
72 • IEEE ROBOTICS & AUTOMATION MAGAZINE • December 2012 1070-9932/12/$31.00©2012IEEE

T he open motion planning library (OMPL) is a new
library for sampling-based motion planning, which
contains implementations of many state-of-the-art
planning algorithms. The library is designed in a

way that it allows the user to easily solve a variety of
complex motion planning problems with minimal input.
OMPL facilitates the addition of new motion planning
algorithms, and it can be conveniently interfaced with
other software components. A simple graphical user
interface (GUI) built on top of the library, a number of
tutorials, demos, and programming assignments are
designed to teach students about sampling-based motion
planning. The library is also available for use through
Robot Operating System (ROS).

Motion Planning
Robotic devices are steadily becoming a significant part of
our daily lives. Search-and-rescue robots, service robots,
surgical robots, and autonomous cars are examples of
robots most of us are familiar with. Finding paths (motion
plans) efficiently for such robots is critical for a number of
real-world applications (Figure 1). For example, in urban
search-and-rescue settings, a small robot may need to find
paths through rubble and semicollapsed buildings to locate
survivors. In domestic settings, it would be useful if a robot
could, for example, put away kids’ toys, fold the laundry,
and load the dishwasher. Motion planning also plays an
increasingly important role in robot-assisted surgery. For
example, before a flexible needle is inserted or an incision is
made, a path can be computed that minimizes the chances
of harming vital organs. More generally, motion planning is
the problem of finding a continuous path that connects a
given start state of a robotic system to a given goal region
for that system, such that the path satisfies a set of

Digital Object Identifier 10.1109/MRA.2012.2205651

Date of publication: 6 December 2012

©
 d

ig
it

a
l

v
is

io
n

tutorial

By Ioan A. Şucan, Mark Moll,
and Lydia E. Kavraki

73December 2012 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

constraints (e.g., collision avoidance,
bounded forces, bounded acceleration).
This article describes an open source
software library for motion planning,
designed for research, educational, and
industrial applications.

Although most of the work done
toward the development of algorithms that
solve the motion planning problem comes
from robotics and artificial intelligence
[1]–[3], the problem can be viewed more
abstractly as search in continuous spaces.
As such, the applications of motion plan-
ning extend beyond robotics to fields such
as computational biology [4]–[7] and com-
puter-aided verification [8], among others.

Early results have shown the motion
planning problem to be PSPACE-complete [9], and existing
complete algorithms are difficult to implement and compu-
tationally intractable. For this reason, more recent efforts
focus on approaches with weaker completeness guarantees.
One of these approaches is that of sampling-based motion
planning, which has been used successfully to solve difficult
planning problems for robots of practical interest. Many
sampling-based algorithms are probabilistically complete: a
solution will eventually be found with probability one if one
exists, but the nonexistence of a solution cannot be reported
(see [10]–[13]).

Many of the core concepts in sampling-based motion plan-
ning are relatively easy to explain, but implementing sampling-
based motion planning algorithms in a generic way is nontriv-
ial. This article describes OMPL (http://ompl.kavrakilab.org),
an open source C++ implementation of many sampling-based
algorithms (including the Probabilistic Roadmap Method
(PRM) [14], Rapidly-expanding Random Trees (RRT) [15],
Kinodynamic Planning by Interior-Exterior Cell Exploration
(KPIECE) [16], and many more) and the core low-level data
structures that are commonly used. OMPL includes Python
bindings that expose almost all functionality to Python users.
This library is aimed at three different audiences:

●● motion planning researchers
●● robotics educators
●● end users in the robotics industry.

In the following, we will characterize the needs of these
different audiences.

Within the robotics community, it is often challenging to
demonstrate that a new motion planning algorithm is an
improvement over the existing methods, according to certain
metrics. First, it is a substantial amount of work for a
researcher to implement not only the new algorithm, but also
one or more state-of-the-art motion planning algorithms to
compare it against. Ideally, implementations of low-level data
structures and subroutines used by these algorithms (e.g.,
proximity data structures) are shared, so that only differences
of the high-level algorithm are measured. Second, for an
accurate comparison, one needs a known set of benchmark

problems. Finally, collecting various performance metrics for
several planners with different parameter settings, running on
several benchmark problems, and storing them in a way that
facilitates easy analysis afterward is a nontrivial task. We, as
developers of planning algorithms, have run into the above
issues many times. We designed OMPL to help with all these
issues, and make it easier to try out new ideas. Moreover, the
library is designed in a way that facilitates contributions from
other motion planning researchers and provides benchmark-
ing capabilities to easily compare new planners against all
other planners implemented in OMPL (see “Benchmarking
with OMPL”). We have developed a streamlined process that
gives contributing researchers appropriate credit and mini-
mizes the burden of writing code that satisfies our library’s
application programmers interface (API). At the same time,
our aim is to make such contributions easily available to users
of OMPL. This is achieved by releasing the code under the
Berkeley Software Distribution license (one of the least
restrictive open source licenses), releasing frequent updates,
and making the code available through a public repository. To
foster a community of OMPL users and developers, we have
set up a mailing list, a blog, and a Facebook page.

For robotics educators, we have designed a series of exer-
cises or projects around OMPL aimed at undergraduate
students. These exercises help students to realize the com-
plexity of motion planning in practice, to develop an under-
standing of how sampling-based motion planning algo-
rithms work, and to learn evaluation of the performance of
planners. We have also designed open-ended projects for
undergraduate and graduate students. OMPL is structured
to have a clear mapping between the motion planning con-
cepts used in the literature and the classes that are defined in
the implementation. The separation between abstract base
classes that only specify the interface and derived classes
that implement the specified functionality also helps stu-
dents to understand general concepts in motion planning
before focusing on details.

