker that uses the ODE (see 
the section on motion planning using a physics engine). If 
these built-in state validity checkers cannot be used for the 
system of interest, a user needs to implement their own. 
Based on a given state validity checker, a default 
MotionValidator is constructed that checks whether the inter-
polation between two states at a certain resolution produces 
states that are all valid. However, it possible to plug in a differ-
ent MotionValidator. For example, one might want to add sup-
port for continuous collision checking, which can adaptively 
check for collisions and provide exact guarantees for state 
validity [31].

For planning with controls, a user needs to specify how 
the system evolves when certain controls are applied for 
some period of time starting from a given state. This is called 
state propagation in OMPL. In the simplest case, a state 
propagator is essentially a lightweight wrapper around a 
numerical integrator for systems of the form ˙ q = f (q, u), 
where q is a state vector and u a vector of controls. To facili-
tate planning for such systems, we have implemented generic 
support for ODE solvers and we have integrated Boost.
Odeint [32], a new library for solving ODEs. Given a user-
provided function that implements f (q, u) for the system of 
interest, OMPL can plan for such systems. Alternatively, one 
can use variational integrators [33], or a physics engine to 
perform state propagation.

Motion Planning Using a Physics Engine
OMPL has built-in support for using the ODE physics engine. 
Support for other physics engines, such as Bullet, is planned 
for a future release. We expect that the approach described 
below can be followed for these physics engines (and others) 
as well.

The ODE state space consists of the state spaces of the 
robot and any movable objects in the environment. The user 
specifies which joints are controlled by the planner and maps 
those to a ControlSpace. The user can also specify which 
collisions are allowed (e.g., contact with the support plane) 
and which ones are not (such as driving into a wall). This 
simple setup allows one to plan for systems that are difficult 
to describe with differential equations. The user does not need 
to worry about all the different possible contact modes that 
occur when a car drives off a ramp (Figure S2) or when a robot 
pushes one or more obstacles (Figure S3).

Figure S2. A car-like robot driving off a ramp.

Figure S3. A yellow robot needs to push obstacles 
to get to its goal.
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Samplers
The fundamental operation that sampling-based planners 
perform is sampling the space that is explored. Additionally, 
when considering controls in the planning process, sampling 
controls may be performed as well.

To support sampling functionality, OMPL includes 
four types of samplers: state space samplers (StateSampler), 
valid state samplers (ValidStateSampler), control samplers 
(ControlSampler),  and directed control samplers 
(DirectedControlSampler).

State space samplers are implemented as part of the 
StateSpace they can sample, since they need to be aware 
of the structure of the states in that space. For instance, 
uniformly sampling 3-D orientations is dependent on 
their parameterization. Three sampling distributions 
are implemented by every state space sampler: uniform, 

Gaussian and uniform 
in the vicinity of  a 
specified point. This 
first sampler is neces-
sary to sample over the 
entire space, but the 
latter two are used for 
sampling states near a 
previously generated 
state. This is the most 
basic level of sampling.

Previous work has 
shown that the strategy 
used for sampling valid 
states in the state space 
significantly influences 
runtime of many plan-
ning algorithms [34]. 
Valid state samplers pro-

vide the interface for implementing different sampling strate-
gies. The probability distribution of these samplers depends 
on the algorithm used and is not imposed as part of the API. 
The implementation of valid state samplers relies on the exis-
tence of a state space sampler and a state validator 
(StateValidityChecker). A common approach to constructing 
valid state samplers is to repeatedly call a state space sampler 
until the state validator returns true. Several valid state sam-
plers have been implemented in OMPL: for example, a uni-
form valid state sampler (UniformValidStateSampler),  
two samplers (GaussianValidStateSampler, ObstacleBasedValid 
StateSampler) that generate valid samples near invalid ones 
(which is often helpful in finding paths through narrow pas-
sages [35], [36]).

When considering controls in the planning process, a 
means to generate controls is also necessary. This functional-
ity is attained using control samplers, which are implemented 
as part of the control spaces (ControlSpace) they represent. 
Additionally, a notion of direction is also important in some 
planners: controls that take the system towards a particular 
state are desired, rather than simply random controls. This 

functionality is achieved through the use of directed control 
samplers (derived from the DirectedControlSampler class).

Goal Representations
OMPL uses a hierarchical representation of goals. In the most 
general case, a Goal can be defined by the isSatisfied() 
function that when given a state, reports whether that state is 
a goal state or not. While this very general implicit representa-
tion is possible, it offers planners indication of how to reach 
the goal region. For this reason, isSatisfied() option-
ally reports a heuristic distance the goal region, which is not 
required to be a metric.

