
Motion Planning
Part I: The Essentials

By Steven M. LaValle

T
his is the first installment of a two-part tutorial. The
goal of the first part is to give the reader a basic
understanding of the technical issues and types of
approaches in solving the basic path-planning or

obstacle-avoidance problem. The second installment will
cover more advanced issues, including feedback, differential
constraints, and uncertainty. Note that this is a brief tutorial
rather than a comprehensive survey of methods. For the lat-
ter, consult some of the recent textbooks [4], [9].

Motion planning involves getting a robot to automatically
determine how to move while avoiding collisions with
obstacles. Its original formulation, called the piano mov-
er’s problem, is imagined as determining how to move a
complicated piece of furniture through a cluttered house.
Have you ever argued about how to move a sofa up a
stairwell? It has been clear for several decades that getting
robots to reason geometrically about their environments
and synthesize such plans is a fundamental difficulty that
recurs all over robotics.

The stages of motion-planning development are parellel
to those of an integral calculus: 1) The integration problem
was clearly identified and defined; 2) perfect, exact solutions
were developed for many classes of functions; and 3) since
these were limited to a small subset of functions that people
care about, numerical integration methods were developed
with great success in practice. The similar stages of motion
planning were as follows: 1) it was clearly defined in the
1970s; 2) the 1980s saw the development of perfect, combi-
natorial solutions, which are ideal in some settings, but not
practical in most; and 3) the 1990s brought sampling-based
methods that are not as elegant but offer practical solutions
to modern industrial-grade problems. Over the past decade,
motion-planning algorithms have been widely used in
robotics and automation and have furthermore found appli-
cations well beyond, including the fields of virtual prototyp-
ing and computational biology.

Problem Formulation
LetW denote the world that contains a robot and obstacles.
For a two-dimensional (2-D) world,W ¼ R2 and O � W
is the obstacle region, which has a piecewise-linear

MARCH 2011 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 79

Digital Object Identifier 10.1109/MRA.2011.940276

Date of publication: 14 April 2011

©
D

IG
IT

A
L

V
IS

IO
N

(polygonal) boundary. (The complementW=O is assumed
to be a bounded open set.) The robot is a rigid polygon that
can move through the world but must avoid touching the
obstacle region. For a three-dimensional (3-D) world, the
only differences are thatW ¼ R3, andO and the robot are
defined with polyhedra instead of polygons. Motion-plan-
ning formulations extend well beyond the rigid polygons
and polyhedra, but such extensions are left to the “Direct
Extensions” section and the second part of this tutorial.

The basic path-planning problem is informally sum-
marized as follows: given an initial placement of the robot,
compute how to gradually move it into a desired goal place-
ment so that it never touches the obstacle region. See Figures 1
and 2 for examples.

Consider the task in terms of algorithm inputs and outputs.
l Inputs: An initial placement of the robot, a desired goal

placement, and a geometric description of the robot and
obstacle region.

l Outputs: A precise description of how to move the robot
gradually from its initial placement to the goal place-
ment while never touching the obstacle region.
The output description will be a path through a set of

all intermediate transformations of the robot from start
to finish.

Living in C-Space
Although the motion-planning problem is described in the
world, it really lives in another space: the set of all rigid-
body transformations that can be applied to the robot is
called the configuration space or C-space. Finding a solu-
tion leads to computing a path through the part of the
C-space that avoids robot-obstacle collisions.

A rigid body may translate and rotate. Most people are
much more familiar with performing one transformation
to place a body into a scene rather than thinking about all
transformations. The notion of configuration space was
the key insight to Lagrangian mechanics of rigid bodies
[1], as it allowed dynamics to be expressed using the pre-
cise degrees of freedom of a body. The idea was introduced
to motion planning by Lozano-Perez [12] and Udupa [17].
The C-space in physics and control theory is usually called
a Lie (pronounced Lee) group. In this context, which is
much more widely studied than motion planning, the
C-space is considered as a differentiable manifold, which
leads to considerable technical and notational hurdles.
The C-space used in motion planning requires no calcu-

lus; therefore, it is described as a
topological manifold, which is for-
tunately much simpler to define
and manipulate. The definition of
an n-dimensional (topological) mani-
fold C is a subset of Rm for n � m,
such that every q 2 C is contained
in at least one open subset of C
(pick a small one) that is homeo-
morphic. (Homeomorphic means
that for an open set, say O, there
exists a continuous, bijective func-
tion f : O! Rn for which the
inverse f �1 is also continuous to
Rn.) The intuition is that, in the
local vicinity of every q, a mani-
fold behaves like Rn. It is a nicely
behaved surface. The existence of
sharp corners does not even matter;

Goal

32

1

4

5 6

7

(a)

(b)

Figure 1. A 2-D example of basic path planning.

(a) (b) (c)

(d) (e) (f)

Figure 2. A 3-D automotive assembly task that involves inserting or removing a windshield
wiper motor from a car body cavity. This problem was solved for clients using the path-
planning software of Kineo CAM.

80 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCH 2011

•

however, branching or the locally changing dimensions is
not allowed (Figure 3).