From the beginning, OMPL was intended to be useful in
practical applications. This requires that planning algorithms

(a) (b) (c)

Figure 1. Real-world applications of motion planning. (a) An urban search-and-
rescue robot from Carnegie Mellon University’s (CMU’s) Biorobotics Lab. (b) The
HERB robot from CMU’s Personal Robotics Lab picking up a bottle. (c) A PR2 robot
folding laundry in the University of California at Berkeley’s Robotics Learning Lab.
Images used with permission from Prof. Choset, Prof. Srinivasa, and Prof. Abbeel,
respectively.

74 • IEEE ROBOTICS & AUTOMATION MAGAZINE • december 2012

can solve motion planning problems for systems with many
degrees of freedom at interactive speeds. An additional
requirement is the ability to cleanly integrate OMPL with other
software components on a robot, such as perception, kinemat-
ics, and control. Through a collaboration with Willow Garage,
Menlo Park, California, OMPL is integrated within ROS [17]
and serves as the motion planning back-end for the arm plan-
ning software stack. The availability of OMPL in ROS makes it
easy for end users in the robotics industry to stay up-to-date
with advances in sampling-based motion planning.

Background
There has been much work done on both algorithm develop-
ment and software development for motion planning. This
article only discusses aspects pertaining to sampling-based
motion planning.

Sampling-Based Motion Planning Definitions
Sampling-based motion planning algorithms relaxed
completeness guarantees and demonstrated that many
interesting problems can be solved efficiently in practice,
despite the theoretically high complexity of the problems
[2], [3]. The fundamental idea of sampling-based motion
planning is to approximate the connectivity of the search
space with a graph structure. The search space is sampled
in various ways, and selected samples end up as the verti-
ces of the approximating graph. Edges in the approximat-
ing graph denote valid path segments.

There are two key considerations in the construction of
the graph approximation: the probability distribution used for
sampling states and the strategy for generating edges. An

enormous amount of research has been performed toward
the development of efficient algorithms that account for these
issues [18].

We will not go into the details of various sampling-based
motion planning algorithms, as such details can be found
elsewhere [2], [3]. Instead, we describe the common com-
ponents sampling-based algorithms typically depend on, as
these relate to the implementations of such algorithms:

●● �State Space: Points in the state space (or configuration
space) fully describe the state of the system being planned
for. For a free-flying rigid body, the state space consists of
all translations and rotations, while for a manipulator with
n rotational joints, the state space can be modeled by an
n-dimensional torus.

●● �Control Space: A control space represents a parameteriza-
tion of the space of controls. This is only required for sys-
tems with dynamics. For most systems of practical interest,
one can think of the control space for a system with m con-
trols simply as a subset of Rm. For geometric planning, no
controls are used.

●● �Sampler: A sampler is needed to generate different states
from the state space. For control-based systems, a sepa-
rate sampler is needed for sampling different controls.
Some planning algorithms (e.g., [12], [16]) only require
a control sampler and do not need a state sampler.

●● �State Validity Checker: A state validity checker is a
routine that distinguishes the valid part of the state space
from the invalid part of the state space. For example, a
state validity checker can check for collisions and
whether velocities and accelerations are within certain
bounds.

Benchmarking with OMPL

A seemingly simple but often ignored part of motion planning
software is benchmarking planning code. OMPL includes
benchmarking capabilities (through a class called Benchmark)
that can be simply dropped in and applied to existing planning
contexts. In very simple terms, a Benchmark object runs a number
of planners multiple times on a user-specified planning context.
Although simple, this code automatically keeps track of all the
used settings and takes all the possible measurements during
planning (currently, tens of parameters are recorded for every
single motion plan). The recorded information is logged and can
be postprocessed using a Python script included with OMPL. The
script can produce MySQL databases with all experiment data so
that the user can write their own queries later on, but it can also
automatically generate plots for all of the performance metrics.
For real- and integer-valued measurements, it generates box plots:
plots that include information about the median, confidence
intervals and outliers. An example is shown in Figure S1. For binary-
valued measurements, it generates bar plots. A more elaborate
example of what can be done with the Benchmark class can
be found at http://plannerarena.org, a Web site currently being

developed to establish standard benchmark problems and report
performance metrics for various planners on those problems.

RRT-C
onnect

12

10

8

6

T
im

e
(s

)

4

2

0

RRT

LBKPIECE

KPIECE SBL
EST

PRM

Figure S1. A sample box plot generated by OMPL’s benchmark
script.

75december 2012 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

●● �Local Planner: When planning with controls, the local
planner is a mean of computing the evolution of the
robotic system forward (and sometimes backward) in
time. When planning solely under geometric con-
straints, the local planner often performs interpolation
between states in the state space.

Software Packages for Motion Planning
Several other packages for motion planning are available.
Some, such as the Motion Strategies Library (MSL, http://msl.
cs.uiuc.edu), the Motion Planning Kit (MPK, http://robotics.
stanford.edu/~mitul/mpk), and VIZMO++ [19] are no lon-
ger maintained. KineoWorks (http://www.kineocam.com)
provides commercial motion planning software for academic
research and industrial applications. In 2007, our group
released the Object-Oriented Programming System for
Motion Planning (OOPSMP) [20], which is also no longer
maintained.

Another software package that is complementary to
OMPL is OpenRAVE [21]. OpenRAVE is open source,
actively developed, and it is widely used. It is important to
understand the difference in design philosophy behind
OMPL and OpenRAVE. OpenRAVE is designed to be a com-
plete package for robotics. It includes, among other things,
geometry representation, collision checking, grasp planning,
forward and inverse kinematics for several robots, controllers,
motion planning algorithms, simulated sensors, and visual-
ization tools. OMPL, on the other hand, was designed to
focus completely on sampling-based motion planning with a
clear mapping between theoretical concepts in the literature
and abstract classes in the implementation. This high level of
abstraction makes it easy to integrate OMPL with a variety of
front-ends and other libraries. Some integration examples are
described in section describing the integration with other
robotics software. To some extent, the integration with ROS
[17] gives a user many of OpenRAVE’s features that are pur-
posefully not included in OMPL. It may also be possible to
use OMPL as a motion planning plug-in in OpenRAVE. As a
result of the narrower focus in OMPL, we have been spending
more resources on implementing a much broader variety of
sampling-based algorithms than what is currently available in
OpenRAVE, as well as benchmarking capabilities to facilitate
a thorough comparison of existing and future sampling-based
motion planners.

