
IEEE Robotics & Automation Magazine18 DECEMBER 2010

R O S T O P I C S

The SMACH High-Level Executive

Jonathan Boren and Steve Cousins

Personal robotics applications often require the integra-
tion of hundreds of components. In robot operating sys-
tems (ROSs), such subsystems and primitive capabilities

are usually encapsulated in ROS nodes. Even with encapsula-
tion and well-documented messaging interfaces, writing main-
tainable code to make a large set of ROS nodes to act together
to solve a problem is difficult. Solution strategies range from
writing code in big if/else cascades and nested switch state-
ments to using more powerful inference and task-planning
systems. In this column, we introduce an approach based on
nested state machines that has proven very effective at build-
ing real-ROS applications.

Complex Appications
Over the past couple of years, we have been exploring the
trade-offs between task scripting and task planning for high-
level control in robot applications written on top of ROS.
Scripting approaches let the programmer not only say exactly
what the robot should do, but also require the programmer
to explicitly describe recovery logic for all failure modes.
Although these methods can be rapid for developing small
applications, they do not scale well. When failures arise, robots
are not like pure software systems: they cannot just reset the
state of the world and retry. As a result, autonomous robotics
applications require a large amount of additional work to
describe how to recover from these failures in addition to the
application’s nominal execution. Furthermore, our experience
has shown that maintaining, extending, and fixing such scripts
over time makes it more and more challenging to analyze or
model the application.

On the other end of the spectrum, instead of explicitly
describing which actions to execute in an imperative program-
ming language, more autonomy can be given to the robot to

plan and execute tasks. There exist model-based task planning
and inference systems based on classic artificial intelligence
(AI), constraint satisfaction, and model checking. The model,
in this case, describes constraints and relations relevant to the
set of actions at the robot’s disposal. These systems aim to shift
the burden of solving the application-specific problems from
the developer to the autonomous system.

Rapid Development Needs
Ultimately, we want autonomous robots to do useful tasks in
unconstrained human environments. Model-based task planning
and inference systems have the potential to allow the robot to
recover from unexpected failures if said failures can still be repre-
sented within the model. We have significant experience in this
space using the personal robot 2 (PR2) at Willow Garage.

One such system is teleoreactive executive (TREX), which
was originally developed at the Monterey Bay Aquarium
Research Institute for hybrid deliberative/reactive mission plan-
ning on autonomous underwater vehicles. This system has also
been used extensively as the executive for previous PR2 applica-
tions, such as the PR2 Milestone 2 benchmark, in June 2009 [2].
While the system scaled well to satisfy our computational needs,
the known development strategies and design patterns did not.

Model-based executives have the potential to prevent
undesired conflicts and produce unexpected solutions to a
problem, but leaving too much to be decided by the autono-
mous system can impede development of the application.
Models can be over- or underconstrained, leading to unde-
sired behavior, or a failure to plan entirely. Since a full task
plan can only be realized once the planner receives the model
and the sensor feedback, it is hard to design models that will
produce the desired behavior without numerous model
design iterations. Simulators can make the iteration cycle
faster, and in ROS, any executive can be run in simulation as
before being run on physical hardware. Even with simula-
tion, however, this design process is counterproductive when
we know exactly how to describe what the robot should do
in terms of a task-level flowchart. We found that we could
most efficiently construct and maintain models in TREX
with state-machine design patterns [1]. In this case, the task
planner is working primarily as a model constraint checker
and resource manager, with task planning only happening at
the highest level.

SMACH
Since it seemed like these tasks, while complex, are well-
defined and could be described explicitly, we started to
investigate the possibility of a multiexecutive solution toDigital Object Identifier 10.1109/MRA.2010.938836

task-level robot control. In this case, these well-defined tasks
could be planned out explicitly, while the less structured
ones could be handled at a higher level with a different sys-
tem. The first step in exploring this strategy was to create an
architecture for developing robust midlevel executives. Not
only should these executives be able to be controlled by
a higher level task-planning system, but they should also
be able to be built very rapidly for doing closed-loop
systems testing.

We began developing a Python application programm-
ing interface (API) based on hierarchical concurrent state
machines. We chose Python because of its shallow learning
curve and native ROS bindings. The library is called SMACH,
a contraction derived from “State MACHine” that is pro-
nounced like “smash.” At its core, SMACH is a ROS-
independent library that can be used not only to build hierarchi-
cal and concurrent state machines but also any other task-state
container that adheres to the provided interfaces. While the
SMACH core is a ROS-independent library, a considerable
amount has been written in the smach_ros package for com-
municating with ROS systems, such as topics, services, and
actionlib actions.

The core SMACH library is lightweight and, along with
logging and utility functions, provides two main interfaces:
State and Container.

SMACH States represent “states of execution,” each
with some set of potential outcomes. SMACH States imple-
ment a blocking execute() function, which runs until it
returns a given outcome.

SMACH containers are collections of one or more states,
which implement some execution policy. The simplest such
execution policy is the StateMachine. A SMACH state
machine can be visualized as a state-flow diagram, where
nodes are states of execution (the robot doing something), and
edges represent transitions from one state to another state via a
given outcome. SMACH state machines are also States,
themselves, so they can be composed hierarchically. This means

Graph View
State Outcomes

Userdata of
Selected State

State Machine
Outcomes

Active State

IEEE Robotics & Automation MagazineDECEMBER 2010 19

that SMACH state machines also have outcomes of their own.
These outcomes are treated like other transition targets (like
states) in the state machine.

Another simple execution policy is the SMACH
Concurrence. Unlike a StateMachine, which executes
one state at a time in series, the Concurrence executes
more than one state simultaneously. Concurrences are also
states as well, and their outcomes can be determined by one of
several outcome policies defined at construction.

Data Driven
SMACH is not the first architecture to allow users to define hier-
archical, concurrent state machines, as these are very old concepts
[3], and people often implement their own state machine API,
markup language, or model. State machines built with SMACH,
however, can diverge from formal state machines with some fea-
tures unique to SMACH. Each SMACH container has a locally
scoped dictionary of user data that can be accessed by each of its
child states. This allows states to access data that was written by
previously executed states. While this makes analysis more com-
plex, it also makes the system far more powerful since not only
can data be passed around, but data can also be accumulated from
various states to inform a branch later in execution. This means
that the “full” state of a SMACH tree at any given time is the
union of the active task-level states in each container and the con-
tents of dictionary of user data in each container.

Since SMACH is written in Python, any type of Python
object can be stored in a container’s user data dictionary. This
includes, for example, ROS message types. Most of the widely
used planning and execution frameworks opt to use their own
languages for describing either plans or information used to
generate plans. While these languages are usually better
designed for this role, it means that support for user-defined
types that can be processed by lower level systems requires
defining and binding data structure translation functions
where the executive interacts with these systems. SMACH’s
ability to directly manipulate these structures allows us to
coordinate not only tasks with SMACH but also their associ-
ated input arguments and result data.

ROS Interfaces
While a developer can create a custom SMACH state class that
executes arbitrary Python code, there are several parametrized
state classes that make it even easier to compose lower level
systems in ROS. Some of these include, but are not limited to:

u ServiceState: It is a state that represents the execu-
tion of a ROS service call. This state is parametrized by
the service call name, type, and an optional pair of call-
back functions for generating a request and processing
the service response.

u MonitorState: It is a state that monitors a given
ROS topic. It can take a user-defined callback function
that gets executed with each message received.

u SimpleActionState: It is a state that represents the
execution of a ROS actionlib action. This is one of
the most used task-abstraction layer in ROS. This state
can be given goal generation and result processing call-
backs similar to ServiceState, as well as other goal
and result policies.

Visualization
In addition to ROS tools for visualizing and analyzing data
flow over the network, SMACH adds a tool for analyzing
high-level systems at run-time. Task-level failures are diffi-
cult to debug, since they often happen at the system integra-
tion points, so this places a large burden on the execution
framework to provide adequate debugging and visualiza-
tion tools.

We have developed an introspection system that renders
the structure of a SMACH plan, highlights the executing
states at run-time, and lists the contents of the user data
dictionary for a given container. This interface allows a
developer to quickly identify errors in specifying connections
between different states and observe immediately what the
executive is trying to do.

Since the graph shown in the SMACH viewer maps directly
onto the structure of the running code, it is easy to catch errors
and quickly repair them.

While there is a visualization interface for SMACH,
SMACH is not visual programming. One can easily follow
how a SMACH plan will execute by looking at the task graph,
but the plans that are described with SMACH tend to grow to
be too complex to lay out by hand.

Open Source
SMACH has already been used in several projects involving
the PR2, where time was critical, and proved useful for both
iterative development and debugging. These projects included
autonomous recharging, opening doors, and three one-week
“hackathons”: playing billiards, integrated table clearing/cart
pushing, and fetching drinks from a refrigerator. More infor-
mation about and tutorials on SMACH can be found on the
ROS wiki www.ros.org/wiki/smach.

References
[1] C. McGann, E. Berger, J. Bohren, S. Chitta, B. P. Gerkey, S. Glaser, B.

Marthi, W. Meeussen, T. Pratkanis, E. Marder-Eppstein, and M. Wise,
“Model-based, hierarchical control of a mobile manipulation platform,”
in Proc. ICAPS Workshop Planning and Plan Execution for Real-World Sys-
tems, Thessaloniki, Greece, 2009.

[2] W. Meeussen, M. Wise, S. Glaser, S. Chitta, C. McGann, P. Mihelich,
E. Marder-Eppstein, M. Muja, V. Eruhimov, T. Foote, J. Hsu, R. B.
Rusu, B. Marthi, G. Bradski, K. Konolige, B. P. Gerkey, and E.
Berger, “Autonomous door opening and plugging in with a personal
robot,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2010,
pp. 729–736.

[3] N. J. Nilsson, “Hierarchical robot planning and execution system,” Stan-
ford Res. Inst., AICPub76:1973, Apr. 1973.

IEEE Robotics & Automation Magazine20 DECEMBER 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