GoalRegion is a refinement of the general Goal representa-
tion, which explicitly specifies the distance to the goal using  
a distanceGoal() function. The isSatisfied() 
function is then defined to return true when distance-
Goal() reports distances smaller than a user set threshold. 
GoalRegion is still a very general representation but allows 
planners to bias their search towards the goal.  
A refinement of GoalRegion is GoalSampleableRegion, one 
which additionally allows drawing samples from the goal 
region. GoalState and GoalStates are concrete implementations 
of GoalSampleableRegion.

For practical applications it is often possible to sample 
the goal region, but the sampling process may be relatively 
slow (e.g., when using numerical inverse kinematics  
solvers). For this reason a refinement of GoalStates is 
defined as well: GoalLazySamples. This refinement continu-
ously draws samples in a separate sampling thread, and 
allows planners to draw samples from the goal region 
without waiting, after at least one sample has been pro-
duced by the sampling thread.

Planning Algorithms
OMPL includes two types of motion planners: ones that 
do not consider controls when planning and ones that do. 
If a planning algorithm can be used to plan both types of 
motions, with and without controls (e.g., RRT [15]), two 
separate implementations are provided for that algorithm: 
one for each type of computed motion. This choice was 
made for efficiency reasons. With additional levels of 
abstraction in the implementation, it would have been 
possible to avoid separate implementations, [20]. The 
downside would have been that the implementation of 
planners would have had to follow a strict structure, 
which makes the implementation of new algorithms more 
difficult and possibly less efficient.

For purely geometric planning (i.e., controls are not 
considered), the solution path is constructed from a finite 
set of segments, and each segment is computed by inter-
polation between a pair of sampled states (PathGeometric). 
Several geometric planning algorithms are implemented 
in OMPL, including KPIECE [16], bidirectional KPIECE, 
bidirectional lazy KPIECE, RRT [15], RRT-connect [37], 
lazy RRT, SBL [30], EST [12], and PRM [14]. The lazy 
variants listed above defer state validity checking in the 

Within the robotics 

community, it is often 

challenging to demonstrate 

that a new motion 

planning algorithm is an 

improvement over the 

existing methods, according 

to certain metrics.
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manner described in [38]. In addition, there are multi-
threaded versions of RRT and SBL.

When controls are considered, the solution path is con-
structed from a sequence of controls (PathControl). 
Controlbased planners are typically used when motion plans 
need to respect differential constraints as well. Several algo-
rithms for planning with differential constraints are imple-
mented in OMPL as well, including KPIECE, SyCLoP [39], 
EST, and RRT.

An Example
Figure 3 shows the complete code necessary for planning 
the motion of a rigid body between two states in Python. 
The corresponding C++ code would look almost  
identical. The steps taken in the code are: instantiate the 
space to plan in [SE(3), line 6], create a simple planning 
context (using SimpleSetup, line 13), specify a function that 
distinguishes valid states (lines 15 and 16), specify the 
input start and goal states (lines 18–26), and finally, com-
pute the solution (line 27). The SimpleSetup class initializes 
instantiations of the core motion planning classes shown 
in Figure 2 with reasonable defaults, which can be over-
ridden by the user if desired.

Essentially, the execution of the code can be reduced 
to three simple steps: 1) specify the space in which plan-
ning is to be performed, 2) specify what constitutes a 
valid state, and 3) specify the input start and goal states. 
Such simple specifications are desirable for many users 
who simply want motion planning to work without hav-
ing to select problem-specific parameters, or different 
sampling strategies, or different planners, etc. This capa-
bility is made possible by OMPL’s automatic computation 
of planning parameters. In the example above, a planner 
is automatically selected based on the specification of the 
goal and the space to plan in. The selected planner is 
then automatically configured by computing reasonable 
default settings that depend on the planning context. If a 
user decides to choose their own planner, or set their 
own parameters, OMPL allows the user to do so com-
pletely—no parameters are hidden.

Integration with Other Robotics Software
It is straightforward to integrate OMPL with other robotics 
software. In the following we will present two case studies that 
highlight different use cases.

OMPL.app: A GUI for OMPL
We have created a graphical front end for OMPL called 
OMPL.app. This front end was created for three reasons: 

1)	�to provide novice users (such as students in a robotics 
class) with an easy-to-use interface to play with several 
motion planning algorithms and apply them to several 
example rigid body motion planning problems

2)	�to demonstrate the integration of OMPL with third-
party libraries for collision checking and loading of 3-D 
meshes, and a GUI toolkit

3)	�to allow for easy benchmarking of new and existing 
planners on rigid body motion planning problems 
using a command line tool (see “Benchmarking with 
OMPL”). We will go on to elaborate on these reasons.

