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Component-Based
Robotic Engineering

(Part II)

Systems and Models

BY DAVIDE BRUGALI AND AZAMAT SHAKHIMARDANOV

T
his article is the second of a two-part series intended
as an introduction to component-based software
engineering (CBSE) in robotics. In Part I, we
regarded a component as a piece of software that
implements robotic functionality. The focus was on

the design principles and implementation guidelines that ena-
ble the development of reusable and maintainable software
building blocks. In Part II, we discuss the role of software com-
ponents as architectural units of large, possibly distributed,
software-intensive robotic systems. The focus is on technolo-
gies to manage the heterogeneity of hardware, computational,
and communication resources and on design techniques to
assemble components into systems.

A component-based system is a composition of compo-
nents, and the way components interact with other compo-
nents and with the computational environment greatly affects
the flexibility of the entire system and the reusability of indi-
vidual functionality.

The article is structured as follows. The ‘‘Challenges in Build-
ing Robotic Software Component Systems’’ section discusses
the challenges that make the development of reusable compo-
nents and flexible component systems difficult in robotics. In

particular, we analyze the different sources of variability in
robotic technology and applications and the corresponding
requirements for flexibility in robotic software component-
based systems. The subsequent four sections introduce the key
concepts related to the development of reusable software com-
ponents, such as threading, synchronization, resource awareness,
distribution, and quality of service negotiation and illustrate the
architectural models that enable the independent evolution of
different variability concerns of a component-based robotic
system. They are classified into four categories related to main
concerns of component-based systems, namely computation
(‘‘Computation’’ section), configuration (‘‘Configuration’’ sec-
tion), communication (‘‘Communication’’ section ), and coor-
dination (‘‘Coordination’’ section). Finally, the ‘‘Conclusions’’
section draws the relevant conclusions.

It should be noted that this article is neither a survey of the
state of the art in CBSE nor in robotics software development.
Although there is an increasing number of research projects
facing the challenges of engineering the software development
process in robotics for which a survey of their recent achieve-
ments would be a valuable contribution to the literature, the
goal of this article is to present an overview of software design
principles that enable the development of flexible and reusable
robotic software systems. With this goal in mind, we presentDigital Object Identifier 10.1109/MRA.2010.935798
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both a classification and a possible architectural interpretation
of well-known concepts and recent advances in CBSE. Where
appropriate, we indicate the similarities between the architec-
tural models presented in this article and some of the models
that have been documented in the literature.

Challenges in Building Robotic Software
Component Systems
A number of issues make the design and development of robotic
component-based systems difficult. Robotics is an experimental
science that can be analyzed from a double perspective.

On the one hand, it is a discipline that has its roots in
mechanics, electronics, computer science, and the cognitive
sciences. In this regard, software components embed function-
ality and control laws that bring together advanced research
results built on quickly changing technologies.

On the other hand, robotics is a research field that pursues
ambitious goals, such as the study of intelligent behavior in artifi-
cial systems. This means that robots are used in ever new use cases
and application scenarios with different functional requirements.
Software components with similar functionality are integrated in
more and more complex component-based systems with increas-
ing demanding performance and reliability requirements.

The intrinsic change-centric nature of robotic applications
poses the challenge of designing software components and sys-
tems that are flexible enough to accommodate frequently
changing functional and nonfunctional requirements. The
IEEE Standard Glossary of Software Engineering Terminology
defines flexibility as the ‘‘ease with which a system or compo-
nent can be modified for use in applications or environments
other than those for which it was specifically designed.’’

The term environment refers to the complete range of ele-
ments in an installation that interact with the component-
based software system. This includes the computer and net-
work platform, the controlled robotic hardware, and the
robotic applications that integrate the reusable components.

More specifically, flexibility is concerned with the portabil-
ity of the component system on different computational envi-
ronments (e.g., from a centralized to a distributed system), the
interoperability among independently developed components
(e.g., components interfacing heterogeneous robotic devices),
the reusability of individual components in different applica-
tion contexts (e.g., a motion planner for static or dynamic
environments), and the component system reconfigurability at
run time (e.g., adaptable robot behaviors).

The key to achieving software flexibility is the possibility to
predict the class of changes that are likely to occur in the envi-
ronment over the lifespan of robotic software components and
that affect components and systems portability, reusability,
interoperability, and reconfigurability.

