
IEEE Robotics & Automation Magazine88 1070-9932/10/$26.00ª2010 IEEE DECEMBER 2010

A Beginner’s Guide
to 6-D Vectors (Part 2)

From Equations to Software

BY ROY FEATHERSTONE

S
patial vectors are six-dimensional (6-D) vectors that
describe the motions of rigid bodies and the forces
acting upon them. In Part 1, we saw how spatial vec-
tors can simplify the process of expressing and ana-
lyzing the dynamics of a simple rigid-body system.

In this tutorial, we shall examine the application of spatial vec-
tors to various problems in robot kinematics and dynamics. To
demonstrate that spatial vectors are both a tool for analysis and
a tool for computation, we shall consider both the mathemati-
cal solution of a problem and the computer code to calculate
the answer.

To illustrate the power of spatial vectors, we shall con-
sider the class of robots having branched connectivity.
This class includes legged robots, humanoids and multifin-
gered grippers, as well as traditional serial robot arms;
however, it does not include robots with kinematic loops,
such as parallel robots. To cope with this degree of generality,
we shall take a model-based approach: the robot mecha-
nism is described by means of a standard set of quantities
stored in a model data structure, and the equations, algo-
rithms, and computer code are designed to use those quan-
tities in their calculations.

Following the same pattern as Part 1, this tutorial starts
with a specific example and proceeds to analyze it in detail;
the example in this instance being the computer code to
implement a model-based inverse dynamics calculation using
the recursive Newton–Euler algorithm. Subsequent sections

then examine a variety of topics in kinematics and present
the two main recursive algorithms for forward dynamics:
the composite-rigid-body algorithm and the articulated-
body algorithm.

It is assumed that the readers have already read Part 1 [6], or
equivalent material, and therefore, they are familiar with the
notation and basic concepts of spatial vector algebra.

A Computational Example
Inverse dynamics is the problem of calculating the forces
required to produce a given acceleration. It is a relatively
easy problem, and therefore, a good place to start. A model-
based inverse dynamics calculation can be expressed mathe-
matically as

s ¼ ID(model, q, _q, €q), (1)

where q, _q, €q, and s denote vectors of joint position, velocity,
acceleration, and force variables, respectively, and model
denotes a data structure containing a description of the robot.
The objective is to calculate the numeric value of ID given the
numeric values of its arguments.

Figure 1 shows the MATLAB source code for an imple-
mentation of (1) using the recursive Newton–Euler algorithm.
This is a complete implementation: you could type it in right
now (minus the line numbers) and get it to work, provided
you also typed in the (very short) definitions of the functions
jcalc, crm, and crf, which are discussed later in this tuto-
rial. The code in Figure 1 can calculate the inverse dynamics ofDigital Object Identifier 10.1109/MRA.2010.939560
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any robot mechanism in which the bodies are
connected together in the manner of a topo-
logical tree, and each joint is either revolute,
prismatic, or helical (a screw joint).

The code is clearly very short. This
degree of brevity would not be possible
using three-dimensional (3-D) vectors.
Once the basics of spatial vectors are under-
stood, code like this requires relatively little
effort to write, test, and debug compared
with the equivalent 3-D-vector code. Fur-
thermore, code like this is relatively easy for
others to read, understand, and adapt to other
purposes.

Model Data Structure
Before we study the code in detail, let us first
examine the contents of the model data
structure. This structure contains the follow-
ing fields:

u model.N: an integer specifying the
number of bodies in the mechanism

u model.parent: an array of integers,
called the parent array, describing the
connectivity of the mechanism

u model.Xtree: an array of Pl€ucker
coordinate transforms describing the relative loca-
tions of the joints within each body

u model.pitch: an array of floating point numbers
describing the pitch (and therefore, the type) of
each joint

u model.I: an array of spatial inertias giving the inertia
of each body expressed in link coordinates.

This data is sufficient to describe a general kinematic tree
in which the joints are revolute, prismatic, or helical. The
term “kinematic tree” simply means a rigid-body system in
which the connectivity is that of a topological tree. It is
derived from the older term “kinematic chain.” The small set
of joint types is not quite as limiting as it appears, because many
common joint types can be emulated by a chain of revolute
and prismatic joints connected together by massless bodies.
For example, a spherical joint can be emulated by a chain of
three revolute joints with axes passing through the rotation cen-
ter of the spherical joint. This works so long as the chain does
not enter a kinematic singularity.

At this point, you might be wondering why helical joints
have been included. The short answer is to demonstrate how
easy it is, when using spatial vectors, to go beyond the basic
repertoire of revolute and prismatic joints. A longer answer is
that helical joints are more general than revolute or prismatic
ones, so their inclusion represents a genuine increase in
generality. Also, helical joints are an example of a joint type
that requires a parameter (the pitch of the helix), so their
inclusion provides an opportunity to include joint parameters
in a robot model.

The next three subsections explain how the fields in the
model data structure are used to model a robot mechanism,

and then, we shall return to the code in Figure 1 and the algo-
rithm it implements.

Connectivity
The connectivity of a robot mechanism can be represented
by a connectivity graph, which is an undirected graph in
which the nodes represent bodies and the arcs represent
joints. A couple of examples are shown in Figure 2. If the
robot is a kinematic tree, then its connectivity graph is a
topological tree. To describe the connectivity of a kinematic
tree, we first number the bodies and joints according to a
standard scheme. For a robot having a fixed base, the num-
bering proceeds as follows:

1) The fixed base is assigned the number 0 and serves as the
root node of the tree.