Relationship with Other Robotics Software
There have also been many efforts to create robot simula-
tors such as Player/Stage [22], Player/Gazebo [23], Webots
[24], and MORSE [25]. Microsoft Robotics Developer
Studio [26] also contains a robot simulator. Typically, such
simulators do not include motion planning algorithms, but
they can provide a controlled simulated environment to test
motion planners in various environments, on various
robots with different sensing and communication capabili-
ties. They often simulate the dynamics of the world (includ-
ing the robots themselves) using physics engines such as

Bullet (http://bulletphysics.org) and the open dynamics
engine (ODE, http://ode.org), among others.

Hardware platforms typically require complex software
configurations and use various forms of middleware to accom-
modate this requirement
(e.g., ROS [17], Orocos
(http: //www.orocos.org),
OpenRTM-aist [27],
OPRoS [28], Yarp [29]).
Such software systems
typically include their own
visualization system, colli-
sion checking, etc. OMPL
fits naturally and easily
into such systems as it
only provides sampling-
based motion planning
and its abstract interface
should accommodate a
variety of low-level
implementations.

Conceptual Overview
of OMPL
OMPL is intended for use in research and education, as well
as in industry. For this reason, the main design criteria for
OMPL were as follows:
1)	� Clarity of Concepts: OMPL was designed to consist of a set

of components as indicated in Figure 2, such that each
component corresponds to known concepts in sampling-
based motion planning.

2)	� Efficiency: OMPL has been implemented entirely in C++
and is thread-safe.

3)	� Simple Integration with Other Software Packages: To
facilitate the integration with other software libraries,
OMPL offers abstract interfaces that can be imple-
mented by the “host” software package. Furthermore,
the dependencies of OMPL are minimal: only the Boost
C++ libraries are required. Optionally, OMPL can be
compiled with Python bindings, which facilitates inte-
gration with Python modules.

4)	� Straightforward Integration of External Contributions:
We strive for minimalist API constraints for planning
algorithms, so that new contributions can be easily
integrated.
As opposed to all other existing motion planning soft-

ware libraries, OMPL does not include a representation of
workspaces or of robots; as a result, it also does not include a
collision checker or any means of visualization. OMPL is
reduced to only motion planning algorithms. The advantage
of this minimalist approach is that it allows us to design a
library that can be used for generic search in high-dimen-
sional continuous spaces subject to complex constraints.
Instead of defining valid states as collision-free, which would
require a specific geometric representation of the environ-
ment and robot as well as support for a specific collision

Many of the core concepts

in sampling-based motion

planning are relatively

easy to explain, but

implementing sampling-

based motion planning

algorithms in a generic way

is nontrivial.

76 • IEEE ROBOTICS & AUTOMATION MAGAZINE • december 2012

checker, OMPL leaves the definition of state validity com-
pletely up to the user (or the software package in which
OMPL is integrated; see the section about the relationship
with other robotics software). This gives the user an enor-
mous design freedom: the user can defer collision checking
to a physics engine, write a state sampler that constructs only
valid states, or define state validity in completely arbitrary
ways that may or may not depend on geometry.

To make OMPL as easy to use as possible, various para-
meters needed for tuning sampling-based motion planners
are automatically computed. The user has the option to over-
ride defaults, but that is not a requirement.

Implementation of Core Concepts
In the following we will give an overview of the implementa-
tion of the core motion planning concepts in OMPL. Figure 2
gives a high-level overview of the main classes and their rela-
tionships. We will use the following notation. Classes are writ-
ten in a sans-serif font (e.g., StateSpace), while methods and

functions are written in a monospaced font [e.g., isSatis-
fied()]. For conciseness, the arguments to methods and
functions are omitted.

States, Controls, and Spaces
To maximize the range of application for the included
planning algorithms, OMPL represents the search spaces,
that is, the state spaces (StateSpace), in a generic way. State
spaces include operations on states such as distance evalu-
ation, test for equality, interpolation, as well as memory
management for states: (de)allocation and copying.
Additionally, each state space has its own storage format
for states, which is not exposed outside the implementa-
tion of the state space itself. To operate on states, the plan-
ning algorithms implemented in OMPL rely only on the
generic functionality offered by state spaces. This approach
enables planning algorithms in OMPL to be applicable to
any state spaces that may be defined, as long as the
expected generic functionality is provided.

ControlSampler
Implements Sampling

of Controls for a
Specific ControlSpace

StateSpace
Represents the State

Space in which Planning
is Performed; Implements

Topology-Specific Functions:
Distance, Interpolation,

State (De)allocation

StateSampler
Implements Uniform

and Gaussian Sampling
of States for a Specific

StateSpace

ProjectionEvaluator
Computes Projections from
States of a Specific State-

Space to a Low-Dimensional
Euclidean Space

SpaceInformation
Provides Routines Typically
Used by Motion Planners;

Combines the Functionality
of Classes it Depends on

StateValidityChecker
Decides Whether a Given

State from a Specific
StateSpace is Valid

MotionValidator
Provides the Ability to

Check the Validity of Path
Segments Using the

Interpolation Provided by
the StateSpace

ValidStateSampler
Provides the Ability

to Sample Valid States

Planner
Solves a Motion

Planning Problem

Goal
Representation

of a Goal

ProblemDefinition
Specifies the Instance of
the Planning Problem;

Requires Definition of Start
States and a Goal

SimpleSetup
Provides a Simple Way
of Setting up All Needed
Classes Without Limiting

Functionality

Path
Representation of a Path;

used to Represent a Solution
to a Planning Problem

User Code

only when planning with differential constraints

User Must Instantiate This Class
User Must Instantiate This Class Unless SimpleSetup Is Used
User Can Instantiate This Class, but Defaults Are Provided

A B A Is Owned by B

ControlSpace
Represents the Control
Space the Planner Uses
to Represent Inputs to

the System Being
Planned for

StatePropagator
Returns the State Obtained

by Applying a Control to
Some Arbitrary Initial State

DirectedControlSampler
Sample Controls that

Take the System Towards
a Desired State

Figure 2. Overview of OMPL structure. Class names correspond to well-understood concepts in sampling-based motion planning.
More detailed documentation is available at http://ompl.kavrakilab.org.