We now take a look at the C-spaces that commonly
arise in planning. Consider a 2-D world. Let A � R2 de-
note a polygonal robot. It could, for example, be all points
inside of a triangle defined by vertices (�1, 0), (1, 0), and
(0, 1). We could rotate the robot counterclockwise by any
h 2 ½0, 2p) and then translate it by any xt 2 R in the X
direction and any xt 2 R in the Y direction. This allows
for any possible position and orientation, and every xt , yt , h
combination leads to a unique robot placement. Let
q ¼ (xt , yt , h) be called the configuration. A point (x, y) 2 A
would then appear at some (x0, y0) 2 W (in the world)
given by

x0

y0

1

0
@

1
A ¼

cos h � sin h xt

sin h cos h yt

0 0 1

0
@

1
A

x
y
1

0
@

1
A, (1)

which uses a standard 3 by 3 homogeneous transformation
matrix. The upper left 2 by 2 block is just a rotation matrix.

The set of all configurations q ¼ (xt , yt , h) is clearly a
subset of R3, but to define the C-space, we must take into
account that h� 2p yields equivalent rotations. We write
that C ¼ R2

3 S1, in which S1 denotes a circle in the topo-
logical sense and accounts for h (the circle is obtained by
gluing 0 and p together). The C-space C is a 3-D manifold,
and each element is nicely described as q ¼ (xt , yt , h).
Remembering that h wraps around at 2p is crucial to
motion planning; otherwise, an artificial barrier or redun-
dant exploration will be introduced. If the robot is not
allowed to rotate, then we obtain the translation-only case
and C ¼ R2 with q ¼ (xt , yt).

For the 3-D world, the concepts mostly extend as
you might expect. Three translation parameters xt , yt , zt

appear, and a translation-only robot then has a C-space
C ¼ R3 with q ¼ (xt , yt , zt). However, the set of 3-D rota-
tions turns out to be 3-D manifold all by itself, and it is not
as simple as a circle or sphere topologically. The best way
to see its structure is to use quaternions to represent rota-
tions. Since this a brief tutorial, only the essence is given
here, and quaternion algebra is avoided here as it is not
critical to motion planning. Every 3-D rotation can be
expressed as a rotation by an angle h 2 ½0, 2p) about some
fixed axis that passes through the origin. Let this axis be
described by some unit vector v ¼ (v1, v2, v3). This already
makes it appear that there is a sphere of possible axes and
then a circle of possible angles at each place on the sphere.
This collection of circles glued together around the sphere
is called Hopf fibration. Now there is another trouble. Just
as 0 and 2p were equivalent in the 2-D case; for the 3-D
case, we have that v and h to produce the same rotation
as �v and 2p� h. A convenient way to handle this is
to define h ¼ (a, b, c, d) and assign a ¼ cos (h=2), b ¼
v1 sin (h=2), c ¼ v2 sin (h=2), and d ¼ v3 sin (h=2). Note
that a2 þ b2 þ c2 þ d2 ¼ 1, meaning that h lies on a unit

sphere. Furthermore, h and �h are equivalent rotations.
The C-space for the set of all 3-D rotations is therefore
nicely visualized as a 3-D sphere, a subset of R4 in which
opposite (called antipodal) points are the same. This
means that, to get the set of all rotations, we can stay in the
upper hemisphere (a � 0), but must be careful at a ¼ 0,
because opposite points on this equator are the same. The
technical term for the resulting space is real projective three
space, denoted RP3. For the case of a 3-D robot that can
translate or rotate, we obtain C ¼ R3

3 RP3, which is a
six-dimensional manifold. We can represent the configuration
as (xt , yt , zt , a, b, c, d) while enforcing that a2 þ b2 þ c2þ
d2 ¼ 1. The use of quaternions means that the set of all 3 by 3
rotation matrices is parameterized by a, b, C, and d:

2(a2 þ b2)� 1 2(bc� ad) 2(bdþ ac)
2(bcþ ad) 2(a2 þ c2)� 1 2(cd� ab)
2(bd� ac) 2(cdþ ab) 2(a2 þ d2)� 1

0
@

1
A: (2)

With different possible parameterizations of rotations,
for 2-D or 3-D worlds, it is important to realize that if two
points are close under one representation, they might be
far under another. Furthermore, if there are singularities in
the parameterization mapping (e.g., yaw–pitch–roll repre-
sentation), the C-space might not even represent the same
manifold as the set of all rotations.

Now that different possibilities for C have been
presented, consider the parts of C that are prohibited due
to collision. Let A(q) � W denote a closed set of points in
the world occupied by the robot A when it transformed to
configuration q. A configuration q 2 C places the robot
into collision if and only if A(q) \ O 6¼ ; (the robot and
obstacle are attempting to occupy at least one common
point in W). The set of all noncolliding configurations is
often called the free space and is defined as

Cfree ¼ fq 2 C j A(q) \ O ¼ ;g: (3)

The complement is called the obstacle region in C-space:
Cobs ¼ C=Cfree.

The problem statement given in the “Problem For-
mulation” section seemed somewhat informal; however,
using the C-space, the basic path-planning problem can be
precisely defined: given a robot description A, an obstacle
description O, a C-space C, an initial configuration qI 2 C,
and a goal configuration qG, compute a continuous path
s : ½0, 1� ! Cfree with s(0) ¼ qI and s(1) ¼ qG (Figure 4). A

Figure 3. The first three are manifold, because they locally look
like R2; the last two are not because at some points the
dimension changes or branching occurs.

MARCH 2011 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 81

•

typical way to express s is a sequence of line segments,
which ignores the particular parameter s 2 ½0, 1�, but is
good enough for motion-planning results. Note that the
path must be continuous; otherwise, the robot would
appear to teleport from one place to another, which is
obviously cheating. Gradual motions through Cmake the
robot move gradually throughW.