Figure 1. MATLAB code for inverse dynamics calculation.
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Figure 2. Two numberings of a simple tree and their
corresponding parent arrays.
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2) The remaining bodies are numbered consecutively from
1 to N in any order such that each body has a higher
number than its parent.

3) The joints are then numbered from 1 to N such that
joint i is the joint that connects body i to its parent.

Having numbered the bodies and joints, the connectivity
can be described using a parent array, called k, which is defined
such that k(i) is the body number of the parent of body i. This
array has the following special property, which is a conse-
quence of the numbering scheme:

0 � k(i) < i for all 1 � i � N : (2)

Many algorithms rely on this property. Note that neither the
numbering nor the parent array is unique. To illustrate this,
Figure 2 shows two possible numberings of the same graph
and their corresponding parent arrays. For the tree on the left,
we have k(1) ¼ 0, k(2) ¼ 1, k(3) ¼ 2, and so on, indicating
that body 0 is the parent of body 1, body 1 is the parent of
body 2, and so on. Joint numbers have not been shown,
because they can be deduced from the body numbers: joint i
connects between bodies i and k(i).

To model a mobile robot, we first place a Cartesian coordi-
nate frame at any convenient fixed location in space. This
frame serves as a virtual fixed base. We then introduce a six-
degree-of-freedom (six-DoF) joint between the fixed base
and any one body of the mobile robot. The chosen body is
then called the floating base. Now, a six-DoF joint does not
introduce any kinematic constraints, so it does not restrict the
mobility of the mobile robot. Instead, its purpose is to supply
the extra variables needed to identify the position and orienta-
tion of the robot relative to its virtual fixed base. Having made
these two modifications, the mobile robot can be treated as a
fixed-base robot and numbered as described above. (The float-
ing base will therefore be body number 1.)

Although k alone already provides a complete description
of the connectivity, it is often helpful to supplement k with
the following sets:

u l(i): the set of children of body i,
u j(i): the set of joints on the path between body i and the

root, and

u m(i): the set of bodies in the subtree starting at body i.
For the left-hand tree in Figure 2, we have l(2) ¼ f3, 5g,
j(3) ¼ f1, 2, 3g, m(4) ¼ f4, 6g, l(5) ¼ ; (the empty set), and
so on.

Geometry
The geometrical part of a robot model is the part that specifies
the relative locations of the joints in each body. It is also the
part that defines a link coordinate system for each body so
that quantities like model.I{i} can be expressed and stored
in link-i coordinates. (Link is the technical term for a body in
a mechanical linkage, so link and body can be used inter-
changeably here.)

To describe the geometry, the first step is to introduce a
pair of coordinate frames for each joint: one fixed in each of
the two bodies connected by the joint. For joint i, which con-
nects between bodies i and k(i), we introduce a frame Fi that is
fixed in body i and a frame Fk(i), i that is fixed in body k(i) (see
Figure 3). We also introduce a special frame, F0, which is fixed
in body 0 and which serves as an absolute, world, or reference
frame (take your pick) for the whole robot. For a mobile
robot, F0 is the frame that was introduced earlier to serve as a
virtual fixed base.

The frames can be located anywhere in their respective
bodies, provided they satisfy the following rules:

1) Frames Fi and Fk(i), i must coincide when the joint variable
of joint i is zero.

2) Frames Fi and Fk(i), i must comply with the joint-specific
alignment requirements of joint i.

As an example of rule 2, if joint i is revolute or helical, then
the z-axes of Fi and Fk(i), i must lie on the joint’s rotation or screw
axis. If, instead, joint i is prismatic, then the two z-axes must be
parallel to the joint’s direction of translation. The purpose of this
rule is to ensure that the joint coordinate transform (labeled XJ(i)
in Figure 3) takes a canonical form for each joint type. For a revo-
lute joint, XJ(i) is a pure rotation about the z-axis. (More infor-
mation on this topic is provided in the next subsection.)

The above rules stipulate only the minimum necessary con-
straints on the placement of coordinate frames and do not con-
strain them completely. It is therefore possible to introduce
additional rules for the purpose of further constraining their
locations. The most well-known example is the scheme of
Denavit and Hartenberg, which has the special property that
the location of Fi relative to Fk(i) is a function of only four
parameters, one of which serves as the joint variable [1], [3], [9].

At the end of this process, there are 2N þ 1 frames in total, of
which N þ 1 have names of the form Fi, and N have names of
the form Fi, j, where j 2 l(i) (which is the same condition as
i ¼ k(j)). Every body in the system, including the fixed base,
now contains exactly one frame Fi plus a variable number of
frames Fi, j, one for each j 2 l(i). At this point, we select Fi to
define the link coordinate system for body i, i.e., link-i coordi-
nates. Thus, the spatial inertia stored in model.I{i} is expressed
in the (Pl€ucker) coordinate system defined by frame Fi.

A complete description of the robot’s geometry can now be
obtained as follows. Let XT(i) be the Pl€ucker coordinate trans-
form from link-k(i) coordinates to the coordinate system defined

body i 
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joint i
(exploded) 

Fλ(i)

Fi

Fλ(i ),i

XT(i )

XJ(i)

Figure 3. Coordinate frames and transforms associated
with joint i.
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by frame Fk(i), i, as shown in Figure 3. Now, a Pl€ucker transform
implicitly describes the relative locations of two coordinate
frames; so XT(i) serves to locate Fk(i), i relative to Fi, and a com-
plete set of transforms, XT(1), . . . , XT(N ), serves to locate every
Fi, j relative to its corresponding Fi. These transforms are stored in
the array model.Xtree, so that model.Xtree{i}¼ XT(i).