77december 2012 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

Furthermore, OMPL includes a means of combining state
spaces using the class CompoundStateSpace. A combined state
space implements the functionality of a regular state space on
top of the corresponding functionality from the maintained
set of state spaces. This allows trivial construction of more
complex state spaces from simpler ones. For example
SE3StateSpace [the space of rigid body transformations in
three-dimensional (3-D)] is just a combination of
SO3StateSpace (the space of rotations) and RealVectorStateSpace
(the space of translations). Instances of CompoundStateSpace
can be constructed at run time, which is necessary for con-
structing a state space from an input file specification, as is
done, for example, in ROS. For a mobile manipulator, one
could construct a CompoundStateSpace with the two arms and
the mobile base as substate spaces. An arm typically has a
number of rotational joints and can be modeled by either a
RealVectorStateSpace (if the joints have limits) or a
CompoundStateSpace with copies of SO(2). The state space for
the base can simply be SE(2) (the space rigid body transfor-
mations in the plane).

State spaces optionally include specifications of projections
to Euclidean spaces (ProjectionEvaluator). Low-dimensional
Euclidean projections are used by several sampling-based
planning algorithms (e.g., KPIECE [16], SBL [30], EST [12])
to guide their search for a feasible path, as it is much easier to
keep track of coverage (i.e., which areas have been sufficiently
explored and which areas should be explored further) in such
low-dimensional spaces.

In addition to states and state spaces, some algorithms
in OMPL require a means to represent controls. Control
spaces (ControlSpace) mirror the structure of state spaces
and provide functionality specific to controls, so that plan-
ning algorithms can be implemented in a generic way. The
only available implementations of control spaces are the
Euclidean space and a space for discrete modes, because so
far there has not been a need for control spaces with more

complex topologies. However, the API allows one to define
such control spaces.

State Validation and Propagation
Whether a state is valid or not depends on the planning con-
text. In many cases, state validity simply means that a robot is
not in collision with any obstacles, but in general any condi-
tion on a state can be used. In OMPL.app (see the section on
OMPL.app: A GUI for OMPL) we have predefined a state
validity checker for rigid body motion planning. We have also
implemented a state validity checker that uses the ODE (see
the section on motion planning using a physics engine). If
these built-in state validity checkers cannot be used for the
system of interest, a user needs to implement their own.
Based on a given state validity checker, a default
MotionValidator is constructed that checks whether the inter-
polation between two states at a certain resolution produces
states that are all valid. However, it possible to plug in a differ-
ent MotionValidator. For example, one might want to add sup-
port for continuous collision checking, which can adaptively
check for collisions and provide exact guarantees for state
validity [31].

For planning with controls, a user needs to specify how
the system evolves when certain controls are applied for
some period of time starting from a given state. This is called
state propagation in OMPL. In the simplest case, a state
propagator is essentially a lightweight wrapper around a
numerical integrator for systems of the form ˙ q = f (q, u),
where q is a state vector and u a vector of controls. To facili-
tate planning for such systems, we have implemented generic
support for ODE solvers and we have integrated Boost.
Odeint [32], a new library for solving ODEs. Given a user-
provided function that implements f (q, u) for the system of
interest, OMPL can plan for such systems. Alternatively, one
can use variational integrators [33], or a physics engine to
perform state propagation.

Motion Planning Using a Physics Engine
OMPL has built-in support for using the ODE physics engine.
Support for other physics engines, such as Bullet, is planned
for a future release. We expect that the approach described
below can be followed for these physics engines (and others)
as well.

The ODE state space consists of the state spaces of the
robot and any movable objects in the environment. The user
specifies which joints are controlled by the planner and maps
those to a ControlSpace. The user can also specify which
collisions are allowed (e.g., contact with the support plane)
and which ones are not (such as driving into a wall). This
simple setup allows one to plan for systems that are difficult
to describe with differential equations. The user does not need
to worry about all the different possible contact modes that
occur when a car drives off a ramp (Figure S2) or when a robot
pushes one or more obstacles (Figure S3).

Figure S2. A car-like robot driving off a ramp.

Figure S3. A yellow robot needs to push obstacles
to get to its goal.

78 • IEEE ROBOTICS & AUTOMATION MAGAZINE • december 2012

Samplers
The fundamental operation that sampling-based planners
perform is sampling the space that is explored. Additionally,
when considering controls in the planning process, sampling
controls may be performed as well.

To support sampling functionality, OMPL includes
four types of samplers: state space samplers (StateSampler),
valid state samplers (ValidStateSampler), control samplers
(ControlSampler), and directed control samplers
(DirectedControlSampler).

State space samplers are implemented as part of the
StateSpace they can sample, since they need to be aware
of the structure of the states in that space. For instance,
uniformly sampling 3-D orientations is dependent on
their parameterization. Three sampling distributions
are implemented by every state space sampler: uniform,

Gaussian and uniform
in the vicinity of a
specified point. This
first sampler is neces-
sary to sample over the
entire space, but the
latter two are used for
sampling states near a
previously generated
state. This is the most
basic level of sampling.

Previous work has
shown that the strategy
used for sampling valid
states in the state space
significantly influences
runtime of many plan-
ning algorithms [34].
Valid state samplers pro-

vide the interface for implementing different sampling strate-
gies. The probability distribution of these samplers depends
on the algorithm used and is not imposed as part of the API.
The implementation of valid state samplers relies on the exis-
tence of a state space sampler and a state validator
(StateValidityChecker). A common approach to constructing
valid state samplers is to repeatedly call a state space sampler
until the state validator returns true. Several valid state sam-
plers have been implemented in OMPL: for example, a uni-
form valid state sampler (UniformValidStateSampler),
two samplers (GaussianValidStateSampler, ObstacleBasedValid
StateSampler) that generate valid samples near invalid ones
(which is often helpful in finding paths through narrow pas-
sages [35], [36]).