Combinatorial Planning
Although the motion-planning problem is in the continu-
ous C-space, its computation is discrete. Therefore, if we
want an algorithmic solution, we need a way to discretize
the problem. This has led to two main schools of thought:
1) combinatorial planning, which thrived in the 1980s,
constructs structures in the C-space that discretely and
completely capture all information needed to perform
planning and 2) sampling-based planning, developed mainly
across the 1990s, uses collision-detection algorithms to probe
and incrementally search the C-space for a solution rather
than completely characterizing all of the Cfree structure. The
second approach is most widely used in practice; however,
the first one is far superior in many instances. Therefore, it is
worth to study both.

To illustrate the philosophy of combinatorial planning,
consider the case in which W ¼ R2 and contains a point
robot (A ¼ f(0, 0)g) that cannot rotate. In this case,
C ¼ R2, and the task is simply to connect the dots in the
plane with a curve that avoids the obstacles [Figure 5(a)].

Here is a simple technique that contains all the essential
ingredients of combinatorial planning. All the methods
first compute a road map, which is a graph in which each
vertex is a configuration in Cfree, and each edge is a simple
path through Cfree that connects a pair of vertices. Here is
one way to achieve this:
1) Decompose Cfree into trapezoids with vertical side seg-

ments. Figure 5(b) shows the result. From each poly-
gon vertex, an attempt is made to shoot rays upward
and downward. Each ray may be immediately blocked,
or it may travel until hitting another part of the obsta-
cle boundary.

2) Place one vertex in the interior of every trapezoid. It doesn’t
really matter where; for simplicity, pick the centroid.

3) Place one vertex in every vertical segment. The result-
ing vertices are shown in Figure 5(c).

4) Connect each segment vertex to the two vertices that
are in the interior of the neighboring trapezoids. Each
connection forms an edge in the graph and corresponds
to a straight-line path.
The result is a road map that appears to capture the

structure of Cfree. How would you implement these steps?
For the first step, we could iterate over each vertex and

qI

qG

(a)

(b)

(c)

(d)

qI

qG

Figure 5. A combinatorial planning illustration: a) 2-D polygonal
obstacle region with proposed qI and qG (one possible solution
is shown in a dashed path); b) the trapezoidal decomposition;
c) constructing a graph by placing a vertex in every vertical edge
segment and every trapezoid interior; and d) connecting qI and qG

to the graph and searching for a solution path.

qG

qI

obs

obs

obs
free

Figure 4. In the C-space, the problem looks simple: connect qI

to qG while remaining in Cfree.

82 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCH 2011

•

determine precisely where each upward and downward ray
intersects other segments. We could then easily identify
the first segment hit by the vertical ray in the above and
below directions. For an example as simple as Figure 5(a),
this is a fine method. However, if there are n polygonal
edges in total and n is large (say, n ¼ 20, 000), then the
method is not efficient because it takes time O(n2).

By proceeding carefully, this computation can be reduced
to time O(n lg n) by employing the plane sweep principle [6],
which underlies many decomposition algorithms used for
combinatorial planning. First, sort the polygon vertices from
left to right, requiring time O(n ln n). During the algorithm
execution, a list of some polygon segments is maintained and
sorted from top to bottom, as they are stabbed by a vertical
line. The method proceeds incrementally from vertex to ver-
tex, traveling from left to right. At each step, the edge list is
updated by simple insertions and deletions, which each take
O(lg n) time using self-balancing binary search trees. If the
edges incident to the vertex are both to the left, then the two
edges are deleted from the list. If they are both to the right,
they are inserted into the list (in order). Otherwise, the one to
the left is deleted, and the one to the right is inserted. Thanks
to this ordering, and we can determine in O(lg n) time the
segments directly above and below the vertex, which are first
stabbed by upward and downward rays. It is furthermore
simple and efficient to incrementally extend the graph as each
vertex is processed. For more details, see Section 6.2.2 of [9]
or Section 6.1 of [6].

The road map is constructed without considering the
query pair qI and qG. Once the investment is made, the same
road map can be used for multiple query pairs. In other words,
we can easily solve numerous motion-planning problems in a
world that contains the same obstacle and robot. Here is a
simple way to use the computed road map from Figure 5:
1) find the trapezoids that contain qI and qG

2) connect qI and qG to the vertices in their respective
trapezoids

3) search the graph for a path that connects qI to qG.
The first step can be performed trivially in O(n) time by

testing whether qI (or qG) lies in each trapezoid; this can be
shaved down to O(lg n) time by developing clever hier-
archical point-location data structures [6]. The second step
takes constant time, and the final step can be performed in
O(n) time using simple graph search algorithms such as
breath first or depth first.

For the simple case of a point robot in a polygonal
world, numerous alternative algorithms exist that yield
comparable performance. We could, for example, decom-
pose Cfree into triangles instead of trapezoids. The general
principles are that each cell should be easy to traverse (con-
vex is ideal), the decomposition into cells should be easily
computable, and the adjacencies between cells should be
straightforward to determine. Based on these properties, a
useful road map is obtained.

