his article provides a tutorial
introduction to modeling, es-
timation, and control for multi-
rotor aerial vehicles that includes
the common four-rotor or quad-
rotor case.

Aerial robotics is a fast-growing
field of robotics and multirotor air-
craft, such as the quadrotor (Fig-

ure 1), are rapidly growing in

popularity. In fact, quadrotor aerial

robotic vehicles have become a

standard platform for robotics

research worldwide. They already

have sufficient payload and flight

endurance to support a number of

indoor and outdoor applications,

and the improvements of battery

and other technology is rapidly

increasing the scope for commercial

opportunities. They are highly ma-

neuverable and enable safe and

low-cost experimentation in mapping,

navigation, and control strategies for

robots that move in three-dimensional

(3-D) space. This ability to move in 3-D

space brings new research challenges com-

pared with the wheeled mobile robots that

have driven mobile robotics research over the

last decade. Small quadrotors have been demon-

strated for exploring and mapping 3-D environ-

ments; transporting, manipulating, and assembling

objects; and acrobatic tricks such as juggling, balancing,

and flips. Additional rotors can be added, leading to general-
ized N-rotor vehicles, to improve payload and reliability.
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This tutorial describes the fundamentals of the dynamics,
estimation, and control for this class of vehicle, with a bias
toward electrically powered micro (less than 1 kg)-scale
vehicles. The word helicopter is derived from the Greek
words for spiral (screw) and wing. From a linguistic perspec-
tive, since the prefix quad is Latin, the term quadrotor is
more correct than quadcopter and more common than tet-
racopter; hence, we use the term quadrotor throughout.

Modeling of Multirotor Vehicles

The most common multirotor aerial platform, the quadro-
tor vehicle, is a very simple machine. It consists of four
individual rotors attached to a rigid cross airframe, as
shown in Figure 1. Control of a quadrotor is achieved by
differential control of the thrust generated by each rotor.
Pitch, roll, and heave (total thrust) control is straightfor-
ward to conceptualize. As shown in Figure 2, rotor i rotates
anticlockwise (positive about the z axis) if i is even and
clockwise if 7 is odd. Yaw control is obtained by adjusting
the average speed of the clockwise and anticlockwise rotat-
ing rotors. The system is underactuated, and the remaining
degrees of freedom (DoF) corresponding to the transla-
tional velocity in the x-y plane must be controlled through
the system dynamics.

Rigid-Body Dynamics of the Airframe
Let {X,¥,Z} be the three coordinate axis unit vectors
without a frame of reference. Let {A} denote a right-hand
inertial frame with unit vectors along the axes denoted
by {ai,a, a3} expressed in {A}. One has algebraically
thatd; = X, @, =¥, a3 = Zin {A}. The vectorr = (x,y,2) €
{A} denotes the position of the center of mass of the vehicle.
Let {B} be a (right- hand) body fixed frame for the airframe
with unit vectors {bl,bz,b3} where these vectors are the
axes of frame {B} with respect to frame {A}. The orientation
of the rigid body is given by a rotation matrix “Rp =
[bl,bz,b3] € SO(3) in the special orthogonal group.
One has b1 = RX, bz = RY, b3 = RZ by construction.

We will use Z-X-Y Euler angles to model this rotation,
as shown in Figure 3. To get from {A} to {B}, we first rotate
about a; by the the yaw angle, Y, and we will call this inter-
mediary frame {E} with a basis {€,€,,€;} where & is
expressed with respect to frame {A}. This is followed by a
rotation about the x axis in the rotated frame through the
roll angle, ¢, followed by a third pitch rotation about the
new y axis through the pitch angle 0 that results in the

body-fixed triad {b;, b, b}

cycl — spss0  —cpsy  afrsO + cOspsy
R=| cOsy + cspsO  cpcy  shsO — cpcls¢ |,
—cpsO s chcl
where ¢ and s are shorthand forms for cosine and sine,
respectively.

Let v € {A} denote the linear velocity of {B} with
respect to {A} expressed in {A}. Let Q € {B} denote the

A quadrotor made by Ascending Technologies with
VICON markers for state estimation.

angular velocity of {B} with respect to {A}; this time
expressed in {B}. Let m denote the mass of the rigid object,
and I € R*>*? denote the constant inertia matrix (expressed
in the body fixed frame {B}). The rigid body equations of
motion of the airframe are [2] and [3]

&=, (1a)
mv = mgas + RF, (1b)
R=RQ,, (1¢)
IQ=-QxIQ+1. (1d)

The notation Q . denotes the skew-symmetric matrix, such
that Q, v = Q X v for the vector cross product X and any
vector v € R*. The vectors F,t € {B} combine the princi-
pal nonconservative forces and moments applied to the
quadrotor airframe by the aerodynamics of the rotors.

Dominant Aerodynamics

The aerodynamics of rotors was extensively studied during
the mid 1900s with the development of manned helicop-
ters, and detailed models of rotor aerodynamics are avail-
able in the literature [4], [5]. Much of the detail about these
aerodynamic models is useful for the design of rotor
systems, where the whole range of parameters (rotor

T
T3 T
é 1
TT4
2>

Notation for quadrotor equations of motion. N = 4, @;
is a multiple of n/4 (adapted with permission from [1]).
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The vehicle model. The position and orientation of
the robot in the global frame are denoted by ¢ and R,
respectively.

geometry, profile, hinge mechanism, and much more) are
fundamental to the design problem. For a typical robotic
quadrotor vehicle, the rotor design is a question for choos-
ing one among five or six available rotors from the hobby
shop, and most of the complexity of aerodynamic model-
ing is best ignored. Nevertheless, a basic level of aerody-
namic modeling is required.

The steady-state thrust generated by a hovering rotor
(i.e., a rotor that is not translating horizontally or verti-
cally) in free air may be modeled using momentum theory
(5, Sec. 2.26] as

T; == CTPAr,»T’,'Zw?, (2)

where, for rotor i, A,, is the rotor disk area, ; is the radius,
@; is the angular velocity, Cr is the thrust coefficient that
depends on rotor geometry and profile, and p is the density
of air. In practice, a simple lumped parameter model

T; = cwa (3)

is used, where cr > 0 is modeled as a constant that can be
easily determined from static thrust tests. Identifying the
thrust constant experimentally has the advantage that it
will also naturally incorporate the effect of drag on the air-
frame induced by the rotor flow.

The reaction torque (due to rotor drag) acting on the
airframe generated by a hovering rotor in free air may be
modeled as [5, Sec. 2.30]

Qi := cqu, (4)

where the coefficient ¢, (which also depends on A,,, 7;, and
p) can be determined by static thrust tests.

As a first approximation, assume that each rotor thrust
is oriented in the z axis of the vehicle, although we note
that this assumption does not exactly hold once the rotor
begins to rotate and translate through the air, an effect that
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is discussed in “Rotor Flapping.” For an N-rotor airframe,
we label the rotors i € {1--- N} in an anticlockwise direc-
tion with rotor 1 lying on the positive x axis of the vehicle
(the front), as shown in Figure 2. Each rotor has associated
an angle @; between its airframe support arm and the
body-fixed frame x axis, and it is the distance d from the
central axis of the vehicle. In addition, ¢; € {—1,+1}
denotes the direction of rotation of the ith rotor: 41 corre-
sponding to clockwise and —1 to anticlockwise. The sim-
plest configuration is for N even and the rotors distributed
symmetrically around the vehicle axis with adjacent rotors
counter rotating.

The total thrust at hover (Ty) applied to the airframe is
the sum of the thrusts from each individual rotor

N N
TZ:Z|T’| :CT<ZW?>- (5)

i=1 i=1

The hover thrust is the primary component of the exoge-
nous force

F=TsZ+A (6)

in (1b), where A comprises secondary aerodynamic forces
that are induced when the assumption that the rotor is in
hover is violated. Since F is defined in {B}, the direction of
application is written Z, although in the frame {A} this
direction is 53 = RZ

The net moment arising from the aerodynamics (the
combination of the produced rotor forces and air resistan-
ces) applied to the N-rotor vehicle use are T = (3, 72, 73).

N
1 =CT Z d; sin ((I),»)wf,
i—1
N
Ty = —CT Z d; cos ((D,»)wf,
i—1
N
T3 =¢Q Z aiwf. (7)
=1

For a quadrotor, we can write this in matrix form

Ts e ¢r cr Cr @y
T 0 der 0 —der @5
= 1 @
T2 —dcr 0 der 0 w5
T3 —cq ¢ -—¢q <€ @3
r

and given the desired thrust and moments, we can solve
for the required rotor speeds using the inverse of the con-
stant matrix I'. In order for the vehicle to hover, one must
choose suitable @; by inverting I', such that 7 =0 and
Ts = mg.



Blade Flapping and Induced Drag

There are many aerodynamic and gyroscopic effects asso-
ciated with any rotor craft that modify the simple force
model introduced above. Most of these effects cause only
minor perturbations and do not warrant consideration for
a robotic system, although they are important for the
design of a full-sized rotor craft. Blade flapping and
induced drag, however, are fundamental effects that are of
significant importance in understanding the natural stabil-
ity of quadrotors and how state observers operate. These
effects are particularly relevant since they induce forces in
the x-y rotor plane of the quadrotor, the underactuated
directions in the dynamics, that cannot be easily dominated
by high gain control. In this section, we consider a single
rotor and we will drop the subscript i used in the “Dominant
Aerodynamics” section to refer to particular rotors.

Quadrotor vehicles are typically equipped with light-
weight, fixed-pitch plastic rotors. Such rotors are not rigid,
and the aerodynamic and inertial forces applied to a rotor
during flight are quite significant and can cause the rotor
to flex. In fact, allowing the rotor to bend is an important
property of the mechanical design of a quadrotor and fit-
ting rotors that are too rigid can lead to transmission of
these aerodynamic forces directly through to the rotor hub
and may result in a mechanical failure of the motor
mounting or the airframe itself. Having said this, rotors on
small vehicles are significantly more rigid relative to the
applied aerodynamic forces than rotors on a full-scale
rotor craft. Blade-flapping effects are due to the flexing of
rotors, while induced drag is associated primarily with the
rigidity of the rotor, and a typical quadrotor will experi-
ence both. Luckily, their mathematical expression is
equivalent and a single term is sufficient to represent both
effects in a lumped parameter dynamic model.

When a rotor translates laterally through the air it dis-
plays an effect known as rotor flapping (see “Rotor
Flapping”). A detailed derivation of rotor flapping involves
a mechanical model of the bending of the rotor subject to
aerodynamic and centripetal forces as it is swept through a
full rotation [5, Sec. 4.5]. The resulting equations of motion
are a nonlinear second-order dynamical system with a
dominant highly damped oscillatory response at the forced
frequency corresponding to the angular velocity of the
rotor. For a typical rotor, the flapping dynamics converge
to steady state with one cycle of the rotor [5, p. 137], and
for the purposes of modeling, only the steady-state
response of the flapping dynamics need be considered.

Assuming that the velocity of the vehicle is directly
aligned with the X axis in the inertial frame, v = (v,,0,0),
a simplified solution is given by

UAL

L.
SR

ﬁ — ( :uAlc (9)

1—3w)

for positive constants A;. and A;, and where pt := |v,|/@r
is the advance ratio, ie., the ratio of magnitude of

the horizontal velocity of the rotor to the linear velocity
of rotor tip. The flapping angle f is the steady-state tilt of
the rotor away from the incoming apparent wind and " is
the tilt orthogonal to the incident wind. Here, we use equa-
tions (4.46) and (4.47) from [5, p. 138], noting that adding
the effects of a virtual rotor hinge model [5, Sec. 4.7] results
in additional phase lag between the sine and cosine com-
ponents of the flapping angles [5, Question 4.7, p. 157] that
are absorbed into the constants A;. and Ay in (9).

Rotor flapping is important because the thrust gener-
ated by the rotor is perpendicular to the rotor plane and
not to the hub of the rotor. Thus, when the rotor disk tilts
the rotor thrust is inclined with respect to the airframe and
contains a component in the x and y directions of the
body-fixed frame.

In practice the rotors are stiff and oppose the aerody-
namic force which is lifting the advancing blade so that its
increased thrust due to tip velocity is not fully counteracted
by a lower angle of attack and lower lift coefficient—the
thrust is increased. Conversely for the retreating blade the
thrust is reduced. For any airfoil that generates lift (in our
case the rotor blade) there is an associated induced drag

When a rotor translates horizontally through the air, the
advancing blade has a higher absolute tip velocity and will
generate more lift than the retreating blade. Thinking of the
rotor as a spinning disk, the mismatch in lift generates an
overall moment on the rotor disk in the direction of the
apparent wind (Figure S1). The high angular momentum of
the rotor disk makes it act like a gyroscope, which causes
the rotor disk to tilt around the axis given by the cross
product of rotor hub axis and the torque axis, i.e., an axis
that is offset from the apparent wind by 90° in the horizon-
tal plane of the rotor. Since the motor shaft is vertical, the
blade flaps up as it advances into the wind and back down
again as it retreats from the apparent wind. Equilibrium is
established because the advancing blade rises and
decreases its angle of attack, which reduces its lift coeffi-
cient, thereby countering the additional lift that would have
been generated due to its increased tip velocity. Conversely
for the retreating blade, the reduced lift due to decreased tip
velocity is countered by the increased angle of attack and
increased thrust coefficient. In this state, the rotor will have
a stable constant tilt away from the apparent wind caused
by a translational motion of the rotor. This effect is known as
rotor flapping and is ubiquitous in rotor vehicles [6].

Tr'AfIap R 7-v

Inclined Lift
Flapping Angle

il
Apparent Wind

w;

-—

Vehicle Velocity
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due to the backward inclination of aerodynamic force
with respect to the airfoil motion. The induced drag is
proportional to the lift generated by the airfoil. In normal
hover conditions for a rotor, this force is equally distrib-
uted in all directions around the circumference of the
rotor and is responsible for the torque Q (4). However,
when there is a thrust imbalance, then the sector of the
rotor travel with high thrust (for the advancing rotor) will
generate more induced drag than the sector where the
rotor generates less thrust (for the retreating blade). The
net result will be an induced drag that opposes the direc-
tion of apparent wind as seen by the rotor, and that is
proportional to the velocity of the apparent wind. This
effect is often negligible for full scale rotor craft, however,
it may be quite significant for small quadrotor vehicles
with relatively rigid blades. The consequence of blade
flapping and induced drag taken together ensures that
there is always a noticeable horizontal drag experienced
by a quadrotor even when maneuvering at relatively
slow speeds.

We will now use the insight from the discussion above
to develop a lumped parameter model for exogenous force
generation (6). We assume that all four rotors are identical
and rotate at similar speeds so that, at least to a first
approximation, the flapping responses of the rotors and
the unbalanced aerodynamic forces are the same. It follows
that the reactive torques on the airframe transmitted by
the rotor masts due to rotor stiffness cancel. For general
motion of the vehicle, the apparent wind results in the
advance ratio

L= \/V.>+ v}z/wr,

where v/ = R"v is the linear velocity of the vehicle
expressed in the body-fixed frame, with v, and v} being the
components in the body-fixed x-y plane. Define

1 Alc _Als 0
Aggp=—1 A A 0],
flap @R Ols Olc 0

where @ is the set point for the rotor angular velocity.
This matrix describes the sensitivities of the flapping angle
to the apparent wind in the body-fixed frame, given that u
is small and p* is negligible in the denominators of (9).
The first row encodes (9) for the velocity along the body-
fixed frame x axis. The second row of Ag,;, is a 7/2 rotation
of this response to account for the case where a component
of the wind is incoming from the y axis, while the
third row projects out velocity in the z axis of the body-
fixed frame.

We model the stiffness of the rotor as a simple torsional
spring so that the induced drag is directly proportional to
this angle and is scaled by the total thrust. The flapping
angle is negligible with regard to the orientation of the
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induced drag, and in the body-fixed frame the induced
drag is

Ding V' = diag (dx, d,, 0)v/,

where d,, = d, is the induced drag coefficient.
The exogenous force applied to the rotor can now be
modeled by
F:=TsZ— TsDV, (10)
where D = Ag,, + diag(d;, d,,0), and Ts is the nominal
thrust (5).
An important consequence of blade flapping and

induced drag is a natural stability of the horizontal dynam-
ics of the quadrotor [7]. Define

100
P"'(o 1 o)

to be the projection matrix onto the x-y plane. The hori-
zontal component of a velocity expressed in {A} is

(11)

vy =Py = (v, 1) € R (12)
Recalling (1b) and projecting onto the horizontal compo-
nent of velocity, one has

mi/h = —szh(z—F RDV,).

If the vehicle is flying horizontally, ie., v, =0, then
y = [P’thh and one can write

mi/h = —T):U:th— PhRDRTP;Vh, (13)
where the last term introduces damping since, for a typical
system, the matrix D is a positive semidefinite.

A detailed dynamic model of the quadrotor, including
flapping and induced drag, is included in the robotics tool-
box for MATLAB [8]. This is provided in the form of
Simulink library blocks along with a set of inertial and
aerodynamic parameters for a particular quadrotor. The
graphical output of the animation block is shown in Fig-
ure 4. Simulink models, based on these blocks, that illus-
trate path following and vision-based stabilization are
described in detail in [1].

The discussion provided above does not consider
several additional aerodynamic effects that are impor-
tant for high-speed and highly dynamic maneuvers for a
quadrotor. In particular, we do not consider transla-
tional lift and drag that will effect thrust generation
at high speed, axial flow modeling and vortex states
that may effect thrust during axial motion, and ground
effect that will affect a vehicle flying close to the
ground. It should be noted that high gain control can
dominate all secondary aerodynamic effects, and high
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Frame from the Simulink animation of quadrotor
dynamics.

performance control of quadrotor vehicles has been
demonstrated using the simple static thrust model [23],
[24]. The detailed modeling of the blade flapping and
induced drag is provided due to its importance in under-
standing the state estimation algorithms introduced
later the tutorial.

Size, Weight, and Power (SWAP)

Constraints and Scaling Laws

Reducing the scale of the quadrotor has an interesting
effect on the inertia, payload, and ultimately the maximum
achievable angular and linear acceleration. To gain insight
into scaling, it is useful to develop a simple physics model
to analyze a quadrotor’s ability to produce linear and angu-
lar accelerations from a hover state.

If the characteristic length is d, the rotor radius r scales
linearly with d. The mass scales as d°> and the moments of
inertia as d°. On the other hand, from (3) and (4), it is
clear that the lift or thrust, T, and drag, Q, from the rotors
scale with the square of the rotor speed, @?. In other
words, T ~ @>d* and Q ~ w?d*, the linear acceleration
a =7, which depends on the thrust and mass, and
the angular acceleration o =, which depends on
thrust, drag, the moment arm, and the moments of iner-
tia, scale as

o’d* ) o’ d®
=w'd, o~ =w".

d? d>

To explore the scaling of rotor speed with length, it is
useful to adopt the two commonly accepted approaches
to study scaling in aerial vehicles [9]. Mach scaling is
used for compressible flows and essentially assumes that
the blade tip speed, v,, is a constant leading to
@ ~ (1/r). Froude scaling is used for incompressible
flows and assumes that, for similar aircraft con-
figurations, the Froude number, (vi/dg) = (w’r*/dyg),
is constant. Here, g is the acceleration due to gravity.

Assuming r~d, we get @w~ (1/y/r). Thus, Mach
scaling predicts

1 1
~Z, e, 14
ar o, ar—s (14)
while Froude scaling leads to the conclusion
1 ! (15)
a~1, o~-—.
d

Of course, Froude or Mach number similitudes take
neither motor characteristics nor battery properties into
account. While motor torque increases with length, the
operating speed for the rotors is determined by matching
the torque—speed characteristics of the motor to the drag
versus speed characteristics of the rotors. Further, the
motor torque depends on the ability of the battery to
source the required current. All these variables are tightly
coupled for smaller designs since there are fewer choices
available at smaller length scales. Finally, as discussed in
the previous subsection, the assumption that rotor blades
are rigid may be wrong. Further, the aerodynamics of the
blades may be different for blade designs optimized for
smaller helicopters and the quadratic scaling of the lift with
speed may not be accurate.

In spite of the simplifications in the above similitude
analysis, the key insight from both Froude and Mach num-
ber similitudes is that smaller quadrotors can produce
faster angular accelerations while the linear acceleration is
at worst unaffected by scaling. Thus, smaller quadrotors
are more agile, a fact that is easily validated from experi-
ments conducted with the Ascending Technologies Pelican
quadrotor [10] (approximately 2 kg gross weight when
equipped with sensors, 0.75 m diameter, and 5,400 r/min
nominal rotor speed at hover), the Ascending Technolo-
gies Hummingbird quadrotor [11] (approximately 500 g
gross weight, 0.5 m diameter, and 5,000 r/min nominal
rotor speed at hover), and laboratory experimental proto-
types developed at GRASP laboratory at the University of
Pennsylvania (approx. 75 g gross weight, 0.21 m diameter,
and approximately 9,000 r/min nominal rotor speed).

Estimating the Vehicle State

The key state estimates required for the control of a quad-
rotor are its height, attitude, angular velocity, and linear
velocity. Of these states, the attitude and angular velocity
are the most important as they are the primary variables
used in attitude control of the vehicle. The most basic
instrumentation carried by any quadrotor is an inertial
measurement unit (IMU) often augmented by some form
of height measurement, either acoustic, infrared, baromet-
ric, or laser based. Many robotics applications require
more sophisticated sensor suites such as VICON systems,
global positioning system (GPS), camera, Kinect, or scan-
ning laser rangefinder.
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Estimating Attitude

A typical IMU includes a three-axis rate gyro, three-axis
accelerometer, and three-axis magnetometer. The rate gyro
measures the angular velocity of {B} relative to {A}
expressed in the body-fixed frame of reference {B}

QIMU:Q+bQ+ﬂ€{B}’

where 1 denotes the additive measurement noise and bg
denotes a constant (or slowly time-varying) gyro bias. Gen-
erally, the gyroscopes installed on quadrotor vehicles are
lightweight microelectromechanical systems (MEMS) devi-
ces that are reasonably robust to noise and quite reliable.

The accelerometers (in a strap down IMU configura-
tion) measure the instantaneous linear acceleration of {B}
due to exogenous force

anu = R'(V — gZ) + b, + 1, € {B},

where b, is a bias term, 7, denotes additive measurement
noise, and v is in the inertial frame. Here, we use the nota-
tion Z = a3 since we will need to deal with the algebraic
expressions of the coordinate axes throughout this section.
Accelerometers are highly susceptible to vibration and,
mounted on a quadrotor, they require significant low-pass
mechanical and/or electrical filtering to be usable. Most
quadrotor avionics will incorporate an analogue anti-
aliasing filter on a MEMS accelerometer before the signal
is sampled.

A commonly used technique to estimate the bias bg
and b, is to average the output of these sensors for a few
seconds while the quadrotor is on the ground and the
motors are not yet active. The bias is then assumed con-
stant for the duration of the flight.