When considering controls in the planning process, a
means to generate controls is also necessary. This functional-
ity is attained using control samplers, which are implemented
as part of the control spaces (ControlSpace) they represent.
Additionally, a notion of direction is also important in some
planners: controls that take the system towards a particular
state are desired, rather than simply random controls. This

functionality is achieved through the use of directed control
samplers (derived from the DirectedControlSampler class).

Goal Representations
OMPL uses a hierarchical representation of goals. In the most
general case, a Goal can be defined by the isSatisfied()
function that when given a state, reports whether that state is
a goal state or not. While this very general implicit representa-
tion is possible, it offers planners indication of how to reach
the goal region. For this reason, isSatisfied() option-
ally reports a heuristic distance the goal region, which is not
required to be a metric.

GoalRegion is a refinement of the general Goal representa-
tion, which explicitly specifies the distance to the goal using
a distanceGoal() function. The isSatisfied()
function is then defined to return true when distance-
Goal() reports distances smaller than a user set threshold.
GoalRegion is still a very general representation but allows
planners to bias their search towards the goal.
A refinement of GoalRegion is GoalSampleableRegion, one
which additionally allows drawing samples from the goal
region. GoalState and GoalStates are concrete implementations
of GoalSampleableRegion.

For practical applications it is often possible to sample
the goal region, but the sampling process may be relatively
slow (e.g., when using numerical inverse kinematics
solvers). For this reason a refinement of GoalStates is
defined as well: GoalLazySamples. This refinement continu-
ously draws samples in a separate sampling thread, and
allows planners to draw samples from the goal region
without waiting, after at least one sample has been pro-
duced by the sampling thread.

Planning Algorithms
OMPL includes two types of motion planners: ones that
do not consider controls when planning and ones that do.
If a planning algorithm can be used to plan both types of
motions, with and without controls (e.g., RRT [15]), two
separate implementations are provided for that algorithm:
one for each type of computed motion. This choice was
made for efficiency reasons. With additional levels of
abstraction in the implementation, it would have been
possible to avoid separate implementations, [20]. The
downside would have been that the implementation of
planners would have had to follow a strict structure,
which makes the implementation of new algorithms more
difficult and possibly less efficient.

For purely geometric planning (i.e., controls are not
considered), the solution path is constructed from a finite
set of segments, and each segment is computed by inter-
polation between a pair of sampled states (PathGeometric).
Several geometric planning algorithms are implemented
in OMPL, including KPIECE [16], bidirectional KPIECE,
bidirectional lazy KPIECE, RRT [15], RRT-connect [37],
lazy RRT, SBL [30], EST [12], and PRM [14]. The lazy
variants listed above defer state validity checking in the

Within the robotics

community, it is often

challenging to demonstrate

that a new motion

planning algorithm is an

improvement over the

existing methods, according

to certain metrics.

79december 2012 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

manner described in [38]. In addition, there are multi-
threaded versions of RRT and SBL.

When controls are considered, the solution path is con-
structed from a sequence of controls (PathControl).
Controlbased planners are typically used when motion plans
need to respect differential constraints as well. Several algo-
rithms for planning with differential constraints are imple-
mented in OMPL as well, including KPIECE, SyCLoP [39],
EST, and RRT.

An Example
Figure 3 shows the complete code necessary for planning
the motion of a rigid body between two states in Python.
The corresponding C++ code would look almost
identical. The steps taken in the code are: instantiate the
space to plan in [SE(3), line 6], create a simple planning
context (using SimpleSetup, line 13), specify a function that
distinguishes valid states (lines 15 and 16), specify the
input start and goal states (lines 18–26), and finally, com-
pute the solution (line 27). The SimpleSetup class initializes
instantiations of the core motion planning classes shown
in Figure 2 with reasonable defaults, which can be over-
ridden by the user if desired.

Essentially, the execution of the code can be reduced
to three simple steps: 1) specify the space in which plan-
ning is to be performed, 2) specify what constitutes a
valid state, and 3) specify the input start and goal states.
Such simple specifications are desirable for many users
who simply want motion planning to work without hav-
ing to select problem-specific parameters, or different
sampling strategies, or different planners, etc. This capa-
bility is made possible by OMPL’s automatic computation
of planning parameters. In the example above, a planner
is automatically selected based on the specification of the
goal and the space to plan in. The selected planner is
then automatically configured by computing reasonable
default settings that depend on the planning context. If a
user decides to choose their own planner, or set their
own parameters, OMPL allows the user to do so com-
pletely—no parameters are hidden.

Integration with Other Robotics Software
It is straightforward to integrate OMPL with other robotics
software. In the following we will present two case studies that
highlight different use cases.

OMPL.app: A GUI for OMPL
We have created a graphical front end for OMPL called
OMPL.app. This front end was created for three reasons:

1)	�to provide novice users (such as students in a robotics
class) with an easy-to-use interface to play with several
motion planning algorithms and apply them to several
example rigid body motion planning problems

2)	�to demonstrate the integration of OMPL with third-
party libraries for collision checking and loading of 3-D
meshes, and a GUI toolkit

3)	�to allow for easy benchmarking of new and existing
planners on rigid body motion planning problems
using a command line tool (see “Benchmarking with
OMPL”). We will go on to elaborate on these reasons.

The graphical interface of OMPL.app is shown in
Figure  4. A user can load meshes that represent the envi-
ronment and a robot, define start and goal states, and click
on the “Solve” button to obtain a solution. If a solution is
found, it is played back by animating the robot along the
found path. By unchecking the “Animate” button, several
states along the path are shown simultaneously. It is also
possible to show the states that were explored by the

Figure 4. The OMPL.app graphical interface. A solution path for a
free-flying UFO robot is shown. Red dots are positions of
sampled states.