Let iXk(i) denote the Pl€ucker coordinate transform from
link-k(i) to link-i coordinates for motion vectors (the corre-
sponding transform for force vectors is iX�k(i)). This transform
locates Fi relative to Fk(i) and therefore locates body i relative
to body k(i). From Figure 3, we can see that

iXk(i) ¼ XJ(i) XT(i): (3)

Equation (3) brings together the connectivity data, k(i), the
geometry data, XT(i), and the joint data, via XJ(i), to express the
relative locations of adjacent bodies as a function of the joint posi-
tion variables. This calculation appears on line 5 of Figure 1,
where iXk(i) is calculated and stored in the variableXup{i}. Quan-
tities like iXk(i) are called link-to-link coordinate transforms.

Joint Models
A joint is a kinematic constraint between two bodies. To
identify them individually, we call one body the predecessor
and the other the successor. In a kinematic tree, the predeces-
sor of joint i is body k(i), and its successor is body i. By conven-
tion, we define the velocity across a joint to be the velocity of
the successor relative to the predecessor, and the force across a
joint to be a force transmitted from the predecessor to the suc-
cessor. Thus, if vJi and fJi are the spatial velocity and force across
joint i, then

vJi ¼ vi � vk(i), (4)

where vi is the velocity of body i, and fJi is the force transmit-
ted from body k(i) to body i through the joint.

A mathematical model of a joint consists of two quantities:
a coordinate transform, XJ, and a motion subspace matrix, S
(also known as a free-modes matrix). For joint i, XJ(i) is the
coordinate transform from Fk(i), i to Fi, as shown in Figure 3,
and Si defines the following relationships between the joint
variables and spatial vectors:

vJi ¼ Si _qi (5)

and

si ¼ ST
i fJi , (6)

where _qi and si are the subvectors of _q and s that contain the
velocity and force variables, respectively, for joint i. We can
see an instance of (5) and (6) on lines 4 and 17, respectively, in
Figure 1. Incidentally, _qi and si also satisfy

si � _qi ¼ fJi � vJi , (7)

which is known as the power-balance equation. The scalar on
the left is the mechanical power delivered to the robot

mechanism at joint i, expressed in terms of joint variables, and
the scalar on the right is the same physical quantity expressed
in terms of spatial vectors. The two are necessarily equal.

A computational model of a joint consists of a piece of code
(such as jcalc in Figure 4) that computes the numeric values of
X J and S as a function of the numeric values of the joint variables
and parameters (if any). If S varies as a function of the joint’s posi-
tion variables, then it is also necessary to compute the numeric
value of a term that depends on @S=@q (see cJ on p. 80 of [3]).

If joint i permits ni degrees of motion freedom, then Si is a
6 3 ni matrix and _qi is an ni 3 1 vector. The total number of
joint variables is then

n ¼
XN
i¼1

ni : (8)

This is the dimension of the vectors in (1). However, in this
tutorial, we have chosen to limit the repertoire of joint types
to revolute, prismatic, and helical. These are all single-DoF
joints, so we have ni ¼ 1 for every joint in the mechanism and
therefore also n ¼ N . Two more simplifications are:

1) the motion subspace matrix simplifies to a joint axis
vector si, and

2) the variables for joint i are the ith elements of their
corresponding joint-space vectors.

Item 2 refers to expressions like q(i) on line 3 of Figure 1
and qd(i) on line 4. These expressions simply extract the ith
element of q, qd, etc. In the general case, the variables for
joint i would be ni-dimensional subvectors of q, qd, etc., and
expressions such as q(i) and qd(i) would have to be
replaced with something a little more complicated.

Another simplification is that revolute and prismatic joints
can be regarded as helical joints having zero pitch and infinite
pitch, respectively; so it is possible to use the array model.
pitch both to define the type of each joint and to supply the
pitch parameter for each helical joint. This tactic can be seen
in the source code of jcalc, which is shown in Figure 4. As
you can see from this code, a revolute joint implements a pure
rotation about the (local) z-axis, a prismatic joint implements a
pure translation in the z-direction, and a helical joint imple-
ments a screwing motion about the z-axis, in which the pitch

Figure 4. MATLAB code for function jcalc.
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parameter determines the lead (per radian) of the screw. The
functions rotz and xlt are defined in Table 1.

To represent a broader range of joint types, we could
replace model.pitch with an array of joint-descriptor data
structures: each descriptor contains a joint-type code and zero
or more parameter values, the number of parameters being
determined by the type code. More information on joint
models can be found in [3], [4], and [8].

The code in Figure 1 shows a clear separation between the
code that implements the dynamics algorithm and the code that
handles joint-dependent calculations, the latter being hived off
into the function jcalc. This organizational feature is standard
practice with 6-D vectors, but it is harder to achieve using 3-D
vectors. As a result, algorithms that are expressed using 3-D vec-
tors tend to be restricted to revolute and prismatic joints, and
their descriptions typically contain many statements of the form

if joint type is revolute then
variable¼ one expression

else
variable¼ another expression.

(For example, see the original description of the recursive
Newton–Euler algorithm in [7].) Clearly, it is a nontrivial

exercise to extend such an algorithm to accommodate a third
joint type. This intertwining of algorithms with joint-specific
details is an impediment to the development of clean, extensi-
ble, general-purpose code, and it is yet another reason to
prefer 6-D vectors over 3-D vectors.