The graphical interface of OMPL.app is shown in 
Figure  4. A user can load meshes that represent the envi-
ronment and a robot, define start and goal states, and click 
on the “Solve” button to obtain a solution. If a solution is 
found, it is played back by animating the robot along the 
found path. By unchecking the “Animate” button, several 
states along the path are shown simultaneously. It is also 
possible to show the states that were explored by the 

Figure 4. The OMPL.app graphical interface. A solution path for a 
free-flying UFO robot is shown. Red dots are positions of  
sampled states.

1 def is StateValid (state):
2 # Some arbitrary condition on the state
3 # (typically collision checking)
4 return state.getX () < .6
5
6 space = SE3StateSpace ()
7 # set the state space bounds
8 bounds = ob.RealVectorBounds (3)
9 bounds.setLow(-1)

10 bounds.setHigh (1)
11 space.setBounds (bounds)
12
13 ss = SimpleSetup (space)
14 # specify user-defined callback function
15 ss.setStateValidityChecker (
16 ob.StateValidityCheckerFn (isStateValid))
17
18 start = State (space)
19 goal = State (space)
20 # we can pick random start states...
21 start.random ()
22 goal.random
23 # ... or set specific values
24 start ().setX (.5)
25
26 ss.set StartAndGoalStates (start, goal)
27 solved = ss.solve (1.0)
28 if solved:
29 print ss.getSolutionPath()

Figure 3. Solving a motion planning problem with OMPL in 
Python. A C++ implementation would look almost identical.
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planner, which can be helpful in tuning planner parameters 
or selecting the appropriate planning algorithm for a par-
ticular problem. By default, the program assumes that a 
user wants to plan for a free-flying 3-D rigid body [i.e., the 

state space is SE(3)], but 
one can also plan in 
SE(2). We have also pre-
defined a number of 
common robot types that 
require controls: a blimp, 
a quadrotor, a simple 
kinematic car, a Reeds-
Shepp car, a Dubins car, 
and a second-order car. 
For each robot type the 
appropriate planners can 
b e  s e le c te d  in  t he 
Planner tab (otherwise, a 
default one will be auto-
matically selected). Once 

a planner is chosen, its parameters can be tuned if desired. 
Finally, the user can adjust the bounding box for the robot’s 
position. By default this is the bounding box of the environ-
ment mesh. We have included a number of common 
benchmark problems, which allow users to develop a basic 
understanding of which types of problems are hard to solve. 

The OMPL.app program is also an illustrative example for 
software developers who want to integrate with third party 
libraries or their own code. OMPL.app consists of three parts: 
1) a C++ library that contains the bindings to third-party 
libraries, 2) a set of command line demos that highlight signifi-
cant features of this library, and 3) the GUI itself. The library 
adds functionality to load meshes in a wide variety of formats 

using the Open Asset Importer Library (Assimp, http://assimp.
sf.net). Users can thus create models of environments and 
robots in programs such as SolidWorks, 3DS Max, Blender, and 
SketchUp, and use them in OMPL.app. A large collection of 
models is also available through the Google 3-D Warehouse. 
The OMPL.app library also adds collision checking support 
using the PQP library [40] and FCL library [41]. The internal 
representation of geometry is decoupled from the graphical 
rendering, so that the collision checking can also be used in 
nongraphical applications. The user interface is written com-
pletely in Python. The code consists almost completely of creat-
ing the user interface elements, connecting them with the 
appropriate library function calls, and displaying the results. 

The GUI is also a useful tool to prepare motion plan-
ning problems for benchmarking. The GUI can save the 
complete specification of a problem to a simple text file. 
The user can then add a list of planner names to this file, 
along with planner parameter settings, the number of 
runs per planner, and a time limit for each run, among 
other data. This configuration file can be given as input 
to a simple command line program that can perform the 
actual benchmarking. Usually, the total time required to 
get statistically significant benchmark results is too long 
for interactive use for all but the simplest problems, 
which is why the benchmarking is not directly accessible 
from the GUI.

It should be relatively straightforward for an experienced 
programmer to use a different input file parser, a different col-
lision checking library, or different GUI toolkit by mimicking 
the structure of the OMPL.app library.

Integration with ROS
We expect that many end users in industry and robotics 
research will use OMPL through its ROS interface. This inter-
face was created by Sachin Chitta and Ioan Şucan, and pro-
vides ROS-specific implementations for the abstract base 
classes OMPL defines. We describe the steps an end-user 
would need to take to plan motions for a given robot that runs 
ROS. The PR2 from Willow Garage will be used in the sce-
nario described in the following, but the steps are in fact not 
specific to the PR2, and apply to any robot that can run ROS.