Road maps need not be obtained by cell decomposi-
tions. For example, a shortest path road map yields

distance-optimal paths and is constructed by connecting
certain pairs of vertices that can see each other, and each
has an interior angle greater than p. A maximum clearance
road map can also be computed efficiently. In general, a
road map is expected to have two properties to be useful
for planning:
1) Accessibility: It is simple to reach a point on the road map

from any q 2 Cfree while trivially avoiding collisions.
2) Connectivity preserving: For any pair q1, q2 of points

that is connected to the road map, a path exists between
them in the road map if and only if there was a path
between q1 and q2. In other words, if q2 is generally
reachable from q1, then traveling between them via the
road map must also be possible.
It seems up to this point that combinatorial planning sol-

utions have beautiful properties. Most importantly, they con-
struct a discrete representation of the problem that exactly
captures the solution. In other words, there are no approxi-
mation or sampling errors. These methods are called com-
plete, meaning that, for any input problem, they correctly
determine in finite time whether or not a solution exists.

Here comes the trouble. Most motion-planning prob-
lems involve robots that are not modeled as points and
they can rotate in addition to translating. How many of
these nice combinatorial planning ideas extend? First, con-
sider the case of a polygonal translation-only robot. If the
robot A and obstacle O are convex polygons, then Cobs is a
polygon in which every edge corresponds to a point-to-
edge contact between A and O. See Figures 6 and 7. Can
you see how to achieve this by reassembling the edges ofA
and O into Cobs, with the edges appearing in an ordering
with the edge normals? Once this conversion is made, a
trapezoidal decomposition approach is easily applied. If
A and O are nonconvex, then they need to be first

Figure 6. A triangular robot and a rectangular obstacle.

(b)(a)

obs

Figure 7. (a) Slide the robot around the obstacle while keeping

MARCH 2011 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 83

•

decomposed into convex pieces to construct the convex
pieces of Cobs. A trapezoidal decomposition algorithm could
even be used for the convex decomposition ofA andO.

Now introduce rotation. For the translation-only case,
Cfree has a piecewise linear boundary because the transla-
tion is a linear transformation. Unfortunately, the rotation
is nonlinear and commonly represented using trigonomet-
ric functions. Various ways to reparameterize rotation
matrices lead to improvements; however, nonlinearity is
unavoidable. For computation, polynomial parametrizations
are preferred. The previous piecewise-linear representations
are then replaced with semialgebraic representations, mean-
ing that each facet of A, O, and Cobs is represented as the
roots of implicit polynomials. Constructing Cobs in terms of
polynomial roots is straightforward, but a combinatorial
explosion occurs that produces far too many facets for prac-
tice (the example in Figure 6 already produces more than
70). For 3-D problems, it becomes considerably worse. The
next difficulty is to perform cell decomposition. The first
motion-planning method to accomplish this is the cylindri-
cal decomposition method of Schwartz and Sharir [13],
which produces a number of cells that is doubly exponential
in the dimension of C. More efficient cell decomposition
methods exist, and there is Canny’s algorithm [3], which
directly produces a road map through Cfree in a singly expo-
nential time without a prior decomposition. These methods
provide solutions to the general path-planning problem; how-
ever, they are even rarely implemented due to numerical issues
and inefficiency from the combinatorial explosion.

Sampling-Based Planning
Sampling-based approaches are by far the most common
choice for industrial-grade problems, because Cobs is com-
posed of an unwieldy number of facets. They abandon the
idea of explicitly characterizing Cfree and Cobs and essentially
leave the planning algorithm in the dark when exploring
Cfree. The only light is provided by a collision-detection algo-
rithm, which is a black box that probes C to determine
whether some configuration (or a small ball around it) lies
in Cfree. These algorithms often work by hierarchically repre-
sentingA andO and attempting to quickly determine colli-
sion at a course resolution [11]. Many collision detection
methods are incremental, which means that they can yield
extremely fast performance by saving information from a
previous execution on a nearby configuration.

Planning algorithms then work by incrementally prob-
ing and searching Cfree for a path, gradually revealing more
and more of it with the collision detector. In this way,
motion planning feels like using a robot with a weak sensor
to explore an unknown environment. This might seem
odd since O and A are given; however, the environment
being explored is Cfree (or equivalently, Cobs), which is high
dimensional and prohibitive to explicitly represent. Sam-
pling-based approaches attempt to find a solution quickly
while cheating their way out of building a full map of Cfree.
Don’t compute more than you have to.

To get a feeling for sampling-based planning issues, we
first introduce a frequently used method based on rapidly
exploring random trees (RRTs). Figures 8 and 9 show the
algorithm and its result. The idea is to aggressively probe
and explore the C-space by expanding incrementally from
an initial configuration q0. The explored territory is marked
by a tree rooted at q0. Each iteration extends the tree by add-
ing a leaf vertex and edge that connects it to the rest of the
tree. Each edge is a collision-free path between two configu-
rations. The RRT algorithm picks a point qrand at random in
C (not Cfree) and then tries to connect the tree to it by
extending the nearest point in the tree. This biases the tree
toward aggressively reaching unexplored parts of C, but
eventually settling on uniform coverage.

Some implementation details are needed to clarify
Figure 8. Step 1 initializes G to contain a single vertex, cor-
responding to q0 and no edges. In Step 3, a random config-
uration generator is used to obtain qrand 2 C. A random
translation could be selected uniformly from a bounded
region (often an axis-aligned rectangle). A random 2-D
rotation is easily obtained by randomly selecting some
h 2 ½0, 2p). It turns out that selecting a uniformly random
3-D rotation is technically more challenging. Here is an
amazingly simple method. Choose three points u1, u2, u3 2
½0, 1� uniformly at random and then let [14]:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u1
p

sin 2pu2 b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u1
p

cos 2pu2

c ¼ ffiffiffiffiffi
u1
p

sin 2pu3 d ¼ ffiffiffiffiffi
u1
p

cos 2pu3 (4)

in the rotation matrix (2).