Algorithm
We now return to the code in Figure 1. As mentioned earlier,
this code implements the recursive Newton–Euler algorithm
for calculating inverse dynamics. The equations for this algo-
rithm, expressed using spatial vectors, are as follows:

vi ¼ vk(i) þ si _qi (v0 ¼ 0) (9)

ai ¼ ak(i) þ si€qi þ vi 3 si _qi (a0 ¼ �ag) (10)

fBi ¼ I iai þ vi 3
�I ivi (11)

fJi ¼ fBi þ
X
j2l(i)

fJj (12)

si ¼ sT
i fJi (13)

Equation (9) states that the velocity of body i is the sum of
the velocity of its parent and the velocity across joint i [cf. (4)
and (5)]. Equation (10) says the same for accelerations and is
simply the derivative of (9). Observe that _si ¼ vi 3 si,
because si is fixed in body i. The starting condition for (10) is
a0 ¼ �ag, where ag is the acceleration caused by gravity.
This is a trick that exploits the fact that a uniform gravita-
tional field is indistinguishable from a constant linear accel-
eration. Therefore, instead of calculating the gravitational
force acting on each body and incorporating those forces
into (11), we can simply offset every body’s spatial accelera-
tion by giving the fixed base a fictitious acceleration of �ag

(see line 9 in Figure 1).
In (11)–(13), fBi is the net force acting on body i, and fJi is

the force transmitted across joint i. As mentioned earlier, the
spatial force across a joint is defined to be a force transmitted
from its predecessor body to its successor; so fJi is a force trans-
mitted from body kðiÞ to body i. In other words, joint i is caus-
ing a force of þfJi to act on body i and a force of �fJi to act on
body k(i).

The equation of motion for body i is given by (11). As the
accelerations are already known, the purpose of this equation
is to work out the force required to produce the given acceler-
ation. Equation (12) then calculates the (spatial) joint forces
from the body forces. It works as follows: fBi is the net force
acting on body i, so it must be the sum of all the individual
forces acting on body i. Having accounted for gravity by
means of a fictitious acceleration, instead of a gravitational
force field, the only force acting on body i is those transmitted
to it via the joints. So, fBi ¼ fJi þ

P
j2l(i) (�fJj). A small rear-

rangement of this equation yields (12). Finally, (13) calculates
the joint force variable for joint i from the spatial force trans-
mitted across the joint, per (6).

Equations (9)–(13) provide a mathematical description of
the recursive Newton–Euler algorithm; they describe the
algorithm in principle but omit some calculation details.
Translating these equations into a more explicit description of

Table 1. Instant spatial vector arithmetic (based
on Table A.2 of [3]).
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the algorithm produces the pseudocode shown in Figure 5.
On comparing the pseudocode with the equations, we can see
that the following things have changed.

1) The vectors in (9)–(13) are tacitly assumed to be
expressed in a single common coordinate system; how-
ever, their counterparts in Figure 5 are expressed in link
coordinates, and the necessary link-to-link coordinate
transforms (iXk(i) and k(i)X�i ) have been incorporated
into lines 6, 7, and 13.

2) The method of calculating the link-to-link transforms
has been made explicit in lines 4 and 5.

3) The sum over l(i) in (12) has been replaced with code
that performs the same summation but using k(i) instead.

Item 3 refers to lines 8 and 12–14. Line 8 initializes every
variable fi to have the value of fBi as given by (11). However,
by the time fi is used on line 11 to calculate si, its value is equal
to fJi as given in (12). The change is effected by lines 12–14,
which add each vector fi ( ¼ fJi) back to its parent. By the time
fi is used on line 11, the contributions from all of its children
have already been added in.

On comparing the pseudocode in Figure 5 with the MAT-
LAB source code in Figure 1, it can be seen that the translation
from pseudocode to source code is entirely straightforward.
Again, look how short everything is: five equations have given
rise to 15 lines of pseudocode and 22 lines of source code. This
degree of brevity would not be possible using 3-D vectors. Of
course, if you want source code in a language such as C or
Cþþ, then the code will be somewhat longer; however, the
translation from pseudocode to source code will still be
straightforward, provided you have access to a suitable library
of spatial arithmetic functions.

Arithmetic
To perform arithmetic with spatial vectors, you need a spatial
arithmetic library. Most arithmetic operations on spatial vec-
tors are just standard matrix arithmetic. Therefore, if you are
using a programming language that already has matrix arith-
metic built in (such as MATLAB or Octave), then only a small
number of additional functions are needed. Table 1 presents a
small but sufficient set.

The functions rotx, roty, rotz, and xlt construct
Pl€ucker coordinate transforms (for motion vectors) from a
current coordinate system to one that has been rotated or
translated, as appropriate, relative to the current one. Exam-
ples of their use can be found in Figure 4. Note that the for-
mulae listed for rx, ry, and rz are coordinate rotation
matrices; they rotate the coordinate system in which the vec-
tor is represented. In many robotics textbooks (e.g., [1],
p. 372), you will find formulae for rotation matrices that
rotate the vector itself. These two types of matrix are inverses
of each other.

The functions crm and crf implement the two spatial
cross-product operators. Examples of their use can be found in
Figure 1. The symbols v 3 and v 3� appearing in these two
functions are the names of the return values. The expressions
v1:3 and v4:6 are 3-D vectors formed from the first and last
three Pl€ucker coordinates of v.

The function mcI constructs a spatial rigid-body inertia
from arguments giving the body’s mass (m), the position of its
center of mass (c), and its rotational inertia about its center of
mass (IC). You would use this function to initialize the inertia
matrices in a robot model data structure.

Finally, XtoV calculates a small-magnitude motion vector
from the Pl€ucker transform for a small change of coordinates.
If A and B denote two Cartesian frames, and also the Pl€ucker
coordinate systems defined by those frames, then we can
define XtoV as follows: if A and B are close together, and X is
the Pl€ucker coordinate transform from A to B, then XtoV (X)
approximates to the velocity vector that would move frame A
to coincide with B after one time unit. The returned value also
happens to be an invariant of X (i.e., v ¼ Xv) so it has the
same value in both A and B coordinates. An example of this
function’s use appears in the next section.