Functional Variability
Sensing, planning, control, reasoning, and learning are human-
like capabilities that can be artificially replicated in a computer-
based robotic system as software applications [1].

In complex robot control applications, several concurrent
activities access the hardware devices [e.g., three-dimensional

(3-D) perception for obstacle avoidance and for map building],
control complex mechanisms (e.g., visual servoing for a mobile
manipulator), or coordinate a set of subsystems (e.g., coalition
formation for a team of robot). Each robot activity has its own
timing requirements, and the interaction between subsystems
can be either synchronous or asynchronous. Typically, low-
level control loops regulating the robot motion require the
synchronous data flow model of computation, where control
software periodically requests new measurements from sensors
(e.g., encoders) and sends motion commands to the actuators.
In contrast, the asynchronous event-triggering model of com-
putation simplifies the implementation of higher-level control
loops for monitoring the robot environment.

Software implementations of common robot functionality
(e.g., motion planning, navigation, manipulation) may sub-
stantially differ for extrafunctional properties, such as perform-
ance, completeness, and resource demand. They are often tied
to specific robotic platforms, because the information about
the robot morphology, kinematics, and dynamics are typically
scattered throughout the code of the control application and
are represented using heterogeneous data structures. They also
make implicit assumption about the operational environment
or the robot task.

To enhance the reusability of software implementations of
common robot functionality, there is the need to make soft-
ware dependencies to the robotic platform, operational envi-
ronment, and application context explicit. A few research
projects have dealt with this issue, such as the CLARAty
mechanism model [2], which pursues the reusability of control
applications for different robotic mechanisms by explicitly
representing their mechanical structure. Such a model should
enable the description of the structural and behavioral proper-
ties of each mechanism part or subsystem, the relationships and
constraints among the parts, and the topology of the system.

Hardware Variability
Robotic platforms have onboard computing hardware, which
can range from microprocessors to programmable logic con-
trollers (PLCs) and general-purpose processors (e.g., laptop or
PC), often have severe constraints on computational resources,
storage, and power, and are interfaced to a multitude of highly
heterogeneous sensors and actuators, such as laser range finders,
stereocameras, global positioning systems (GPSs), servomotors,
grippers, wheeled rovers, manipulator arms, and so on.

With increasing computational power made available by
advances in microelectronic technology, computing infrastruc-
tures of robotic systems have recently evolved from single proces-
sor systems to networks of embedded systems [3], i.e., systems
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assuming that the computing resources are embedded into some
other device including hardware and mechanical parts.

Smart sensors and actuators integrating sensing, actuating,
processing, and networking elements into a single device
simplify system architecture by decreasing wiring require-
ments and improve the modularity of the computing infra-
structure by locally performing some signal-processing tasks
but at the same time increase the complexity of software appli-
cations and make the development of reusable and portable
components extremely challenging.

Several networking architectures can be used to intercon-
nect such devices, including wired and wireless networks, or a
combination of both. Supporting reliable real-time (RT) com-
munication is one of the major requirements that are usually
imposed to robot communication systems [4], where RT con-
trol data must be periodically transferred between sensors,
controllers, and actuators according to strict transfer deadlines.

Despite the semantic similarities between the operations
supported by similar devices (e.g., all ranging provide distance
measurements), the externally visible behavior of the software
that abstracts and interfaces to each device greatly depends on
the device hardware architecture [5]. There are devices that
have their analog and digital signals directly mapped to memory
registers on the central processor. For these devices, all basic
functionality (e.g., measurements filtering, image processing,
pulsewidth modulation (PWM) motor control, camera syn-
chronization, etc.) are implemented in software, which thus
requires dedicated computational and synchronization resour-
ces. On the other hand, there are devices that implement much
of their low-level functionality in their firmware and thus
reduce the load on the central processor. In both cases, the soft-
ware that abstracts a physical device should hide the details of
the actual device but provide information about its usability
(memory requirements, performance, reliability, etc.).

Application Variability
Robots are situated agents and robot situatedness refers to exist-
ing in a complex, dynamic, and unstructured environment that
strongly affects the robot behavior. Situatedness implies that the
robot is aware of its own internal state (e.g., resource availabil-
ity) as well as of its temporal and spatial interactions with the
environment. Sensing, actuating, and control of components
may be subject to hardware failures or computational overload.
The tremendous variety and open-ended nature of human
environments creates enormous challenges to the system engi-
neers ability to easily customize perception capabilities and
sensory-motor skills (robustness by design) and the robot ability
to exploit at best available resources (robustness by adaptation).