1 def is StateValid (state):
2 # Some arbitrary condition on the state
3 # (typically collision checking)
4 return state.getX () < .6
5
6 space = SE3StateSpace ()
7 # set the state space bounds
8 bounds = ob.RealVectorBounds (3)
9 bounds.setLow(-1)

10 bounds.setHigh (1)
11 space.setBounds (bounds)
12
13 ss = SimpleSetup (space)
14 # specify user-defined callback function
15 ss.setStateValidityChecker (
16 ob.StateValidityCheckerFn (isStateValid))
17
18 start = State (space)
19 goal = State (space)
20 # we can pick random start states...
21 start.random ()
22 goal.random
23 # ... or set specific values
24 start ().setX (.5)
25
26 ss.set StartAndGoalStates (start, goal)
27 solved = ss.solve (1.0)
28 if solved:
29 print ss.getSolutionPath()

Figure 3. Solving a motion planning problem with OMPL in
Python. A C++ implementation would look almost identical.

80 • IEEE ROBOTICS & AUTOMATION MAGAZINE • december 2012

planner, which can be helpful in tuning planner parameters
or selecting the appropriate planning algorithm for a par-
ticular problem. By default, the program assumes that a
user wants to plan for a free-flying 3-D rigid body [i.e., the

state space is SE(3)], but
one can also plan in
SE(2). We have also pre-
defined a number of
common robot types that
require controls: a blimp,
a quadrotor, a simple
kinematic car, a Reeds-
Shepp car, a Dubins car,
and a second-order car.
For each robot type the
appropriate planners can
b e s e le c te d in t he
Planner tab (otherwise, a
default one will be auto-
matically selected). Once

a planner is chosen, its parameters can be tuned if desired.
Finally, the user can adjust the bounding box for the robot’s
position. By default this is the bounding box of the environ-
ment mesh. We have included a number of common
benchmark problems, which allow users to develop a basic
understanding of which types of problems are hard to solve.

The OMPL.app program is also an illustrative example for
software developers who want to integrate with third party
libraries or their own code. OMPL.app consists of three parts:
1) a C++ library that contains the bindings to third-party
libraries, 2) a set of command line demos that highlight signifi-
cant features of this library, and 3) the GUI itself. The library
adds functionality to load meshes in a wide variety of formats

using the Open Asset Importer Library (Assimp, http://assimp.
sf.net). Users can thus create models of environments and
robots in programs such as SolidWorks, 3DS Max, Blender, and
SketchUp, and use them in OMPL.app. A large collection of
models is also available through the Google 3-D Warehouse.
The OMPL.app library also adds collision checking support
using the PQP library [40] and FCL library [41]. The internal
representation of geometry is decoupled from the graphical
rendering, so that the collision checking can also be used in
nongraphical applications. The user interface is written com-
pletely in Python. The code consists almost completely of creat-
ing the user interface elements, connecting them with the
appropriate library function calls, and displaying the results.

The GUI is also a useful tool to prepare motion plan-
ning problems for benchmarking. The GUI can save the
complete specification of a problem to a simple text file.
The user can then add a list of planner names to this file,
along with planner parameter settings, the number of
runs per planner, and a time limit for each run, among
other data. This configuration file can be given as input
to a simple command line program that can perform the
actual benchmarking. Usually, the total time required to
get statistically significant benchmark results is too long
for interactive use for all but the simplest problems,
which is why the benchmarking is not directly accessible
from the GUI.

It should be relatively straightforward for an experienced
programmer to use a different input file parser, a different col-
lision checking library, or different GUI toolkit by mimicking
the structure of the OMPL.app library.

Integration with ROS
We expect that many end users in industry and robotics
research will use OMPL through its ROS interface. This inter-
face was created by Sachin Chitta and Ioan Şucan, and pro-
vides ROS-specific implementations for the abstract base
classes OMPL defines. We describe the steps an end-user
would need to take to plan motions for a given robot that runs
ROS. The PR2 from Willow Garage will be used in the sce-
nario described in the following, but the steps are in fact not
specific to the PR2, and apply to any robot that can run ROS.

If a user wants to plan motions for a PR2, they first need to
create a model of the geometry and kinematics of the PR2.
Within ROS, there is a standard for storing such a model
called the unified robot description format (URDF, http://ros.
org/wiki/urdf). This XML-based format combines kinematic
information with references to files containing meshes of the
different robot components. For the PR2 and many other
robots, the URDF files already exist (see http://www.ros.org/
wiki/Robots). It is often neither desirable nor necessary to
plan for all degrees of freedom listed in a URDF file simulta-
neously. The second step therefore consists of defining one or
more groups of joints. Information about the joints to plan for
is taken from the URDF and a StateSpace representation for
OMPL is constructed. The meshes indicated by the URDF
document are used to construct a StateValidityChecker class.

PR2

Figure 5. With the ROS rviz visualizer robot poses can be easily
configured using OMPL to find feasible paths between poses.

Applications of motion

planning extend

beyond robotics to fields

such as computational

biology and computer-

aided verification.

81december 2012 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

On top of these classes, a SimpleSetup class can also be
defined, thus making it possible to solve planning problems.
The user can also define parameters specific to different plan-
ning algorithms, but there is no requirement to do so. A con-
figuration wizard included in ROS can make the setup easier.
The third step is to define motion planning problems for the
PR2. This can be done in a variety of ways: directly calling
planning functions, using ROS-specific APIs, or through
visualization tools such as those shown in Figure 5.

