
ROS TOPICS   

20 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  dECEMBER 2012

Robot Web Tools
By Brandon Alexander, Kaijen Hsiao, Chad Jenkins, Bener Suay, and Russell Toris

The robot operating system 
(ROS) has provided roboticists 
with a robust, cross-platform 
middleware, and has also given 

researchers from around the world a 
common place to share their ideas and 
reproduce each other’s work. Within 
the growing ROS community, 
developers have created software on a 
wide range of robotic platforms, from 
Willow Garage’s sophisticated PR2 
mobile manipulator to LEGO’s simple 
and widely available NXT.

However, while the community’s 
efforts have facilitated significant mile-
stones in robotics research, the core 
ROS middleware still requires a consid-
erable learning curve, including a gen-
eral understanding of UNIX systems 
and languages such as C++, Python, or 
Java. To generate interest in robotics in a 
larger, more general population, we 
must remove this requirement. The 
World Wide Web provides both a guid-
ing example and a path for broadening 
the reach and accessibility of robotics. 
With the goal of building a larger com-
munity of robot Web app developers, 
we describe recent efforts to expose the 
functionality of ROS via common Web 
development tools such as JavaScript. 

Rosbridge as an Access  
Point for ROS
Rosbridge provides an application-layer 
network protocol for robotics, allowing 
arbitrary, non-ROS client processes 

(including Web interfaces) to interoper-
ate with ROS processes. Specifically, 
rosbridge allows clients to publish and 

subscribe to ROS topic messages, and to 
invoke ROS services in the server’s run-
time environment, by transporting 
JSON-formatted messages over TCP 
sockets and WebSockets. 

The beauty of rosbridge is that its 
clients are language-independent. That 
is, rosbridge clients can be written in 
any language that supports WebSockets. 
Furthermore, rosbridge itself does not 
limit clients to ROS. The reference serv-
er implementation mentioned above is 
written for ROS, but the rosbridge pro-
tocol is a specification and, as such, is 
not tied to any programming language 
or runtime. The JSON-based rosbridge 
protocol has been designed to enable 
data publishing, subscribing, and  
service invocation between any combi-
nation of clients and servers, regardless 
of platform. Implementations have 
been successfully created using Linux, 
Windows, Android, iOS, Arduino, 
common Web browsers, and more.

Digital Object Identifier 10.1109/MRA.2012.2221235

Date of publication: 6 December 2012

Figure 1. Pipeline for a typical Web 
application using rosbridge.

Web Browser

Ros.js

Rosbridge

Robot
Middleware

Device Drivers

Robot Platform

PR2

ROS

Rosbridge

Browser teleop.html

ros.js

Websocket

Figure 2. Connection diagram for a PR2 teleop application.



21deCemBeR 2012  •  Ieee ROBOTICS & AUTOmATION mAGAZINe  •

•  Hybrid journals known for their established impact factors

•  New fully open access journals in many technical areas

•  A multidisciplinary open access mega journal spanning all  
   IEEE fields of interest

IEEE Open Access

IEEE offers a variety of open access (OA) publications:

Discover top-quality articles, chosen by the IEEE peer-review 
standard of excellence. 

Unrestricted access to today’s groundbreaking research 

via the IEEE Xplore® digital library

Learn more about IEEE Open Access

www.ieee.org/open-access

12-TA-0424-Open Access 3.25x4.75 Final .indd   1 9/24/12   10:06 AM



22 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  dECEMBER 2012

A stable and robust implementation 
of a ROS rosbridge server (as well as a 
number of useful Web tools) is avail-
able in the rosbridge_suite stack on ros.
org (http://www.ros.org/wiki/ros-
bridge_suite), and a specification of the 
rosbridge protocol is available at http://
rosbridge.org.

Ros.js
For integration with modern Web tools, a 
JavaScript library named ros.js was built 
to facilitate communication between the 
browser and rosbridge. A JavaScript Web 
application running in the browser can 
communicate with a ROS application 
running on a remote robot or server 
using ros.js and rosbridge.

Ros.js is designed to be lightweight 
and event-based. Its lightweight code 
base allows easier integration within 
existing, large-scale JavaScript applica-
tions, in addition to allowing other 
robot Web tools to build off of it. The 
event-based library will emit an event 
on the basis of feedback from the robot, 
server, or user. An event-based ros.js 
allows for a more responsive UI and 
decouples the ros.js module from other 
JavaScript modules (Figures 1–2).