Over the past two decades, researchers have explored
several control architectures for their robotic systems. They are
typically classified as deliberative, reactive, behavior-based,
and hybrid architectures [6]. Each architectural paradigm
defines how the overall robot control system is partitioned into
a set of sequential or concurrent control activities, from low-
level control of motors and sensors to high-level capabilities
such as planning and object recognition, and how these activ-
ities are amalgamated and coordinated.

To be broadly reusable, robotic software components have
to support system integration according to different architec-
tural paradigms. This can be achieved by designing individual
components with the ability to interact not exclusively at a syn-
tactical level, where components commonly agree on a set of
data structure definitions and on the operations to manipulate
those structures, but rather at a semantic level, where compo-
nents agree on the operational semantics of their interactions.
This includes the components’ roles in given contexts of use
and the interaction protocols among components.

Separation of Concerns in Robotics
Component Systems
In current practice, the design of a robot software architecture is
mainly guided by the functional requirements of each specific
robotic control application. While implementing robot function-
ality and control activities, the main concerns addressed by system
engineers are related to system performance, robustness, and
dependability, which depend on the hardware setup, the robot’s
task and operational environment, and the robot–user interaction
modes. This approach has led so far to the development of highly
successful robotic systems but unfortunately has not enabled robot
software reusability, since most robotic applications are mono-
lithic systems developed from scratch each time.

Many researchers are now facing the challenge of defining a
new robot development process where complex systems are
assembled from a set of reusable components developed for a
family of similar applications. In the early stages of an applica-
tion development, the designer has to take into consideration
which components are available, which integration effort they
require, and whether to reuse them as they are or build new
components from scratch. According to Boehm [7], ‘‘in the
old process, system requirements drove capabilities. In the new
process, capabilities will drive system requirements . . . it is not
a requirement if you can’t afford it.’’

To maximize the reusability of common functionality
implementation, software components should be designed hav-
ing in mind the variability dimensions illustrated above and
how these determine changes in the initial requirements of
software components.

Supporting seamless evolution of a component-based
robotic system with frequently changing requirements advo-
cates for the separation of different design concerns in such a
way that component features affected by robot variability can
be changed independently one from the others. These include
the deployment of components on different and possibly net-
worked computing platforms, the data exchange coordination
and synchronization among components, the selection and
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composition of components providing specific functionality,
and the assignment of computational resources to each
component. The next four sections illustrate four software
component design concerns as defined in [8], namely, compu-
tation, configuration, communication, and coordination.

Computation
Computation is concerned with the data processing algo-
rithms required by an application [8].

Data processing algorithms are defined in terms of
u data structure (what is manipulated by the algorithm)
u operations (how data are transformed by the algorithm)
u behavior (the order in which operations are performed

on the data).
A software component is a computation unit that encapsu-

lates data structures and operations to manipulate them. To
enhance component reusability, it is convenient to separate the
specification and implementation of data transformations and
control transformations. Data transformations are operations
that elaborate data passed through input parameters, return
values, and possibly update the component internal state. A
control transformation is a specification for a finite-state
machine (FSM), which activates or deactivates data transfor-
mations and is triggered by an execution thread [9].

This separation reflects the distinction between data flow
design, where the main concerns are data availability, transfor-
mation, and streaming, and the dominant question is how the
data move through a collection of (atomic) computations from
sources to destinations, and control flow design, where the main
concerns are the order of computation of data transformations,
serial or concurrent execution, failure or completion, synchro-
nous or asynchronous processing, orchestration, and the domi-
nant question is how the locus of controls moves through the
program [10].

In this section, we focus on the computation model of soft-
ware components by defining a set of architectural rules for
encapsulating control transformations (at different levels of
granularity) to carry out a set of transformation on the data.

In the ‘‘Coordination’’ section, the rules of how control
transformations are coordinated and a framework in which the
interactions of individual components can be expressed will
be presented.

Granularity of Control Transformations
In a complex system, several control transformations are exe-
cuted concurrently and concurrency occurs at different levels
of granularity. These are usually classified in fine, medium, and
large grain as in [11]. In an architectural perspective, by gener-
alizing the client/server/service design pattern [12], we map
these levels of concurrency to three units of design, respec-
tively: the sequential component, service component, and
container component (see Figure 1).

Sequential components encapsulate data structures and
operations that implement specific processing algorithms.
Operations are short-lived actions without a predefined order
(also called a weak cohesion), which depend on client threads of
control for the execution of their functions, and their

behavioral semantics is guaranteed only in the presence of a
single thread of control. As an example of this type of compo-
nents, let’s consider a path planner component, which
implements a set of operations such as planPath(), getNext-
Configuration(), and changeViaPoint().

Service components represent independent sequential exe-
cution threads of control. They offer the protected environ-
ment to fine grain concurrency, hide local data from other
threads, maintain a symbolic state value, and broadcast events
with the incoming state name every time a state transition
occurs. Typically, service components implement the logic
and embed the dynamic specification of robot control activ-
ities, such as closing the loop between sensors and actuators for
motion control or notifying the robot navigation subsystem
when obstacles are detected.

Container components provide the environment for the
concurrent threads and encapsulate the shared resources. Con-
tainer components possess, create, and internally manage one
or more independent threads of control that govern the execu-
tion of their services. They are structured as software frame-
works composed of services that provide the run-time support
to guarantee extrafunctional properties by means of mecha-
nisms for resource management, service scheduling, and qual-
ity-of-service (QoS) negotiation [13]. Figure 1 shows the two
services for 1) managing computational resources (resource
manager) and 2) executing more than a single service concur-
rently (scheduler). The resource manager implements mecha-
nisms for admission and reservation of system resources, such
as CPU time, memory, communication devices, and robotics
devices (sensors and actuators). The (optimal) allocation of
resources to service components over time is a scheduling
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Figure 1. The architecture of a component assembly.
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problem. The scheduler has the capability of managing the
temporal constraints regarding the RT and non-RTexecution
of concurrent services.

Container components support the so-called inversion of
control: they act as clients of sequential and service components
and execute their operations when external events occur. For this
purpose, sequential and service components implement standard
interfaces, i.e., for resource management and scheduling.

Container components hide the interfaces of run-time
services provided by the underlying infrastructure middleware
from component developers and instead automatically invoke
them using developer-specified policies, thus eliminating
coupling of sequential and service components with the plat-
form-specific environment and enhancing their reusability.

Components Assembly
Following the classification of software components based on
the scope of their reuse illustrated in Part I of this tutorial,
sequential components are typical examples of vertical compo-
nents, i.e., they capture a research community know-how and
thus contribute at most to software reuse. Container compo-
nents can be classified as horizontal components, i.e., they
provide the functionality to a variety of applications and can be
customized by middleware experts. Finally, service compo-
nents are mostly application-specific components, as they rep-
resent the glue between the computational software
infrastructure and the library of robot functionality and define
the execution, interaction, and coordination of robot activities.

The architectural distinction in three different component
types enforces the separation of variability concerns described
in the ‘‘Challenges in Building Robotic Software Component
Systems’’ section and supports independent evolution of heter-
ogeneous technologies. Container components are to a great
extent middleware-specific (e.g., with respect to the support
to threading, synchronization, and communication provided
by the underlying run-time infrastructure) and functionality
independent. Sequential components should conveniently be
designed to be middleware- and application independent.
They may implement algorithms that, to some extent, are
tightly coupled to specific robotic hardware, operational envi-
ronment, and robotic task. In the ‘‘Configuration’’ section, we
will discuss how alternative implementations of the same
sequential components can be selected even at run time. Serv-
ice components are mostly functionality- and application spe-
cific (i.e., they implement tasks that use specific robotic
resources and must satisfy the specific timing requirements).

A set of sequential, service, and container components all
together form a component assembly. Sequential components

are typically deployed as binary files as they are intended to be
reused, without changing the source code, within the applica-
tions developed by third parties. Service components imple-
ment the control logic of the application and are thus
developed by adapting and extending a library of common
robot control behaviors. Container components are software
frameworks that provide hotspots where sequential and service
components can be plugged in.