Thus, we have described a very basic workflow of planning
paths using OMPL in ROS. The ROS-OMPL interface has
many more advanced features. First, motion planning prob-
lems do not necessarily need to be specified by the user, but
can be specified programmatically (e.g., as part of a sense-
plan-act loop in conjunction with other components in ROS).
Second, different types of state space parameterizations are
possible: 1) joint-space representations of the robot, where the
robot’s degrees of freedom are compounded into different
state spaces: Rn for sequences of single degree of freedom
joints with joint limits, SO(2) for continuous joints, SE(2) for
robots moving in plane and SE(3) for robots moving in space,
and 2) work-space representations of the robot, where for
example, the pose of an arm’s end-effector is represented as an
SE(3) state, and the interpolation capability of the SE(3) state
space is overridden to use inverse kinematics. Third, the ROS
interface allows the user to specify complex constraints such
as keeping transported objects upright or keeping them
within view. Generating states that are in the desired goal
region is done in parallel with the execution of the rest of the
planning algorithm. The interface also automatically incorpo-
rates the geometry of attached objects during planning by
attaching carried objects to the kinematic model of the robot.

The ROS interface to OMPL allows users to interact with
motion planners in a simple manner. Only the set of joints the
user wants to plan for (usually grouped and referred to by the
name of the group) and a specification of the goal are needed.
The goal can be specified, for example, as a bounding box in
the joint space, or a desired link pose. We believe that this
functionality will allow for the widespread use of OMPL in a
broad variety of settings.

Discussion
We have described OMPL, an open source general-purpose
library for sampling-based motion planning. Thanks to its
integration with ROS, it can be used on a wide variety of
hardware platforms, and currently serves as the motion plan-
ning back end for the ROS manipulation software stack (also
known as MoveIt! in future releases of ROS [42]). However,
OMPL does not depend on ROS, and can be used indepen-
dently. OMPL.app includes a graphical front end for OMPL
and serves as an example of how OMPL can be integrated
with third-party libraries.

One of the target applications of OMPL is in robotics edu-
cation. The graphical front end provides a gentle introduction
to the complexity of motion planning: without writing any
code, students can solve motion planning problems using

different planners, vary the parameters used for planning, and
perform extensive benchmarking experiments. Through many
demo programs and tutorials, students should get quickly up
to speed and develop new
planning algorithms or
alternate implementations
of abstract APIs.

We encourage contri-
butions from other
researchers. In fact, we are
already working with
other research groups on
incorporating their algo-
rithms into OMPL.
Within our own group,
OMPL has proven to be useful for performing conforma-
tional search for macromolecular ensembles. Here, its gener-
ality has paid off significantly. We can use Rosetta—a stan-
dard molecular modeling package—to create a new state
space for molecules, and use Rosetta’s sampling capabilities
while performing a search for biophysically plausible configu-
rations of molecules using OMPL.

Long-term success depends on adoption and support by
the robotics community. Through continued development in
our group and contributions from others, we expect OMPL to
become a very useful tool for motion planning researchers,
users in the robotics industry, and students who want to learn
more about sampling-based motion planning.

Acknowledgments
This work was supported in part by Willow Garage and NSF
CCLI under Grant DUE 0920721 and Grant IIS 0713623.
Willow Garage was instrumental in initiating and supporting
this effort. The development of OMPL has also benefited from
previous efforts by the Kavraki Laboratory at Rice University
to develop a motion planning software package, in particular
OOPSMP. We are indebted to all other Kavraki Laboratory
members, past and present, for providing code, inspiration,
and feedback. Previous work by Erion Plaku, Kostas Bekris,
and Andrew Ladd in particular has been influential in the
design of OMPL. The authors would also like to thank Sachin
Chitta and Gil Jones from Willow Garage for the development
of the ROS bindings for OMPL and helpful discussions.

References
[1] J.-C. Latombe, Robot Motion Planning. Boston, MA: Kluwer 1991.
[2] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and
Implementations. New York: MIT Press, 2005.
[3] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, (2006). [Online]. Available: http://msl.cs.uiuc.edu/planning/
[4] S. Thomas, X. Tang, L. Tapia, and N. M. Amato, “Simulating protein motions
with rigidity analysis,” J. Comput. Biol., vol. 14, no. 6, pp. 839–855, 2007.
[5] B. Raveh, A. Enosh, O. Schueler-Furman, and D. Halperin, “Rapid sam-
pling of molecular motions with prior information constraints,” PLoS Comput.
Biol., vol. 5, no. 2, p. e1000295, Feb. 2009.

The ROS interface to OMPL

allows users to interact

with motion planners in a

simple manner.