RRT(q0)
1 G.init(q0);

2 repeat

3 qrand → RANDOM_CONFIG()

4 qnear ← NEAREST(G,qrand);

5 G.add_edge(qnear,qrand);

Figure 8. A simple outline of the RRT algorithm.

45 Iterations 2,345 Iterations

Figure 9. In the early iterations, the RRT quickly reaches the
unexplored parts. However, the RRT is dense in the limit (with
probability one), which means that it gets arbitrarily close to any
point in the space.

84 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCH 2011

•

What does uniform random really mean for C? Recall
from the “Problem Formulation” section that the set of
transformations could be expressed in numerous ways,
meaning that the notion of uniform randomness appears
to be arbitrary. There is, however, a well-defined notion of
uniformity based on Haar measure, which is beyond this
tutorial; see Section 5.2 of [9]. Intuitively, if we rotate the
coordinate frame on which the rotations are defined, then
the uniformity should be preserved. The methods for rota-
tion above, including (4), achieve this.

Step 4 finds qnear, the closest point in G to qrand (see
Figure 10). What does it mean to be closest? This again
depends precisely on how C is represented and implies
that a distance function has been defined. The distance
function q : C3 C :! ½0,1) is formally called metric and
usually satisfies the following axioms for all p, q, r 2 C: 1)
q(p, q) � 0, 2) q(p, q) ¼ 0 if and only if p ¼ q, 3)
q(p, q) ¼ q(q, p), and 4) q(p, q)þ q(q, r) � q(p, r). In vir-
tually all sampling-based planning algorithms, perform-
ance depends on the choice of the metric. It is sometimes
difficult to set the relative weights between rotational dis-
tances and translational distances (see Figure 11).

Now that the closest has been established, which points
in G are checked for being the nearest to qrand? The sim-
plest is check the vertices and report the nearest one. But
the closest point among all those explored could lie along
an edge. Rather than incurring an expensive computa-
tional cost, a common tradeoff is to check some intermedi-
ate points at regular intervals along an edge (Figure 12).
This introduces an unfortunate parameter to tune but
often simplifies implementations (it is also reasonable to
avoid all of this and just use the vertices).

Finally, Step 5 extends the tree. If Cobs were empty, then
an edge can be made from qnear to qrand. If qnear is a vertex
in G, then the endpoints of the new edge are qnear and
qrand. If qnear is a point along the interior of an edge, then
that edge must first be split, with qnear introduced as an
intermediate vertex. Since Cobs is usually not empty, there
are two issues: 1) A collision-detection algorithm makes
sure that we can travel from qnear toward qrand while stay-
ing in Cfree, and 2) we might not be able to reach qrand with-
out hitting Cobs. If it is not possible to reach qrand, then the
new vertex is instead placed at the configuration qi that gets
as close as possible, as shown in Figure 13. (If no progress is
possible, then no new edge and vertex are created.)

The RRT algorithm presented in Figure 8 aggressively
explores Cfree; however, if the tree is grown from qI, there is
no consideration of qG. Now consider ways to solve the
basic path-planning problem using RRTs.

Here is a simple adaptation. Start the RRT with q0 ¼ qI,
and at every 100th iteration, force qrand :¼ qG instead of
choosing a random configuration. If qG is reached, then a
path has been found from qI to qG, which solves the prob-
lem. This induces a gentle bias toward the goal. At one
extreme, we could pick qG every time, making a beeline for
qG. This would fail miserably when an obstacle is reached.
Figure 14(a) shows an example in which this would occur.
Aggressively attempting to reach qG by setting qrand :¼ qG

in every other iteration would still work, but might waste too
much effort running into Cobs instead of exploring. Therefore,
a light bias, such as every 100th iteration is recommended.

For many problems, though, such a simple strategy is
not enough. Figure 14(b) shows a kind of bug trap from
which it is difficult to escape. Because of the existence of

(b)(a)

Figure 11. Rotation versus translation domination: (a) The task is
to move the C shape to the right. Rotation dominates. Performance
should improve if rotation is weighted heavily in the metric. (b) In
this case, the translation dominates and should therefore be
weighted more heavily if this fact is known in advance.

qn

q0 qrand

Figure 12. For ease of implementation, intermediate vertices
can be inserted to avoid checking for the closest points along
line segments. The tradeoff is that the number of vertices is
increased dramatically.

qn

q0

qs

qrand

obs

Figure 13. If there is an obstacle, the edge travels up to the
obstacle boundary, as far as allowed by the collision-detection
algorithm.

qn

qrand

q0

Figure 10. A new edge is added that connects from the random
sample qrand to the nearest point in S, which is the vertex qn.

MARCH 2011 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 85

•

such situations, which commonly occur in practice, a bi-
directional search is more effective and popular. The algo-
rithm grows two RRTs: 1) GI rooted at qI and 2) GG rooted
at qG. Instead of always extending the trees using random
configurations, half of the time is spent trying to extend
each tree toward the newest vertex of the other tree. The
following four iterations are repeated:
1) generate qrand and use it to extend GI, obtaining a new

leaf vertex qnew

2) force qrand :¼ qnew and use it to extend GG

3) generate a new qrand and use it to extend GG, obtaining
a new leaf vertex qnew

4) force qrand :¼ qnew and use it to extend GI.
Steps 1 and 3 are identical to the execution in Figure 8,

but for GI and GG, respectively. Steps 2 and 4 trick the
RRT by using the most recent vertex from the other tree
as a replacement for qrand. If either of these two steps ever
succeed in connecting the trees to each other, then the
problem is solved. This method is quite effective for most
practical problems, as aggressive exploration from qI and
qG is balanced with trying to connect the trees to solve
the problem.

An example that was solved in 2002 by the bidirec-
tional RRT is the famous Alpha 1.0 puzzle introduced by
Nancy Amato and Boris Yamrom. The task is to pull
apart the twisted nails, leading to an extremely narrow
corridor in Cfree through which the solution path must
travel. The solution is illustrated in Figure 15. Most prob-
lems are not this challenging, and solutions are often
found in a fraction of a second. Nevertheless, there are
limitations to the method as well as any sampling-based
method. It is not hard to construct pathological examples
that cause the algorithm to converge too slowly. In some
cases, problem-specific heuristics can then be developed
to recover performance.

The RRT-based methods fall into a larger family of
methods called incremental sampling and searching, in
which a graph is incrementally constructed inside of Cfree.
Each method has a vertex selection method, which deter-
mines where to expand next from among vertices in the
graph. After that, a local planning method constructs an
edge from the selected vertex, thereby extending the tree. In
the case of an RRT, the vertex selection method picks the
vertex closest to qrand. The local planning method attempts
to connect the vertex to qrand. As an example of an alternative
incremental sampling and searching method, the expansive
space planner (ESP) [7] selects a vertex with probability that
is inversely proportional to the number of other vertices
within a ball of predetermined size. The local planning
method then connects to a random configuration within the
ball, but only with a probability that is inversely proportional
to the number of vertices that lie within a ball centered on
the random configuration. Another example that falls into
this family is the randomized potential field planner [2],
which implements gradient descent in Cfree and uses random
walks to escape local minima.

A common nuisance with sampling-based planning
methods is that the produced paths are jagged as they
traverse Cfree. This makes the solution animation jumpy;
Making the robots to follow such awkward paths is a comi-
cally bad idea. Therefore, path smoothing is usually performed
to clean up solution paths. Fortunately, it is straightforward to
produce a cleaner path once a jagged solution is given. A sim-
ple method is to iteratively pick a pair of points at random
along the path and attempt to replace the path portion
between them with a straight line in Cfree. If this survives
the collision-detection verification step, then use the linear
segment and discard the original part portion. After several
dozen iterations, the path is usually much improved.

The discussion so far has focused only on single-query
algorithms, meaning that only one qI, qG pair will be given
so that there are no advantages of extensive precomputation.
Recall from the “Combinatorial Planning” section that plan-
ning problems can be quickly solved once a nice road map
has been computed that offers the accessibility and connec-
tivity-preserving properties. This motivates a multiple-query
approach to sampling-based planning known as a probabilis-
tic road map [8]. In this case, a bunch (e.g., 1, 000) of random

3 54

2

1

Figure 15. The bidirectional RRT solves the Alpha 1.0 puzzle in
a few minutes.

qI

qI

qG

qG

(a) (b)

Figure 14. The C-space obstacles may contain wells that trap
planners in local minima or one-way doors that resemble bug
traps. (a) Filling a well. (b) A bug trap.

86 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCH 2011

•

configurations are chosen upfront and declared to be road
map vertices. Road map edges are formed by attempting to
connect each configuration to all vertices within some speci-
fied radius (Figure 16). If a road map can be constructed that
satisfies accessibility and connectivity preservation with high
probability, then it can be used to efficiently search for solu-
tions to multiple initial-goal query pairs. One difficulty is
that the road map may have as many edges and vertices as a
high-dimensional grid [10], which provides motivation for
pruning strategies that attempt to keep the good road map
properties while reducing its size substantially. See, for exam-
ple, the visibility road map variant [15].

To conclude, we should emphasize that a tradeoff has
been made by going to sampling-based methods. Recall
from the “Combinatorial Planning” section that combinato-
rial planning leads to complete algorithms: They always find
a solution if it exists; otherwise, they report failure. Since
sampling-based methods solve problems without fully char-
acterizing Cobs, completeness is reduced to weaker forms.
The goal is to ensure that the sampling eventually covers all
of C. This can be expressed in terms of dispersion, which is
the radius of the largest empty (unsampled) ball in C. Sam-
pling-based approaches usually achieve resolution com-
pleteness, meaning that they will find a solution if one
exists, but may run forever if one does not, or probabilistic
completeness, meaning that the probability tends to one that
a solution is found if one exists (otherwise, it may still run
forever). For example, the RRT approaches described above
lead to probabilistic completeness, partly because the disper-
sion is reduced to zero with probability one. Resolution
completeness can be obtained by replacing the random
configuration generator by a deterministic point sequence
that leads to zero dispersion in C in the limit (for example,
consider a multiresolution grid that refines forever).

The best way to learn more about sampling-based motion
planning is to experiment with the implementations. You
could download and install a free library, such as the Open
Motion Planning Library from Rice University, the Motion
Strategy Library from the University of Illinois, or the
Motion Planning Kit from Stanford. If you instead want to
start from the basics, then at least downloading a collision-
detection package, such as PQP from the University of North
Carolina, is recommended.

Direct Extensions
Now that the core motion-planning ideas have been
explained for the case of rigid 2-D or 3-D robots among fixed
obstacles, several straightforward extensions can be covered
for which the planning methods are virtually the same.

The formulation given in the “Problem Formulation”
section allowed only one moving rigid body. This limited
the C-space to having no more than dimension three for
W ¼ R2 and six forW ¼ R3. If we allow multiple moving
bodies, then there is no limit on the degrees of freedom,
and hence, the dimension of C. Consider, for example,
Figure 17, in which a bunch of rectangles need to be

rearranged by translation only. Each contributes 2-D to C.
Interestingly, this problem is already NP-hard (and
PSPACE-hard) if there is no maximum limit on the num-
ber of rectangles. (If the dimension of C is bounded in
advance, then the path-planning problem is solvable in
time polynomial in the representation of the robot and
world obstacles.)

Planning a collision-free path for multiple rigid bodies is
no different conceptually to planning for a single body, once
we think in terms of C and Cfree. The configuration vector
q 2 C includes coordinates to place each body. For example,
for two translation-only rectangles, q ¼ (x1, y1, x2, y2) repre-
sents their position and C ¼ R4. The initial qI and goal qG

configurations now express the placement of every body.
Suppose there are n bodies A1, A2, . . ., An, with configura-
tion parameters q1, . . . , qn. IfAi is transformed into config-
uration qi, it occupies Ai(qi) � W in the world. Let
q ¼ (q1, . . . , qn) represent the simultaneous configuration
of all bodies. A configuration is collision free, q 2 Cfree, if and
only if Ai(qi) \ O ¼ ; for every i from 1 to n, and
Ai(qi) \ Aj(qj) ¼ ; for every i 6¼ j. In other words, for
q 2 Cfree, there must be no body–obstacle collisions and no
body–body collisions.

Once C, qI, qG, and Cfree are defined in this way,
the methods given in “Combinatorial Planning” and

obs

obs

Figure 16. The probabilistic road map method attempt to
achieve road map accessibility and connectivity preservation via
random sampling and connecting to nearby samples.

Figure 17. Consider rearranging many rectangles, with no
rotations, inside of a rectangular box in R2. Without a limit on
the number of rectangles, the problem is NP-hard.

MARCH 2011 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 87

•

“Sampling-Based Planning” sections
directly apply. The only difficulty is
that the dimension of C is large, which
limits the applicability of combinato-
rial methods and some sampling-based
methods. This has motivated the devel-
opment of various decoupled ap-
proaches, which avoid considering all
bodies at once. For example, paths may
be planned for each body individually,
and then their motions along the paths
can be set correctly so that collisions are
avoided. Such methods are not com-
plete but are practical in many settings.
Alternatively, dimensionality-reduction
techniques, such as those based on the
Johnson-Lindenstrauss Lemma, may
hold promise for adapting sampling-
based planning methods to directly ac-
count for all bodies simultaneously.

If bodies are allowed to contact each other, several other
motion-planning variants are obtained. Two will be con-
sidered here: 1) articulated bodies and 2) manipulation.
For articulated bodies, they are attached together by joints
that enable some freedom of motion between them, as shown
in Figures 18 and 19. The attachment of bodies removes some
of their collective degrees of freedom. Configuration coordi-
nates express how each body is situated with respect to bodies
to which it is connected. Expressions for transforming such
bodies are just standard robot kinematics covered in numer-
ous textbooks [5], [16]. Somewhat different from standard
kinematics, we are once again interested in the set of all possi-
ble transformations, resulting in the C-space. Once this has
been defined, a manifold C-space C is usually obtained, on
which qI, qG, and Cfree are straightforward to define. Here,
Cfree includes some configurations in which there are body–

body collisions, but only if these they are attached by a joint.
Once defined, the methods of “Combinatorial Planning” and
“Sampling-Based Planning” sections once again apply, with
the usual warning about the dimension of C.

A more serious complication is
when a collection of articulated bodies
forms a loop, as shown in Figure 20.
The result is called a closed kinematic
chain, which occurs in parallel robots
and if multiple robots contact the
same body for manipulation. In most
cases, it is difficult to explicitly charac-
terize the set of configurations that
satisfy the loop-closure constraint. This
makes it difficult to even parameterize
paths through C. Sampling-based plan-
ning approaches have nevertheless been
developed to step through this difficult
space by ensuring that loop closure is
maintained while incrementally search-
ing for a solution path.

Manipulation problems more gen-
erally require robots to determine which
bodies to grasp and how to carry them

to solve a problem. For example, the task might be to use a
manipulator arm to stack several boxes. The degrees of
freedom of boxes in addition to the robot are all included
when defining C. The task is expressed by specifying a
configuration in which the boxes are stacked. This problem
conceptually appears more challenging. Standard algo-
rithms are often adapted to solve it by forming a hybrid C-
space that includes discrete variables in addition to config-
uration variables. The discrete variables record modes of
interaction. For example, there is a transit mode, when the
manipulator is not carrying a body, and a transfer mode,
when it carries a body. Heuristics are then used to deter-
mine when modes should be switched, in addition to solv-
ing the planning problem that arises in each mode.

Another variant of the basic path-planning problem is
to allow the obstacles to move. Let T ¼ ½0, tf � be an interval
of time, in which tf is some final time. In this case, a snap-
shot of the world can be imagined at every time t 2 T . The
obstacle regionO becomesO(t). Now consider computing
a collision-free path from time t ¼ 0 to time t ¼ tf . This is

Figure 20. Two or more arms manipulating the same object
causes a closed kinematic chain.

Figure 18. The classic Puma 560 arm is a
chain of three rotatable bodies (excluding
the end effector) attached to a rigid base.
This yields a three-dimensional C-space,
which is handled by the standard planning
algorithms. (Photo courtesy of the
Technical University of Berlin.)

1

2
3

4 5

6

7

Figure 19. Seven links are attached via rotatable joints. If each
is allowed a full range of motion from 0 to 2p, then C is a seven-
dimensional torus.

88 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCH 2011

•

conceptually straightforward if we construct the configura-
tion-time space, Z ¼ C3 T . Figure 21 shows an example
of how this appears. To solve the problem, the path-prob-
lem algorithms work in the usual way with one exception:
The path must always make forward progress through
time. The combinatorial road map methods and incremen-
tal sampling and searching methods can be adapted without
much difficulty to enforce this. It becomes considerably
more challenging, however, if the robot has a maximum
speed bound. This yields a constraint on the path slope
through Z, which is more difficult to enforce. Finally, it is
even more difficult and practical, when there is uncertainty
in predicting the future motions of the obstacles. This falls
under the topic of uncertainty, which is covered in the next
tutorial part.

Conclusions
After reading this, you should hopefully have extracted the
following main points. Motion planning lives in the C-
space, which is the set of all transformations. Combinatorial
planning solves simpler problems in a clean, elegant way,
but the running time is too high for industrial-grade prob-
lems. Sampling-based planning provides practical solutions
for real-world problems but offers weaker guarantees. Per-
formance degrades for problems in which narrow doorways
in Cfree are hard to find. Several extensions to the standard
path-planning problem expand the C-space definition and
require only minor adaptations to the usual approaches.
The key issue is that the C-space dimension increases, which
generally raises computational complexity.

So we have seen powerful methods that generate a colli-
sion-free path automatically. Not bad. This is useful in many
settings, extending well beyond robotics. But what if a robot
is not able to follow the path due to differential constraints
arising from kinematics and dynamics? What if we cannot

predict precisely where the robot will go? What if the obsta-
cle locations are uncertain and possibly changing? These
concerns, with which every roboticist is familiar, motivate
the topics in the second part of this tutorial.

References
[1] V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed.

Berlin: Springer-Verlag, 1989.

[2] J. Barraquand, B. Langlois, and J. C. Latombe, “Numerical potential

field techniques for robot path planning,” IEEE Trans. Syst., Man,

Cybern., vol. 22, no. 2, pp. 224–241, 1992.

[3] J. F. Canny, The Complexity of Robot Motion Planning. Cambridge,

MA: MIT Press, 1988.

[4] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.

Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,

and Implementations. Cambridge, MA: MIT Press, 2005.

[5] J. J. Craig, Introduction to Robotics. Reading, MA: Addison-Wesley, 1989.

[6] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Com-

putational Geometry: Algorithms and Applications, 2nd ed. Berlin:

Springer-Verlag, 2000.

[7] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive

configuration spaces,” Int. J. Comput. Geometry Applicat., vol. 4, pp. 495–

512, 1999.

[8] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,

“Probabilistic roadmaps for path planning in high-dimensional configu-

ration spaces,” IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580,

June 1996.

[9] S. M. LaValle. (2006). Planning Algorithms, Cambridge, U.K., Cam-

bridge University Press [Online]. Available: http://planning.cs.uiuc.edu/

[10] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the rela-

tionship between classical grid search and probabilistic roadmaps,” Int. J.

Robot. Res., vol. 23, no. 7/8, pp. 673–692, July/Aug. 2004.

[11] M. C. Lin and D. Manocha, “Collision and proximity queries,” Hand-

book of Discrete and Computational Geometry, 2nd ed., J. E. Goodman and

J. O’Rourke, Eds. New York, Chapman and Hall, 2004, pp. 787–807.

[12] T. Lozano-P�erez, “Spatial planning: A configuration space approach,”

IEEE Trans. Comput., vol. C-32, no. 2, pp. 108–120, 1983.

[13] J. T. Schwartz and M. Sharir, “On the piano movers’ problem: III.

Coordinating the motion of several independent bodies,” Int. J. Robot.

Res., vol. 2, no. 3, pp. 97–140, 1983.

[14] K. Shoemake, “Uniform random rotations,” in Graphics Gems III,

New York: Academic, 1992, pp. 124–132.

[15] T. Sim�eon, J.-P. Laumond, and C. Nissoux, “Visibility based probabil-

istic roadmaps for motion planning,” Adv. Robot. J., vol. 14, no. 6, 2000.

[16] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling

and Control. New York: Wiley, 2005.

[17] S. Udupa, “Collision detection and avoidance in computer controlled

manipulators,” Ph.D. dissertation, Dept. Elect. Eng., California Inst. Tech-

nol. 1977.

Biography
Steven M. LaValle Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL
lavalle@uiuc.edu.

t1 t2 t3

xt

yt qG

t

free(t1) free(t2) free(t3)

Figure 21. A time-varying example with piecewise-linear
obstacle motion. Planning through the state-time space occurs.

MARCH 2011 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 89

•

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