If you want to perform spatial arithmetic in a programming
language such as C or Cþþ, then you will need a more exten-
sive library. Some guidelines on how to build such a library,
and a collection of formulae for implementing highly efficient
spatial arithmetic, can be found in [3], and a less comprehen-
sive version appears in [3]. Implementations of the functions in
Table 1 can be found in [5].

Kinematics
Spatial vectors can be used both for positional kinematics and
for instantaneous kinematics. We have already encountered
the latter in (9) and (10), which present recursive formulae for
calculating body velocities and accelerations from joint veloc-
ity and acceleration variables. Body positions can be calculated
recursively using the formula

iX0 ¼ iXk(i)
k(i)X0, (k(i) 6¼ 0) (14)

which calculates the coordinate transform from reference
coordinates (frame F0) to the body coordinate frame (Fi) of
each body in the mechanism. As mentioned earlier, a coordi-
nate transform implicitly defines the relative locations of two

Figure 5. The recursive Newton–Euler algorithm.
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coordinate frames; so iX0 effectively locates Fi, and therefore
also body i, relative to F0.

Suppose we want to move a particular body, say body b, so
that its body coordinate frame, Fb, coincides with a given tar-
get frame, Fd. We can express the location of Fd by means of
the coordinate transform dX0, which is assumed to be given. If
Fb is already close to Fd, then we can use the function XtoV in
Table 1 to calculate a small displacement, Dp, as follows:

Dp ¼ XtoV(dXb) ¼ XtoVðdX0
0XbÞ: (15)

This vector approximates to the small screw displacement that
would bring Fb into coincidence with Fd, the error in the
approximation diminishing quadratically with the angular
magnitude of Dp. Alternatively, Dp can be regarded as approx-
imating the velocity that would bring Fb into coincidence
with Fd in one time unit. As Dp is an invariant of dXb, it has
the same value in both Fb and Fd coordinates.

If Fd is a reachable position for body b, then there will be a
joint position change, Dq, that causes a displacement of Dp in
body b. In general, Dq will not be unique. The exact relation-
ship between Dp and Dq may be difficult to obtain, but a first-
order approximation is given by

Dp ¼ b Jb Dq, (16)

where bJb is the Jacobian for body b expressed in b coordinates
(Jacobians are discussed in the next section). Equations (15)
and (16) form the basis for an iterative inverse-kinematics algo-
rithm as follows:

while not close enough do
calculate dXb and bJ b
Dp ¼ XtoV(dXb)
Dq ¼ b Jþb Dp
q ¼ qþ Dq

end,
where bJþb is the pseudoinverse of bJb.

Some MATLAB source code to implement this calculation is
shown in Figure 6. The variables q0 and q are the initial guess and
computed final value of q, and the variables body and Xd contain
b and dX0. Line 3 sets dpos (¼ Dp) to a dummy value that will
pass the test on line 4, and the functionsbodypos andbodyJac
calculate bX0 and 0Jb, respectively. Line 7 calculates bJ b from 0Jb,
line 8 calculates Dp, and line 9 calculates Dq using the pseudoin-
verse of bJ b. Bear in mind that this is not a serious inverse-kinemat-
ics function, as it fails to check for a variety of things that can go
wrong, such as singularities and unreachable positions.

Jacobians
In common robotics usage, a Jacobian is a matrix that maps the
joint-space velocity vector, _q, to some other kind of velocity. We
have used the term body Jacobian, and the symbol Jb, to refer to
the matrix that maps _q to the spatial velocity of body b, as in

vb ¼ Jb _q: (17)

To obtain a formula for J b, we first express vb in nonrecur-
sive form:

vb ¼
X
i2j(b)

si _qi: (18)

This equation simply states that vb is the sum of the joint veloc-
ities of all the joints on the path between body b and the fixed
base. Rewriting this equation as

vb ¼
XN
i¼1

ebisi _qi, (19)

where

ebi ¼
1 if i 2 j(b)
0 otherwise

�
(20)

yields the following expression for J b:

Jb ¼ ½ eb1s1 eb2s2 � � � ebN sN � : (21)Figure 6. MATLAB code for iterative inverse kinematics.
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Thus, the body Jacobian for body b is the 6 3 N matrix whose
ith column is either si or zero, depending on whether joint i is
or is not on the path between the fixed base and body b. More
generally, a body Jacobian is a 1 3 N block matrix in which
the ith block is the 6 3 ni matrix ebiSi, and the overall dimen-
sion of the Jacobian is 6 3 n [cf. (8)]. The code for bodyJac
in Figure 6 should now make sense: lines 2–6 calculate ebi and
lines 8–17 calculate the nonzero columns. For the special case
where b is the end effector of a serial robot, we have ebi ¼ 1 for
all i, which implies the following simplified formula for the
end-effector Jacobian:

Jee ¼ ½s1 s2 . . . sN � : (22)

If we need to be explicit about the coordinate system, then
(17) and (21) can be written as

Avb ¼ A J b _q (23)
and

AJb ¼ ½ eb1
As1 eb2

As2 . . . ebN
AsN � , (24)

where A is the name of a coordinate system. These equations
show that every column of a body Jacobian must be expressed in
the same coordinate system as the velocity vector it maps to. The
coordinate transformation rule for a body Jacobian is therefore

BJ b ¼ B XA
AJ b: (25)