82 • IEEE ROBOTICS & AUTOMATION MAGAZINE • december 2012

[6] J. Cortés, S. Barbe, M. Erard, and T. Siméon, “Encoding molecular motions
in voxel maps,” IEEE/ACM Trans. Comp. Biol. Bioinf., vol. 8, no. 2, pp. 557–563,
Apr. 2010.
[7] N. Haspel, M. Moll, M. L. Baker, W. Chiu, and L. E. Kavraki, “Tracing con-
formational changes in proteins,” BMC Structural Biol., vol. 10, no. 1, p. S1, 2010.
[8] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Hybrid systems: From verifica-
tion to falsification by combining motion planning and discrete search,”
Formal Methods Syst., Design, vol. 34, pp. 157–182, 2009.
[9] J. Canny, The Complexity of Robot Motion Planning. Cambridge, MA: MIT
Press, 1988.
[10] L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan, “Randomized
query processing in robot path planning,” in Proc. 27th Annual ACM Symp.
Theory Computing, 1995, pp. 353–362.
[11] J. Barraquand, L. E. Kavraki, J.-C. Latombe, R. Motwani, T.-Y. Li, and P.
Raghavan, “A random sampling scheme for path planning,” Int. J. Robot. Res.,
vol. 16, no. 6, pp. 759–774, 1997.
[12] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive con-
figuration spaces,” Int. J. Comput. Geometry Appl., vol. 9, nos. 4–5, pp. 495–
512, 1999.
[13] A. M. Ladd and L. E. Kavraki, “Measure theoretic analysis of probabilistic
path planning,” IEEE Trans. Robot. Autom., vol. 20, no. 2, pp. 229–242, Apr.
2004.
[14] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robotics Autom., vol. 12, no. 4, pp. 566–580, Aug. 1996.
[15] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” Int.
J. Robot. Res., vol. 20, no. 5, pp. 378–400, May 2001.
[16] I. A. Şucan and L. E. Kavraki, “A sampling-based tree planner for systems
with complex dynamics,” IEEE Trans. Robot., vol. 28, no. 1, pp. 116–131, 2012.
[17] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “ROS: An open-source robot operating system,” in Proc. ICRA
Workshop Open Source Software, 2009, pp. 1–6.
[18] I. A. Şucan and L. E. Kavraki, “On the implementation of single-query
sampling-based motion planners,” in Proc. IEEE Int. Conf. Robotics
Automation, May 2010, pp. 2005–2011.
[19] A. V. Estrada, J. M. Lien, and N. M. Amato, “VIZMO++: A visualization,
authoring, and educational tool for motion planning,” in Proc. 2006 IEEE Int.
Conf. Robotics Automation, pp. 727–732.
[20] E. Plaku, K. E. Bekris, and L. E. Kavraki, “OOPS for motion planning: An
online open-source programming system,” in Proc. 2007 IEEE Int. Conf.
Robotics Automation, Rome, Italy, pp. 3711–3716.
[21] R. Diankov, “Automated construction of robotic manipulation programs,” Ph.D.
dissertation, Carnegie Mellon University, Robotics Institute, Aug. 2010. [Online].
Available: http://www.programmingvision.com/rosen diankov thesis.pdf
[22] B. Gerkey, R. Vaughan, and A. Howard, “The Player/Stage project: Tools
for multi-robot and distributed sensor systems,” in Proc. 11th Int. Conf.
Advanced Robot., 2003, pp. 317–323.
[23] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an
open-source multi-robot simulator,” in Proc. 2004 IEEE/RSJ Int. Conf.
Intelligent Robots Systems, pp. 2149–2154.
[24] O. Michel, “WebotsTM: Professional mobile robot simulation,” Int. J. Adv.
Robot. Syst., vol. 1, no. 1, pp. 39–42, 2004. [Online]. Available: http://www.
cyberbotics.com/
[25] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular
open robots simulation engine: MORSE,” in Proc. IEEE Int. Conf. Robotics
Automation, 2011, pp. 46–51.
[26] Microsoft Robotics Developer Studio. [Online]. Available: http: //www.
microsoft.com/robotics

[27] N. Ando, T. Suehiro, and T. Kotoku, “A software platform for component
based RT-system development: OpenRTM-aist,” in Int. Conf. Simulation,
Modeling, Programming Autonomous Robots, New York: Springer-Verlag,
2008, pp. 87–98.
[28] C. Jang, S. Lee, S. Jung, B. Song, R. Kim, S. Kim, and C. Lee, “OPRoS: A
new component-based robot software platform,” ETRI J., vol. 32, no. 5, pp.
646–656, 2010.
[29] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet another robot plat-
form,” Int. J. Adv. Robot. Syst., vol. 3, no. 1, pp. 43–48, 2006.
[30] G. Sánchez and J.-C. Latombe, “A single-query bi-directional probabilistic
roadmap planner with lazy collision checking,” in Proc. 10th Int. Symp. Robot.
Res., 2001, pp. 403–417.
[31] S. Redon, A. Kheddar, and S. Coquillart, “Fast continuous collision detection
between rigid bodies,” Computer Graphics Forum, vol. 21, no. 3, pp. 279–287, 2002.
[32] K. Ahnert and M. Mulansky, “Odeint – solving ordinary differential
equations in C++,” in Proc. AIP Conf. Numerical Analysis Applied
Mathematics, vol. 1389, 2011, pp. 1586–1589.
[33] E. R. Johnson and T. D. Murphey, “Scalable variational integrators for con-
strained mechanical systems in generalized coordinates,” IEEE Trans. Robot., vol.
25, no. 6, pp. 1249–1261, Dec. 2009. [Online]. Available: http://trep.sourceforge.net
[34] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic founda-
tions of probabilistic roadmap planning,” Int. J. Robot. Res., vol. 25, no. 7, pp.
627–643, 2006.
[35] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo, “OBPRM: An obsta-
cle-based PRM for 3D workspaces,” in Robotics: Algorithmic Perspective, P. K.
Agarwal, L. E. Kavraki, and M. T. Mason, Eds. A.K. Peters, 1999, pp. 155–168.
[36] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The Gaussian sam-
pling strategy for probabilistic roadmap planners,” in Proc. 1999 IEEE Int.
Conf. Robotics Automation, pp. 1018–1023.
[37] J. Kuffner and S. M. LaValle, “RRT-Connect: An efficient approach to sin-
gle-query path planning,” in Proc. 2000 IEEE Int. Conf. Robotics Automation,
San Francisco, CA, Apr. 2000, pp. 995–1001.
[38] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in Proc. 2000
IEEE Int. Conf. Robotics Automation, San Francisco, CA, 2000, pp. 521–528.
[39] E. Plaku, L. Kavraki, and M. Vardi, “Motion planning with dynamics by
a synergistic combination of layers of planning,” IEEE Trans. Robot, vol. 26,
no. 3, pp. 469–482, June 2010.
[40] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast distance que-
ries with rectangular swept sphere volumes,” in Proc. IEEE Int. Conf. Robotics
Automation, 2000, pp. 3719–3726.
[41] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library for
collision and proximity queries,” in Proc. IEEE Intl . Conf. Robotics
Automation, Minneapolis, MA, May 2012.
[42] S. Chitta, I. Su̧can, and S. Cousins, “Moveit!” IEEE Robot. Autom. Mag.,
vol. 19, no. 1, pp. 18–19, Mar. 2012..

Ioan A. Şucan, Department of Computer Science, Rice University,
Houston, TX. Currently with Willow Garage, Menlo Park, CA.
E-mail: isucan@willowgarage.com.

Mark Moll, Department of Computer Science, Rice University,
Houston, TX. E-mail: mmoll@rice.edu.

Lydia E. Kavraki, Department of Computer Science, Rice
University, Houston, TX. E-mail: kavraki@rice.edu.

�

