
IEEE Robotics & Automation Magazine12 JUNE 2010

R O S T O P I C S

Sharing Software with ROS

Steve Cousins, Brian Gerkey, Ken Conley, and Willow Garage

Robot operating system (ROS) is designed to promote
code sharing and enable the development of open-

source robotics commons. Sharing code will help the
robotics community to progress faster by letting the researchers in
the community replicate and extend the results of other research
groups. ROS makes it easy to find the software and integrate it
into robot systems. In this issue, we’ll discuss how sharing is facili-
tated by the ros.org Web site, look at some examples of code
being developed and refined at different sites, and finally consider
the personal robot (PR2, version 2) program, which is making the
common hardware available to accelerate robotics innovation.

Willow Garage is setting an example of code sharing by
creating and releasing a set of mature and stable software stacks,
and other institutions around the world have been following
suit. ROS contains the software stacks for everything, from
building blocks such as controllers and filters to applications
like autonomous navigation.

Breaking Down the User/Developer Divide
A successful open-source project can attract a staggering num-
ber of users. Most of them will strictly use the software, a minor-
ity of them will report problems or ask questions, a smaller
minority will yet provide bug fixes or minor enhancements,
and only a tiny percentage will become developers and contrib-
ute heavily to the project. With ROS, we are aiming for a sub-
stantially different mix. While a small development team works
well for many projects, the endeavor to build a robotics com-
mons is too broad and varied in scope to be accomplished by
any single group. We need help from experts in all of the areas
that make up the interdisciplinary field of robotics, from low-
level control to high-level reasoning, and everything in
between. With the goal of enlisting those experts as contribu-
tors, we made three key design decisions in ROS.

First, we enforce symmetry in the development and run-
time environments. ROS development is governed by a pack-
age system, with no one package more privileged than another.
Code is added to ROS by simply creating a new package. Sim-
ilarly, a running ROS system is a graph comprising nodes, with
no one node more privileged than another. The way to add
functionality to a system is to launch a new node. The users
naturally become developers, because their work can be reused
by others. If you create new functionality in your work, we
can easily take advantage by adding your package(s) to our
ROS installation and launching your nodes on my system.

We build on this symmetry in our second design decision;
instead of going through an official gatekeeper, ROS code is

maintained in a decentralized federation of repositories. When
someone asks, “How can I contribute to ROS?” our answer is,
“Create a publicly accessible ROS repository.” By hosting
their code in their own repository, the user developers retain
control over their software (deciding on licenses, development
policies, etc.) and get credit for their work (by convention,
repositories are named after the contributing institution). The
overhead of maintaining a repository is minimized by the use
of community-hosting sites such as SourceForge.net, Google
Code, and GitHub. To see the benefit of the federation
model, we have to only look at the repositories hosted by the
ROS community. At the time of writing, we know of 18 pub-
lic repositories that are maintained by institutions other than
Willow Garage, and they collectively host 300 packages.

Third, we have established a convention that the granularity
of ROS software is very fine, i.e., the packages are very small.
Besides being common-sense engineering practice, fine-grained
modularity pushes overarching architecture decisions out of
packages and to higher-level system configuration. This lack of
architecture in ROS libraries makes them much easier to inte-
grate into other platforms and also makes it easy to integrate code
from other platforms (e.g., OpenRAVE, Player, OROCOS)
into ROS. The lack of enforced architecture also supports the
federated repositories. While each repository representing a par-
ticular robot software platform does have an architecture, the
individual components are architectureless and easily used else-
where. This model is embodied by a repeated mantra among
ROS developers, “We don’t wrap your main.”

Of course, decentralized development of many small packages
provides an opportunity for confusion: how do you know what
ROS software is available, where to find it, and how to use it? To
solve this problem, we created the community site http://ros.org
as a clearing house for the ROS software. The aim of the site is to
enable search across the federation of code repositories. For soft-
ware to be searchable from ros.org site, an institution just has to
register a code repository once, and from then on, ros.org crawlers
will check for updates, create an index, and integrate search results
from many sites into a single page with a common look and feel.

In addition to indexing code repositories, ros.org site hosts
documentation and tutorials for ROS packages, stacks, and
applications. The ros.org site is modeled on python.org, which
has evolved a system for sharing a massive amount of code
written in the Python language.

Robots Powered by ROS
All around the world, many groups are using ROS to power
their robots. Let’s look at some examples of software created
for the Care-O-bot 3, iRobot Create, and Aldebaran Nao.Digital Object Identifier 10.1109/MRA.2010.936956

These are all hardware platforms that can be acquired for
research, so any ROS code running on them is directly sharable.

The Care-O-bot 3 is a mobile manipulator from Fraunhofer
IPA in Germany (Figure 1). The robot is designed to have a
human facing the side with a tray and a Schunk lightweight
arm that can pick items up and set them on the tray. The
robot’s software is open source and available via ros.org and
includes some simple applications (a dashboard and teleopera-
tion application), packages for controlling the motors and
arms, and a simulator. Many of these packages make use of
the underlying ROS capabilities, including the messaging sys-
tem and transform library.

The iRobot Create is a version of the Roomba robot sold
as a platform for experimentation (Figure 2). Brown Univer-
sity has made drivers available for the Create platform, one

example being a simple Webcam driver. Of course, for simple
robots like the Create, Player (http://playerstage.sourceforge.
net) is a fine software solution (and in fact, Brown’s code is an

Figure 2. Brown University’s small universal robotics vehicle,
based on the iRobot Create, provides a versatile platform for
ROS development.

Figure 1. The Care-O-bot, first prototyped in 1998 at
Fraunhofer IPA, is designed to be a mobile personal assistant.

Figure 3. Aldebaran Robotics’ interactive Nao robot hopes to
become a staple in robotics classrooms.

IEEE Robotics & Automation MagazineJUNE 2010 13

ROS wrapper around the existing Player driver for the Cre-
ate), but the ability to run ROS to control this platform gives
developers access to all of the other capabilities in ROS, from
flexible-distributed computing to powerful data visualization.

The Brown Robotics group also released drivers for the
Aldebaran Nao platform (Figure 3), including basic move-
ment, head control, speech, and camera access. Researchers at
the Albert-Ludwigs-Universit€at in Freiburg, Germany, added
joystick teleoperation, joint state inspection, and a basic robot
model. This extension is a nice example of groups around the
world, building on each others’ work to achieve more than
they would have alone.

Finally, the PR2 Beta program is making approximately
ten PR2 robots available to selected institutions (Figure 4).
The PR2 runs software for, among other basic functions, cali-
bration, navigation, and manipulation, as well as for higher-
level applications including mapping and plugging into
standard wall outlets. All of the code developed for the PR2 at
Willow Garage will run on the distributed robots, and in
exchange for use of the PR2 robot, the recipients will make
their code available open source.

These are just a handful of examples of how ROS is making
it possible for researchers around the world to work together
to advance robotics. In “ROS Topics” in the next issue, we’ll
review the proposed work of the ten organizations selected in
the PR2 Beta Program (http://www.willowgarage.com/
pages/pr2-beta-program/cfp). This work should really accel-
erate code sharing in robotics!

Figure 4. Willow Garage’s PR2 uses ROS to open doors, serve
drinks, and fold laundry.

Sharing code will help the robotics
community to progress faster by
letting the researchers in the
community replicate and extend the
results of other research groups.

IEEE Robotics & Automation Magazine14 JUNE 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