Still on the subject of coordinate systems, here is a popular
trap for the unwary. You will occasionally encounter an equa-
tion of the form

x

v

� �
¼ J _q, (26)

where x and v are described as the angular and linear velocity
of the end effector (or some other body) expressed in absolute,
reference, or base coordinates (i.e., the Cartesian coordinate
system defined by frame F0). In translating this equation from
3-D to spatial vectors, it is tempting to regard the left-hand
side as being the Pl€ucker coordinates of a spatial velocity
expressed in frame F0. However, this is nearly always incor-
rect, because the 3-D vector v nearly always refers to some
particular point in the end effector, such as the tool center
point, which does not coincide with the origin of F0. The cor-
rect translation is this: the left-hand side of (26) contains the
Pl€ucker coordinates of the spatial velocity of the end effector
expressed in a coordinate system that is parallel to absolute
coordinates but has its origin at the particular point in the end
effector to which v refers.

Jacobians can also map forces. If a robot makes contact with
its environment through body b, and the environment responds
by exerting a force of fe on body b, then the effect of that force
on the robot is equivalent to a joint-space force of se given by

se ¼ JT
b fe: (27)

The robot’s control system can resist this force by adding �se

to its joint-force command. This works because fe acting on
body b has the same effect on the robot as se acting at the
joints, and the two forces þse and �se cancel. In applications
like this, it is important to be clear and unambiguous about
whether a force is being exerted by the environment on the
robot or the other way around. In this example, the environ-
ment exerts a force of fe on the robot, and the robot exerts a
force of�fe on the environment.

Acceleration
Equation (10) provides us with a recursive formula for calcu-
lating body accelerations. A nonrecursive formula can be
obtained by differentiating (18):

ab ¼
X
i2j(b)

(si€qi þ _si _qi): (28)

If we assume that _si ¼ vi 3 si, then this equation can be further
expanded to

ab ¼
X
i2j(b)

si€qi þ
X
i2j(b)

�X
j2j(i)

sj _qj

�
3 si _qi

¼
X
i2j(b)

si€qi þ
X
i2j(b)

X
j2j(i)

sj _qj 3 si _qi: (29)

It is sometimes useful to define a velocity-product accelera-
tion, avp

b , equal to the velocity terms on the right-hand side:

avp
b ¼

X
i2j(b)

X
j2j(i)

sj _qj 3 si _qi: (30)

In dynamics applications, this quantity might also include
the fictitious acceleration that simulates gravity. Velocity-
product accelerations can be calculated efficiently by the
recursive formula

avp
i ¼ avp

k(i) þ vi 3 si _qi, (avp
0 ¼ 0 or � ag) (31)

which is obtained from (10) by setting €qi ¼ 0.
Another equation for the acceleration of body b can be

obtained by differentiating (17):

ab ¼ Jb €qþ _Jb _q: (32)

At first sight, the term _Jb _q looks like it might be difficult to cal-
culate. However, a moments thought reveals that _Jb _q ¼ avp

b ; so
this equation can be written as

ab ¼ Jb €qþ avp
b : (33)

If a two-handed robot has rigidly grasped a single object
with both hands, then the kinematic acceleration constraint
on that robot is al ¼ ar , where l and r are the body numbers
of the left and right hands, respectively. Using (33), we
can express this as a constraint on the joint accelerations
as follows:
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( J l � J r )€q ¼ avp
r � avp

l : (34)

If a robot mechanism contains kinematic loops, then the loop-
closure constraints can be formulated in a similar manner to
(34). However, if one wishes to simulate such a mechanism,
then the acceleration constraints must be stabilized to prevent
accumulation of position and velocity errors [3], [8].

Dynamics
We have already examined inverse dynamics in some detail, so
let us now look at forward dynamics, which is the problem of
calculating a robot’s acceleration response to applied forces. In
analogy with (1), we can express the forward-dynamics prob-
lem mathematically as

€q ¼ FD(model, q, _q, s), (35)

where the objective is to calculate the numeric value of the
function FD from the numeric values of its arguments. There
are many ways to do this; however, we shall consider only the
two most efficient ways.

Composite Rigid-Body Algorithm
The joint-space equation of motion for a kinematic tree can
be expressed in the following canonical form:

s ¼ H _qþ C, (36)

where H is the joint-space inertia matrix, and C is a vector
containing the Coriolis, centrifugal, and gravitational terms. If
we can calculate H and C, then we can solve the forward-
dynamics problem simply by solving (36) for _q. We already
know how to calculate C, because

C ¼ ID(model, q, _q, 0) (37)

[cf. (1)], so the only remaining problem is how to calculate H .
The best algorithm for this job is called the composite-rigid-
body algorithm, which we shall now derive.

One of the defining properties of the joint-space inertia matrix
is that the kinetic energy of a robot mechanism is given by

T ¼ 1

2
_qTH _q ¼ 1

2

Xn

i¼1

Xn

j¼1

Hij _qi _qj: (38)

However, the kinetic energy is also the sum of the kinetic
energies of the individual bodies, which can be written in
spatial-vector notation as

T ¼
XN
k¼1

1

2
vT

k Ikvk: (39)

Substituting for vk using (18) gives

T ¼ 1

2

XN
k¼1

� X
i2j(k)

si _qi

�
TIk

� X
j2j(k)

sj _qj

�

¼ 1

2

XN
k¼1

X
i2jðkÞ

X
j2jðkÞ

sT
i Iksj _qi _qj : ð40Þ

Now, the expression on the right-hand side is a sum over all
i; j; k triples in which both i and j are elements of jðkÞ. This
same set of triples can also be described as the set of all i; j; k
triples in which k 2 m(i) and k 2 m(j). So we can rewrite (40)
as follows:

T ¼ 1

2

XN
i¼1

XN
j¼1

X
k2mðiÞ\mðjÞ

sT
i Iksj _qi _qj : ð41Þ

On comparing (41) with (38), if we take into account that
both equations must be true for all _q, and also that n ¼ N for
the class of robots we are considering, then it follows that

Hij ¼
X

k2m(i)\m(j)

sT
i Iksj: (42)

There are two simplifications we can make to this equation.
The first is that

m(i) \ m( j) ¼
m(i) if i 2 m(j)
m(j) if j 2 m(i)
; otherwise:

8<
: (43)

The second is that we can define a composite rigid-body
inertia, I c

i , which is the inertia of all the bodies in the subtree
m(i) treated as a single composite rigid body. This inertia is
given by

I c
i ¼

X
j2m(i)

I j,

but the best way to calculate it is via the recursive formula

I c
i ¼ I i þ

X
j2l(i)

I c
j : (44)

With these two simplifications, we can rewrite (42) as

Hij ¼
sT
i I c

isj if i 2 m( j)
sT
i I c

jsj if j 2 m(i)
0 otherwise:

8<
: (45)

Equations (44) and (45) together define the composite-rigid-
body algorithm.

Before moving on, let us review what we have just
achieved. Using only a small amount of algebra, we have
obtained a very compact expression for Hij in (42) and a
compact description of the composite-rigid-body algorithm
in (44) and (45). Along the way, we have not had to worry
about whether joint i is revolute, prismatic, or helical and
write different equations for each case; nor have we written
separate expressions for the linear and angular components
of kinetic energy; nor have we defined a point in each body,
expressed equations at that point, and transferred them from
one point to another; and nor have we written equations to
calculate the center of mass of a composite body or use the
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parallel-axes theorem to calculate a rotational inertia about
a new center of mass. In short, we have benefited consider-
ably from the use of spatial-vector notation. Readers may
wish to compare this derivation with the original 3-D-vec-
tor derivation in [10], bearing in mind that the original
applied only to unbranched chains with revolute and
prismatic joints.

Equations (44) and (45) provide us with a basic mathemati-
cal description of the algorithm. If we want to implement it on
a computer, then we must first decide what coordinate systems
to use. The best choice, for all but the largest rigid-body sys-
tems, is to use link coordinates. We can express the algorithm
in link coordinates as follows:

I c
i ¼ I i þ

X
j2l(i)

iX�j I c
j

jX i, (46)

k( j)f i ¼ k( j)X�j
jf i, (if i ¼ I c

i si) (47)

Hij ¼
jf T

i sj if i 2 m( j)
Hji if j 2 m(i)
0 otherwise:

8<
: (48)

These equations show explicitly where the coordinate
transforms are performed. Note that the quantities si, I i, and I c

i
appearing in these equations are expressed in link-i coordi-
nates, whereas the same symbols in previous equations were
tacitly assumed to be expressed in a single unidentified com-
mon coordinate system.

The symbol jf i in (47) is the spatial force, expressed in link-
j coordinates, that imparts an acceleration of si (i.e., a unit
acceleration about the axis of joint i) to a composite rigid body
comprising all of the bodies in subtree m(i). The algorithm
requires the calculation of ifi for every i and jfi for every
j 2 j(i)nfig.

The pseudocode for this algorithm is shown in Figure 7. It
employs the same tactic as was used in the recursive Newton–

Euler algorithm to convert the summation over l(i) in (46)
into code that uses only k: each variable I c

i is initialized to I i in
the first loop, and then each I c

i is added to its parent in the sec-
ond loop. By the time I c

i is used on line 9 to calculate ifi , which
is stored in the local variable f , it has already received the con-
tributions from all of its children and, therefore, has the correct
final value.

The statement H ¼ 0 on line 1 is necessary, because the
remaining code will initialize only the nonzero elements of H .
Certain elements of H will automatically be zero, simply
because of the connectivity of the robot. This phenomenon is
called branch-induced sparsity, and it arises from the third case
in (48). This phenomenon is discussed in detail in [2] and [3]
along with methods to greatly accelerate the solution of (36)
by exploiting the sparsity.

Articulated-Body Algorithm
The articulated-body algorithm is an O(N ) algorithm that
solves the forward-dynamics problem by the following
strategy: at the outset, we know neither the acceleration
of body i nor the force transmitted across joint i; however,

we do know that the relationship between them must be
linear. It must therefore be possible to express the rela-
tionship between these two vectors in an equation of
the form

fi ¼ IA
i ai þ pA

i : (49)

The two coefficients in this equation, IA
i and pA

i , are called the
articulated-body inertia and bias force, respectively, of body i ;
they describe the acceleration response of body i to an applied
spatial force, taking into account the influence of all the other
bodies in the subtree m(i). These coefficients have two special
properties that form the basis of the articulated-body algo-
rithm. The special properties are that

1) they can be calculated recursively from the tips of the
tree to the base, and

2) once they have been calculated, they allow the accelera-
tions of the bodies and joints to be calculated recursively
from the base to the tips.

The calculation of IA
i and pA

i closely resembles the two-
body example presented in Part 1 [6]. Referring to Figure 8,
we initially assume that body i has only one child, which is
labeled body j. The relevant equations for body i are then

fi � fj ¼ I iai þ pi, (50)

fj ¼ IA
j aj þ pA

j , (51)

aj ¼ ai þ cj þ sj€qj (52)

Figure 7. The composite-rigid-body algorithm.