The magnetometers provide measurements of the
ambient magnetic field

MMy = R™m + B, +1, € {B},

where 4m is the Earth’s magnetic field vector (expressed in
the inertial frame), B,, is a body-fixed frame expression for
the local magnetic disturbance, and #;, denotes the
measurement noise. The noise 7, is usually low for magne-
tometer readings; however, the local magnetic disturbance
B, can be significant, especially if the sensor is placed near
the power wires to the motors.

The accelerometers and magnetometers can be used to
provide absolute attitude information on the vehicle while
the rate gyroscope provides complementary angular veloc-
ity measurements. The attitude information in the magne-
tometer signal is straightforward to understand; in the
absence of noise and bias, mpy provides a body-fixed
frame measurement of R'4m and, consequently, con-
strains two DoF in the rotation R.

The case for using the accelerometer signal for attitude
estimation is far more subtle. Using the simplest model (6)
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with A=0, ap =R (v — gZ) = (Ts/m)Z ~ gZ. This
shows that the measured acceleration, for this simple
model, would always point in the body-fixed frame direc-
tion Z and provides no attitude information. In practice, it
is the blade-flapping component of the thrust that contrib-
utes attitude information to the accelerometer signal [7].
Recalling (10) and ignoring bias and noise terms, the
model for apy can be written as

Ts

L Iz
ammMu = *EZ*

“ZDRv.
m

(16)

As we show later in the section, only the low-frequency
information from the accelerometer signal will be used in
the observer construction. Thus, it is only the low-frequency
or approximate steady-state response v of the velocity v that
we need to estimate to build a model for the low-frequency
component of apy. Setting ¥ = 0 in (1b), substituting for
force (10), and rearranging, we obtain an estimate of the
low-frequency component of the velocity signal

DR'v~R'Z—1Z
Substituting DR ¥ for DR v in (16), we obtain

Ts

anu ~ ——R'Z, (17)
m

where apy denotes the low-frequency component of the
accelerometer signal. That is, the low-frequency content of
amvu when the vehicle is near hover is the body-fixed frame
expression for the supporting force that is the negative
gravitational vector expressed in the body-fixed frame.
Most robotics applications involve a quadrotor spending
significant periods of time in hover, or slow forward flight,
with v ~ 0, and using the accelerometer reading as an atti-
tude reference during this flight regime has been shown to
work well in practice.

The attitude kinematics of the quadrotor are given by
(1c). Let R denote an estimate for attitude R of the quadrotor
vehicle. The following observer [12] fuses accelerometer,
magnetometer, and gyroscope data as well as other direct
attitude estimates Ry (such as provided by a VICON or other
external measurement system) should they be available:

f? = f?(QIMU — i})x — 0,

ku ~ — km 3
0= | SR B X @) + s (R Am) X i)
g [“ml

X

+ kEP50(3) (RRE)> (18)

where kg, ky;, kg, and kj, are arbitrary nonnegative observer
gains and Py (M) = (M — MT")/2 is the Euclidean



matrix projection onto skew-symmetric matrices. If any
one of the measurements in the innovation o are not avail-
able or unreliable, then the corresponding gain should be
set to zero in the observer. Note that both the attitude R
and the bias corrected angular velocity Q = Quyy — b are
estimated by this observer. The observer (18) has been
extensively studied in the literature [12], [13] and shown
to converge exponentially (both theoretically and experi-
mentally) to the desired attitude estimate of attitude with b
converging to the gyroscope bias b. The filter has a com-
plementary nature, using the high-frequency part of the
gyroscope signal and the low-frequency parts of the
magnetometer, accelerometer, and external attitude
measurements [12]. The roll-off frequencies associated with
each of these signals is given by the gains k,, k,,, and kg in
rad.s™!, and good performance of the observer depends on
how these gains are tuned. In particular, the accelerometer
gains must be tuned to a frequency below the normal band-
width of the vehicle motion, less than 5 rad.s™! for a typical
quadrotor. The magnetometer gain and external gain can
be tuned for a higher roll-off frequency depending on the
reliability of the signals. The bias gain k;, is typically chosen
an order of magnitude slower than the innovation gains
ky < k,/10, leading to a rise time of the bias estimate as
slow as 30 s or more. This dynamic response is necessary to
track slowly varying bias and decouples the bias estimate
from the attitude response; however, it is necessary to initi-
alize the observer with a bias estimate at take off to avoid a
long transient in the filter response.

A vparticular advantage of this observer formulation is
that the gains can be adjusted in real time as long as care is
taken that the bias gain is small. Adjusting the gains in real
time allows one to use the accelerometer during a period
when the vehicle is in hover and then set the gain k, =0
during acrobatic maneuvers when the low-frequency
assumptions on apy no longer hold. The nonlinear
robustness, guaranteed asymptotic stability, and flexibility
in gain tuning make this observer a preferred candidate for
quadrotor attitude estimation compared with classical fil-
ters such as the extended Kalman filter (EKF), multiplica-
tive EKF, or more sophisticated stochastic filters.

Estimating Translational Velocity
The blade-flapping response provides a way to build an
observer for the horizontal velocity of the vehicle based on
the IMU sensors [7], at least while the vehicle is flying in
the horizontal plane. Assume that a good estimate of the
vehicle attitude R is available and that the vehicle is flying
at constant height.
Recalling the projector (11), the horizontal component
of the inertial acceleration can be measured by
Ag, = P,%a = P,Ra ~ P,Ra, (19)
where the signals a and R are available. Since we assume
that the vehicle is flying at a constant height, one has

v, &~ 0, and recalling (12), [P’,jvh ~ v. Further, the thrust
Ts ~ mg must compensate the weight of the vehicle.
Recalling (16) and taking the horizontal component,
one has

Aah ~ —gPhRZ —gPhﬁDRTP;Vh. (20)
Assuming that the attitude filter estimate is good, ie.,

R = R, then (19) and (20) can be solved for an estimate
of Vi

vy = —é {PhRDRTPH I(Aah +gPhR2) (21)
This estimate of v, will be well defined as long as the 2 X 2
matrix P,RDR" P; is invertible, a condition that will hold
as long as the vehicle pitches or rolls by less than 90° dur-
ing flight.