Wviz
Wviz (short for Web visualization) is a 
robot and sensor data visualization tool 
that runs in a Web browser. Similar to 
RViz, it renders 3-D models of the 
robot and sensor data, lets the user add 
or remove different sensor data dis-
plays, and modifies the properties of 

each display (e.g., image size, color, 
topic, TF, etc.). 

Although wviz is designed to be 
generic, creating a customized version 
of wviz is fairly straightforward: neces-
sary widgets and displays (such as 
image, robot model, and interactive 
markers) can be called from the main 
HTML file and loaded with the applica-
tion, as opposed to being added dynam-
ically by the user. Wviz and related 
packages can be found in the bosch_
web_visualization stack.

Robot Web Hackathon:  
PR2 Scavenger Hunt
During the week of 13 August 2012, a 
Robot Web Hackathon was held at Wil-
low Garage to gather people from the 
ROS community interested in creating 
and using robot Web tools. Using Web 
teleoperation of a Scavenger Hunt task 
as a motivating example, the event’s 
focus was to create and test a set of 
community tools for creating robot 
Web applications. Attendees included 
faculty, students, and researchers from 
Brown University, WPI, Georgia Tech, 
Bosch LLC, and Willow Garage, pri-
marily drawn from the current ros-
bridge user community.

The goals for the week included 
improving and testing a new version of 
rosbridge, creating a commonly-agreed-
upon version of ros.js, incorporating 
both into wviz and other existing robot 
Web applications being developed by 
the participants, and, finally, using the 
results to create Web interfaces for tele-

operating PR2 robots in a scavenger 
hunt. Two interfaces were created to 
allow participants to locate, pick up, and  
photograph a variety of scavenger hunt 
objects. These interfaces were used  
successfully by several on-site partici-
pants, as well as a remote user from 
across the country.

Figure 3. Scavenger hunt Interface 1: wviz-based Web interface that provides autonomous map navigation, camera streaming, and 
interactive marker tools for moving the arms, base, torso, and head. 

Figure 4. Scavenger hunt interface 2: 
interactive marker tools for moving the 
robot overlaid over the robot’s camera view. 

Figure 5. Tutorial interface for 
teleoperating a simulated turtle.



23december 2012  •  Ieee rObOTIcS & AUTOmATION mAGAZINe  •

Both interfaces used the PR2 Inter-
ac t ive  Manipulat ion pip el ine 
(described in a previous ROS Topics 
article) as the robot backend. A Web-
based implementation of interactive 
marker clients allowed for similar func-
tionality in the browser as the interac-
tive marker tools used in RViz. One of 
the two interfaces was made using 

wviz, and was customized 
to provide streaming cam-
era images from the head 
and forearm as well as a 
rendered robot model 
with interactive markers 
upon launch. Additional 
widgets allowed the user 
to ask the robot to autono-
mously navigate using a 
map, and to take a camera 
snapshot of found objects 
(Figures 3 and 4).

RobotWebTools.org
To organize the available 
o p e n - s o u r c e ,  B S D -
licensed tools for robot 
Web applications, includ-

ing those described above, and to pro-
vide support and community, a new 
portal wiki—Robot Web Tools—has 
been created at robotwebtools.org. 
Robot Web Tools is designed to enable 
Web developers, roboticists, and even 
students to start building a robot Web 
application quickly. Thus, the walk-
throughs cater to all abilities, from the 

novice to the advanced user. Currently 
available tutorials include interfaces 
for teleoperating a simulated turtle 
(Figure 5) as well as a physical AR 
Drone (quadrotor) (Figures 6 and 7).

In addition to basic tutorials, the 
portal provides information on a variety 
of tools, libraries, and sample applica-
tions, from low-level JavaScript modules 
such as ros.js or 2dmap.js to full-fea-
tured robot Web applications like the 
Robot Management System (a Web 
application test platform for Human-
Robot Interaction experiments). Many 
of the tools and projects are open 
sourced under the GitHub organization 
github.com/robotwebtools. 

For those interested in joining the 
community of robot Web developers, 
information on how to join the Google 
Group and ongoing weekly calls is avail-
able at robotwebtools.org. And, if you 
create a robot Web application or tool 
that you would like to share, please post 
information about it on the Robot Web 
Tools wiki!

 

Figure 6. Tutorial interface for teleoperating a simulated turtle. Left: Tutorial interface for teleoperating an AR Drone.

Figure 7. An AR Drone being teleoperated.