Spatial vectors can be used
both for positional kinematics

and for instantaneous kinematics.
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and

sj ¼ sT
j fj , (53)

where

pi ¼ vi 3
�I ivi (54)

and

cj ¼ vj 3 sj _qj: (55)

Equation (50) is the equation of motion for body i, which
we have written in terms of the rigid-body inertia and bias
force, I i and pi, to make it obvious that the rigid-body and
articulated-body equations of motion have the same algebraic
form. Equation (51) is the articulated-body equation of
motion for body j, which describes the relationship between fj
and aj, taking into account the dynamics of every body and
joint in the subtree mðjÞ. We assume that IA

j and pA
j are known.

Equations (52) and (53) are the acceleration and force con-
straint equations for joint j.

The objective is to solve (50)–(53) to obtain an equation
having the same form as (49), which is an equation involving
only the two unknowns f i and ai. To obtain this result, the first
step is to solve (51)–(53) for the unknown acceleration €qj. We
can do this by substituting (51) and (52) into (53) as follows:

sj ¼ sT
j (IA

j aj þ pA
j )

¼ sT
j (IA

j (ai þ cj þ sj€qj)þ pA
j ),

which yields the following equation for €qj:

€qj ¼
sj � sT

j (IA
j (ai þ cj)þ pA

j )

sT
j IA

j sj
: (56)

At this point, we can simplify (56) a little by introducing
the quantity

uj ¼ sj � sT
j pA

j : (57)

Substituting (57) in (56) gives

€qj ¼
uj � sT

j IA
j (ai þ cj)

sT
j IA

j sj
: (58)

Having found an expression for €qj, the remainder of the
problem is solved by substituting (51), (52), and (58) back into
(50) as follows:

fi¼ I iaiþpiþ fj

¼ I iaiþ IA
j ajþpiþpA

j

¼ I iaiþ IA
j (aiþ cjþ sj€qj)þpiþpA

j

¼ I iaiþ IA
j aiþ cjþ

sj(uj� sT
j IA

j (aiþ cj))

sT
j IA

j sj

 !
þpiþpA

j : (59)

On comparing this equation with (49), we get the following
expressions for IA

i and pA
i :

IA
i ¼ I i þ Ia

j (60)

and

pA
i ¼ pi þ pa

j , (61)

where

Ia
j ¼ IA

j �
IA

j sjsT
j IA

j

sT
j IA

j sj
(62)

and

pa
j ¼ Ia

j cj þ
IA

j sjuj

sT
j IA

j sj
þ pA

j : (63)

The next step is to drop the assumption that body i has
only one child. If body i has multiple children, then it is pos-
sible to process them one at a time using the above proce-
dure. This works because spatial inertias are additive and
rigid-body and articulated-body equations have the same
algebraic form. In processing the rth child, we simply
replace I i and pi in (50) with the articulated-body inertia
and bias force that account for the first r � 1 children. The
end result is the following pair of equations, which replace
(60) and (61):

IA
i ¼ I i þ

X
j2l(i)

Ia
j (64)

and

pA
i ¼ pi þ

X
j2l(i)

pa
j : (65)

The definitions of Ia
j and pa

j remain unchanged.
The final step is to calculate the accelerations. We

already have the necessary equations, being (52) and (58),
but the calculation can be performed slightly more effi-
ciently as follows:

a0i ¼ ak(i) þ ci, (a0 ¼ �ag) (66)

€qi ¼
ui � sT

i IA
i a0i

sT
i IA

i si
, (67)

body i 

body λ(i) 

body j 

fi

fj

Figure 8. Calculating articulated-body inertias.
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ai ¼ a0i þ si€qi: (68)

The complete equations for the articulated-body algo-
rithm, expressed in link coordinates, are shown in Figure 9.
The algorithm makes a total of three passes through the
tree: an outward pass (base to tips) to calculate the velocity
terms ci and pi, an inward pass (tips to base) to calculate IA

i ,
pA

i , and related terms, and a second outward pass to calculate
the accelerations. A more detailed description of this algo-
rithm can be found in [3], and source code can be obtained
from [5].

Deriving the articulated-body algorithm is an example of
a dynamics problem that would be forbiddingly difficult
to attempt using 3-D vectors. Whereas other algorithms
described in this tutorial were invented using 3-D vectors, the
articulated-body algorithm was invented using spatial vectors.
In fact, spatial vectors themselves were invented as a side effect
of trying to invent the articulated-body algorithm. This algo-
rithm, and many others that have followed it, make an important
statement about spatial vectors: they are a tool for discovery;
they let you go beyond what is feasible to attempt using 3-D
vectors.

Conclusion
This tutorial has demonstrated the use of spatial vectors in a
variety of kinematics and dynamics calculations. A model-
based approach was adopted in which a description of the
robot mechanism is stored in a model data structure, and the

various equations and algorithms are designed to use this data
in their calculations. The class of robots considered was the
class of general kinematic trees having revolute, prismatic, and
helical joints; the idea being to show how easily spatial vectors
cope with a high degree of generality. The focus of this tutorial
has ranged from mathematics to computer code to make the
point that spatial vectors are both an analytical tool and a com-
putational tool. In both this tutorial and Part 1, the emphasis
has been on human productivity: fewer equations, simpler
problem solving, and shorter code. If your application also
needs high computational efficiency, then see Appendix A of
[3]. A mastery of spatial vectors gives you a different perspec-
tive on rigid-body kinematics and dynamics and is a worth-
while skill for a roboticist.

Keywords
Dynamics, kinematics, spatial vectors, dynamics algorithms,
software.
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Figure 9. Equations of the articulated-body algorithm.
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