Equation (21) provides a measurement of the horizon-
tal velocity; however, since it directly incorporates the
unfiltered accelerometer readings, it is generally too noisy
to be of much use. Its low-frequency content can, however,
be used to drive a velocity complementary observer that
uses the attitude estimate and the system model (1b) along
with the thrust model (10) for its high-frequency compo-
nent. Let 7, be an estimate of the horizontal component of
the inertial velocity of the vehicle. Recalling (1b), we pro-
pose the following observer

b= —gP; (Ri+ RDR'P9y) — Ky — ), (22)

where vy, is given by (21). The gain k,, > 0 provides a tun-
ing parameter that adjusts the roll-off frequency for the
information from v, that is used in the filter. It also uses an
estimated velocity ¥, to provide an approximation of the
more correct RDR' P} v, term in the feedforward velocity
estimate; however, since the underlying dynamics associ-
ated with this term are stable, the observer is stable even
with this approximation.

Estimating Position

The final part of state that must be estimated is position,
which is typically considered separately as position in the
plane and height. Considering the height first, there are in
fact two separate heights that are of importance: the first is
the absolute height of the vehicle and the second is the rela-
tive height over the terrain at a given time. Unfortunately,
there is no effective way to use the IMU to estimate abso-
lute height; at best, some low-frequency information from
the z axis of the accelerometer provides limited informa-
tion about vertical motion. Most quadrotors include a
barometric sensor that can resolve absolute height to a few
centimeters. Absolute height can also be estimated using
GPS, VICON, or a full SLAM system. Relative height can
be estimated using acoustic, laser-ranging or infrared
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sensors. Once a sufficiently accurate height measurement
is available, it is better to use this directly in the control
than add additional levels of complexity in designing a
height observer, especially since, for a typical system, the
only feedforward information available is the noisy accel-
erometer readings.

Position in the plane can also be determined in a rela-
tive or absolute way. Absolute position can be obtained
from a GPS (few-centimeter accuracy at up to 10 Hz [6])
or an external localization device such as a VICON
motion capture system (50 um accuracy at 375 Hz). How-
ever, a GPS does not work indoors and motion-capture
systems are expensive, and their sensor array has a
limited spatial extent that is impractical to scale up for
large indoor environments.

Relative position can be estimated by measuring the dis-
tance to objects in the environment from onboard sensors,
typically small onboard laser range finders (LRFs) or
RGBD camera systems such as the Kinect. Well-known
SLAM techniques, borrowing LRF-based techniques
similar to those developed for mobile ground robots over
the last decade, have been applied to quadrotors [14].
However, LRFs provide only a cross section of the 3-D
environment and this scan plane tilts as the vehicle maneu-
vers, resulting in apparent changes to the distance of walls,
and, in extreme cases, the scan plane can intersect the floor
or ceiling. LRFs are heavy and power hungry, which pre-
vents their application to the next generation of much
smaller quadcopters.

Vision has the advantage that the sensor is small, light-
weight, and low power, which will become increasingly
important as the size of aerial vehicles decreases. Vision
can provide essential navigational competencies such as
odometry, attitude estimation, mapping, place and object
recognition, and collision detection. There is a long history
of applying vision to aerial robotic systems [15]—[19] for
indoor and outdoor environments, and the well-known
Parrot AR Drone game device makes strong use of vision
for attitude and odometry [20]. Vision can also be used for
object recognition based on color, texture, and shape, as
well as collision avoidance.

Vision is not without its challenges. First, vision is com-
putationally intense and can result in a low sample rate.
Since onboard computational power is limited (by SWAP
consumption), most reported systems transmit the images
wirelessly to a ground station, which increases system

complexity, control latency, and the susceptibility to inter-
ference and dropouts. However, processor speed continues
to improve, and we can also utilize the vision and control
techniques used by flying insects that perform complex
tasks with very limited sensing and neural capability [21].
Second, there is an ambiguity between certain rotational
and translational motions, particularly, when a narrow
field of view perspective camera is used. Third, the under-
actuated quadrotor uses the roll and pitch DoF to point the
thrust vector in the direction of the desired translational
motion. For a camera that is rigidly attached to the quadro-
tor, this attitude control motion induces a large apparent
motion in the image. It is therefore necessary to estimate
vehicle attitude at the instant the image was captured by
the sensor to eliminate this effect. Biological systems face
similar problems, and interestingly, mammals and insects
have developed similar solutions: gyroscopic sensors
(the vestibular sensors of the inner ear and the halteres,
respectively) [22]. Finally, there exists a problem with
recovering motion scale when using a single camera. Stereo
is possible, but the baseline is constrained, particularly as
vehicles get smaller.

Control

The control problem, to track smooth trajectories
(R*(t), (1)) € SE(3), is challenging for several reasons.
First, the system is underactuated: there are four inputs
u=(Ts,7")", while SE(3) is six dimensional. Second, the
aerodynamic model described above is only approximate.
Finally, the inputs are themselves idealized. In practice, the
motor controllers must overcome the drag moments to
generate the required speeds and realize the input thrust
(Tx) and moments (7). The dynamics of the motors and
their interactions with the drag forces on the propellers
can be difficult to model, although first-order linear mod-
els are a useful approximation.

A hierarchical control approach is common for quadro-
tors. The lowest level, the highest bandwidth, is in control
of the rotor rotational speed. The next level is in control of
vehicle attitude, and the top level is in control of position
along a trajectory. These levels form nested feedback loops,
as shown in Figure 5.

Controlling the Motors

Rotor speed drives the dynamic model of the vehicle

according to (8), so high-quality control of the motor
speed is fundamentally important
for overall control of the vehicle;

Position
Controlle

R*

(" Motor Rigid Body
Controller Dynamics

high bandwidth control of the
thrust Ty, denoted by u;, and the

Uy
Attitude
Controller|

R,Q

torques (tx,7,,7;), denoted by wuy,
lead to high performance attitude

Attitude
Planner

E,v

and position control. Most quadro-

The innermost motor control loop, the intermediate attitude control loop, and

the outer position control loop.