If a user wants to plan motions for a PR2, they first need to 
create a model of the geometry and kinematics of the PR2. 
Within ROS, there is a standard for storing such a model 
called the unified robot description format (URDF, http://ros.
org/wiki/urdf). This XML-based format combines kinematic 
information with references to files containing meshes of the 
different robot components. For the PR2 and many other 
robots, the URDF files already exist (see http://www.ros.org/
wiki/Robots). It is often neither desirable nor necessary to 
plan for all degrees of freedom listed in a URDF file simulta-
neously. The second step therefore consists of defining one or 
more groups of joints. Information about the joints to plan for 
is taken from the URDF and a StateSpace representation for 
OMPL is constructed. The meshes indicated by the URDF 
document are used to construct a StateValidityChecker class. 

PR2

Figure 5. With the ROS rviz visualizer robot poses can be easily 
configured using OMPL to find feasible paths between poses.

Applications of motion 

planning extend

beyond robotics to fields 

such as computational 

biology and computer-

aided verification.
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On top of these classes, a SimpleSetup class can also be 
defined, thus making it possible to solve planning problems. 
The user can also define parameters specific to different plan-
ning algorithms, but there is no requirement to do so. A con-
figuration wizard included in ROS can make the setup easier. 
The third step is to define motion planning problems for the 
PR2. This can be done in a variety of ways: directly calling 
planning functions, using ROS-specific APIs, or through 
visualization tools such as those shown in Figure 5.

Thus, we have described a very basic workflow of planning 
paths using OMPL in ROS. The ROS-OMPL interface has 
many more advanced features. First, motion planning prob-
lems do not necessarily need to be specified by the user, but 
can be specified programmatically (e.g., as part of a sense-
plan-act loop in conjunction with other components in ROS). 
Second, different types of state space parameterizations are 
possible: 1) joint-space representations of the robot, where the 
robot’s degrees of freedom are compounded into different 
state spaces: Rn for sequences of single degree of freedom 
joints with joint limits, SO(2) for continuous joints, SE(2) for 
robots moving in plane and SE(3) for robots moving in space, 
and 2) work-space representations of the robot, where for 
example, the pose of an arm’s end-effector is represented as an 
SE(3) state, and the interpolation capability of the SE(3) state 
space is overridden to use inverse kinematics. Third, the ROS 
interface allows the user to specify complex constraints such 
as keeping transported objects upright or keeping them 
within view. Generating states that are in the desired goal 
region is done in parallel with the execution of the rest of the 
planning algorithm. The interface also automatically incorpo-
rates the geometry of attached objects during planning by 
attaching carried objects to the kinematic model of the robot.

The ROS interface to OMPL allows users to interact with 
motion planners in a simple manner. Only the set of joints the 
user wants to plan for (usually grouped and referred to by the 
name of the group) and a specification of the goal are needed. 
The goal can be specified, for example, as a bounding box in 
the joint space, or a desired link pose. We believe that this 
functionality will allow for the widespread use of OMPL in a 
broad variety of settings.

Discussion
We have described OMPL, an open source general-purpose 
library for sampling-based motion planning. Thanks to its 
integration with ROS, it can be used on a wide variety of 
hardware platforms, and currently serves as the motion plan-
ning back end for the ROS manipulation software stack (also 
known as MoveIt! in future releases of ROS [42]). However, 
OMPL does not depend on ROS, and can be used indepen-
dently. OMPL.app includes a graphical front end for OMPL 
and serves as an example of how OMPL can be integrated 
with third-party libraries.

One of the target applications of OMPL is in robotics edu-
cation. The graphical front end provides a gentle introduction 
to the complexity of motion planning: without writing any 
code, students can solve motion planning problems using 

different planners, vary the parameters used for planning, and 
perform extensive benchmarking experiments. Through many 
demo programs and tutorials, students should get quickly up 
to speed and develop new 
planning algorithms or 
alternate implementations 
of abstract APIs.

We encourage contri-
butions from other 
researchers. In fact, we are 
already working with 
other research groups on 
incorporating their algo-
rithms into OMPL. 
Within our own group, 
OMPL has proven to be useful for performing conforma-
tional search for macromolecular ensembles. Here, its gener-
ality has paid off significantly. We can use Rosetta—a stan-
dard molecular modeling package—to create a new state 
space for molecules, and use Rosetta’s sampling capabilities 
while performing a search for biophysically plausible configu-
rations of molecules using OMPL.

Long-term success depends on adoption and support by 
the robotics community. Through continued development in 
our group and contributions from others, we expect OMPL to 
become a very useful tool for motion planning researchers, 
users in the robotics industry, and students who want to learn 
more about sampling-based motion planning.
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