IEEE ROBOTICS & AUTOMATION MAGAZINE  ®  SEPTEMBER 2012

tor vehicles are equipped with
brushless dc motors that use back
electromotive force (EMF) sensing



for rotor commutation and high-frequency pulsewidth
modulation (PWM) to control motor voltage. The
simplest systems generally use a direct voltage control of
the motors since steady-state motor speed is propor-
tional to voltage; however; the dynamic response is
second-order due to the mechanical and electrical
dynamics. Improved performance is obtained by in-
corporating single-input single-output control at the
motor/rotor level

Vi = k(o] — @) + Vig(@}), (23)
where V; is the applied motor voltage, @} is the desired
speed, and the actual motor speed @, can be measured
from the electronic commutation in the embedded
speed controller. This can help to overcome a common
problem where the rotor speed for a given PWM com-
mand setting will decrease as the battery voltage
reduces during flight. The significant load torque due to
aerodynamic drag will lead to a tracking error that can
be minimized by high proportional gain (k) and/or a
feedforward term. A positive benefit of the drag
torque is that the system is heavily damped, which
precludes the need for derivative control. The feed-
forward term Vi (w;) compensates for the steady-state
PWM associated with a given velocity set point by
incorporating the best available thrust model deter-
mined using static thrust tests and possibly including
battery voltage.

The performance of the motor controllers is ultimately
limited by the current that can be supplied from the bat-
teries. This may be a significant limiting factor for smaller
vehicles. Overly aggressive tuning and extreme maneuvers
may cause the voltage bus to drop excessively, reducing
the thrust from other rotors and, in extreme cases, causing
the onboard electronics to brownout. For this reason, it
is common to introduce a saturation, although this
destroys the linearity of the motor/rotor response during
aggressive maneuvers.

Attitude Control

We first consider the design of an exponentially converg-
ing controller in SO(3). Given a desired airframe attitude
R*, we want to first develop a measure of the error in rota-
tions. We choose the measure

1

er, == ((R)'R—R'R"), (24)

Do |

which yields a skew-symmetric matrix representing the
axis of rotation required to go from R to R* and whose
magnitude is equal to the sine of the angle of rotation.

To derive linear controllers, we linearize the dynamics
about the nominal hover position at which the roll (¢) and
pitch (0) are close to zero and the angular velocities are
close to zero. If we write R = 4Rp as a product of the yaw

rotation #Rg (1)) and ERp(¢h, 0), which is a composition of
the roll and pitch, we can linearize the rotation about

W, $,0) = (,0,0)

ARB = ARE(‘#() + Alﬁ) ERB(AqS’ A())

cosyy —sinyy Afcosy + Agpsiny
= | sinyy cosy AbBsinyy —A¢cosy |,
—A0 A 1

where = Y, + Ay If R* = ARp(Yy, + Ay, A, AO) and
R = “Rp(¥,,0,0), (24) gives

0 Ay —A0
€R, = _Al// 0 A¢ > (25)
A0 —Ap 0

which, as we expect, corresponds to the error vector

er = (Ad, MO, AY),

with components in the body-fixed frame. If the desired
angular velocity vector is zero, we can compute the
proportional and derivative error to obtain the PD con-
trol law

u, = —kgrer — kaeq, (26)
where kg and kq are positive definite gain matrices. This
controller guarantees stability for small deviations from
the hover position.

To obtain convergence for larger deviations from
the hover position, it is necessary to revert back to (24)
without linearization. This allows us to directly compute
the error on SO(3). By compensating for the nonlinear
inertial terms and by including the correct error term,
we obtain

w=J(—krer—kaea)+Q X JQ—J(Q« RTR*Q*—RTR*()").
(27)

This controller is guaranteed to be exponentially
stable for almost any rotation [23]. From a practical
standpoint, it is possible to neglect the last three terms
in the controller and achieve satisfactory performance,
but the correct calculation of the error term is impor-
tant [24].

Trajectory Control

We now turn our attention to the control of the trajec-
tory along a specified trajectory £*(¢). As before, we
first consider linear controllers by linearizing the dy-
namics about & = &*(t),0 = ¢ = 0,y = Y*(£), & = 0, and
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¢=0= =0, with the nominal input given by
u; = mg,u, = 0. Linearizing (1a), we get

&, = g(AO cos ™ + A sin ),

&, = g(AOsiny* — Ad cosy/),

1

53 = Zul —-g. (28)

To exponentially drive all three components of error, we
want to command the acceleration vector ™ to satisfy

(E() = E™ + K& (D) — O+ Kp(& () — &) =0.

From (28), we can immediately write

w=m(g+&+kaa(G - &)+ kG - &) (29)

to guarantee (&;(t) — &3(1)) — 0. Similarly, for the other
two components, we choose to command the appropriate
0" and ¢* to guarantee exponential convergence

¢ = é (G sing* (1) — & cos Y (1), (300)

0 = é(ﬁiom cos Y (t) + &M sin (1)), (30b)
where the above equations are obtained by replacing A0 by
0" and A¢ by ¢* in (28). Finally, (", ¢ 0*) are provided as
set points to the attitude controller discussed in the previous
section. Thus, as shown in Figure 5, the control problem is
addressed by decoupling the position control and attitude
control subproblems, and the position control loop provides
the attitude set points for the attitude controller.

The position controller can also be obtained without
linearization. This is done by projecting the position error
(and its derivatives) along bs and applying the input u;
that cancels the gravitational force and provides the appro-
priate proportional plus derivative feedback

uy = mb} (& + K& = 9+ Kyl€ = + ). (G

Note that the projection operation is a nonlinear function
of the roll and pitch angles, and, thus, this is a nonlinear
controller. In [23], it is shown that the two nonlinear con-
trollers (27) and (31) result in exponential stability and
allow the robot to track trajectories in SE(3).

Trajectory Planning

The quadrotor is underactuated, and this makes it difficult to
plan trajectories in 12-dimensional state space (6 DoF position
and velocity). However, the problem is considerably simplified
if we use the fact that the quadrotor dynamics are differentially
flat [25]. To see this, we consider the output position ¢ and the
yaw angle yy. We show that we can write all state variables and
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inputs as functions of the outputs (&, /) and their derivatives.
Derivatives of ¢ yield the velocity v and the acceleration,

1 -
v =—ubs + ga;.
o 103 £a3
From Figure 3 we see that

& = [cos, sin,0]",

and the unit vectors for the body-fixed frame can be writ-
ten in terms of the variables i/ and v as

L v—gd; - byx& - o -
,b1:b2><b3

Tl gl e xe
833 Hb3><61

provided 53 X € # 0. This defines the rotation matrix 4Ry as
a function of ¥ (the second derivative of £) and /. In this way,
we write the angular velocity and the four inputs as functions
of position, velocity, acceleration, jerk (), and snap, or the
derivative of jerk (o). From these equations, it is possible to ver-
ify that there is a diffeomorphism between the 18 X 1 vector

. AT
(éT, vt )T eyt !//)

and
T
T T AT ST
Rx(éié)gxulaulrulyuz) .

This property of differential flatness makes it easy to design
trajectories that respect the dynamics of the underactuated
system. Any four-times-differentiable trajectory in the space
of flat outputs, (OX w(t))—r, corresponds to a feasible trajec-
tory—one that satisfies the equations of motion. All inequality
constraints of states and inputs can be expressed as functions
of the flat outputs and their derivatives. This mapping to the
space of flat outputs can be used to generate trajectories that
minimize a cost functional formed by a weighted combination
of the different flat outputs and their derivatives:

T
KORYO)

g, (1) < 0. (32)

In [24], minimum snap trajectories were generated by
minimizing a cost functional derived from the snap and
the angular yaw acceleration with

LIEEEE S = (1= E) + 900

By suitable parameterizing trajectories with basis functions in
the flat space and by considering linear inequalities in the flat



space to model constraints on states and inputs (e.g., 117 > 0),
it is possible to turn this optimization into a quadratic pro-
gram that can be solved in real time for planning.

Finally, as shown in [11], it is possible to combine this
controller with attitude-only controllers to fly through
vertical windows or land on inclined perches with close
to zero normal velocity. A trajectory controller is used by
the robot to build up momentum, while the attitude con-
troller enables reorientation while coasting with the gener-
ated momentum.

Vision-Based Perception and Control
There are two approaches to the question of controlling an
aerial vehicle based on visual information. The first is to use
classical robotic SLAM techniques, although with the
caveat that the environment and state estimation are inher-
ently 3-D. There are many researchers currently working
on this problem, and we will not attempt to discuss this
approach further, except to say that should a good-quality
environmental estimation and localization algorithm be
developed, the control techniques discussed above can be
applied. The second approach is direct sensor-based con-
trol [26], the most commonly referred to case, being that of
image-based visual servo control [27]-[29].

The motion of a point in an image is a function of its
coordinate (u, v) and the camera motion

(Z) :](M,V,Z)V,

where Z is the point depth, v = (vy, vy, v, @y, @), wz)T is
the spatial velocity of the camera (and vehicle), and J( - ) is
the visual Jacobian or interaction matrix. J can be formu-
lated for a perspective camera [30], where (u, v) are pixel
coordinates; or a spherical camera [31] where (u, v) are lat-
itude and longitude angles.

The pitch and roll motion of the vehicle are controlled
by the attitude subsystem to maintain a position or to fol-
low a path in space, and this causes image motion. We par-
tition the equations as

(33)

(l:) = J1(u, v)(vs, Vys Vz» wz)T + ]2(”: V) < gj ) > (34)

where the right-most term describes the image motion due
to the exogenous roll and pitch motion. Rearranging we

can write
i i\ " Wy
()= (%) - (*)
V % Wy

T
= ]l(u) V)(VX’ Vy, Vzs wZ) >

(35)

(36)

where (/, V') represent image points for which the roll and
pitch motion has been removed based on the knowledge of
w, and Wy, which can be obtained from gyroscopes.

Now consider a point in the image (u,v;) and its
desired location in the image (1, v}). This desired position
might come from a snapshot of the scene taken when the
vehicle was at the desired pose that we wish to return
to. The desired image motion is therefore (if, V) =
My © uj, vi ©v}), where the operator & represents the
difference on image plane or sphere. For N points, we
can write

i
{’T Ji(uy, v1)
Wy
A : — :
: : o,
iy Ji(un, vw)
155
Jo(ur, v1) &
v
= : N )
v,
Jo(un, vN)
B

If N > 2 and the matrix B is nonsingular, we can solve for
the required translational and yaw velocity to move the
vehicle to a pose where the feature points have the desired
image coordinates (u, v}). The desired velocity is input to
a control system as discussed earlier. This is an example of
image-based visual servoing for an underactuated vehicle,
and the technique can be applied to a wider variety of
problems, such as holding station, path following, obstacle
avoidance, and landing.

Conclusions

In this article, we have provided a tutorial introduction to
modeling, estimation, and control for multirotor aerial
vehicles, with a particular focus on the most common
form—the quadrotor. The dynamic model includes the
rigid body motion of the vehicle in SE(3), the simple aero-
dynamics associated with hover, and the extension to the
case of forward motion where blade flapping becomes
important. State estimation based on accelerometers, gyro-
scopes, and magnetometers was discussed for attitude and
translational velocity, and GPS, motion-capture systems,
and cameras for position estimation. A hierarchy of con-
trol techniques was discussed, from the individual rotors
through attitude control, aggressive trajectory following,
and image-based visual control. The future possibilities of
highly agile small-scale vehicles were laid with a discussion
on dimensional scaling for which vision will be an impor-
tant sensing modality.
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