Typically, container components are deployed as class libra-
ries or binary files. In the former case (white-box reuse), the
application developer is allowed to customize the container’s
features when implementing service components, but requires
the container component to be compiled with the custom
code to create a component assembly. The latter case (black-
box reuse) is advantageous when alternative implementation
of container components are available from different providers,
each one with specialized and optimized features (e.g., a
sporadic server scheduling algorithm) and for specific infra-
structure middlewares [14]. In this case, the service compo-
nents are packaged in separate binary files and the application
developer only needs to select the most appropriate container
component for his application. Container components need
to be configured to automatically load, when instantiated, the
selected sequential and service components.

The OROCOS Component Model
The Open Robot Control Software (OROCOS) project
[15] has developed a modular software framework for robot
and machine control. The framework includes three main
libraries: the RT Toolkit (RTT) provides the infrastructure
and the functionality to build component-based RT appli-
cations; the kinematics and dynamics (KDL) library is an
application-independent framework for modeling and
computation of kinematic chains; the Bayesian filtering
library (BFL) provides the software implementation of most
used Bayesian methods.

OROCOS components encapsulate a single RT thread that
executes the user-defined code. The OROCOS component
model provides the mechanisms for lock-free synchronous and
asynchronous communication between RT and non-RT
threads and interfaces for distributed communication. Com-
ponents communicate through interaction ports, which define
the type of operations a component can perform. Depending
on the type of active operation, a component can execute a
particular action from its valid state according to the ORO-
COS FSM (Figure 2).

Configuration
Configuration determines which system components should
exist and how they are interconnected [8].

The software architecture of a complex system is described
in terms of identified components, how they are connected,
and the nature of the connectors (which specify interactions
and communication patterns between the components).

Components are the principal units of computation. At an
architectural level, components are mainly described in terms
of their provided and required interfaces.

The goal of CBSE is to enable useful
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Connectors are architectural building blocks used to model
interactions among components and rules that govern those
interactions [16]. In most component models, connectors do
not correspond to compilation units but manifest themselves
in different ways such as shared variables, initialization parame-
ters, table entries, instructions to a linker, and so forth [17]. In
other component models (e.g., [18]–[20]), connectors are
first-class entities modeled and implemented as special compo-
nents, which specifically deal with interactions and dependen-
cies among components.

Architectural configurations or topologies are connected
graphs of components and connectors that describe architectural
structure [16]. The specification of a system configuration is con-
veniently kept separated from the specification of individual
component behavior. This separation of concerns facilitates the
description, comprehension, and manipulation, both by man
and machine, of the system in terms of its structure [21]. In par-
ticular, explicit description of configurations enable assessment of
extrafunctional requirements (e.g., reliability, performance, dead-
lock-free concurrence, etc.) both at design time and run time.

The goal of CBSE is to enable useful integration of inde-
pendently developed components into application-specific
configurations.

Ideally, new applications are developed by reusing existing
components only and interconnecting them by means of gen-
eral-purpose connectors. Practical experience in software
engineering has demonstrated that effective reuse of software
components can be achieved 1) if they adhere to the composi-
tion rules of a domain-specific software architecture and 2) if
their interconnections are flexible enough to accommodate
the dynamic evolution of component-based systems due to
changes in user requirements, upgrades of components, failure
or substitution of devices, etc.

These two requirements have been addressed by the soft-
ware engineering community in two research areas: product
line architectures and configuration programming. The former
area studies how to design the family of possible configurations
of a component-based system; the latter area studies how to
design systems, whose configurations evolve dynamically.

Product Line Architectures
Component integration requires a common system architec-
ture that defines not only how the components interact by
means of communication and synchronization mechanisms
but also the principles and policies that must be enforced by
the set of interacting components. These include the role
played by each component in the system, its provided and
required interfaces, the interaction protocols, and the data
structures used to represent and exchange information (also
called the information model).

A set of components embedding functionality commonly
found in a specific application domain and adhering to the
principles of a common domain-specific software architecture
form the so-called software product line [22].

The product line architecture specifies both commonalities
and differences of a family of component-based systems. It
defines the allowed variations that, when exercised, become

individual products. For each variation, one or more compo-
nent implementations are provided. Building software systems
according to the product line approach is economic and effi-
cient. Most work is about integration, customization, and
configuration instead of creation.

A system configuration is thus an arrangement of compo-
nents and associated options and settings that completely
implements a software product [23]. Options may exclude
each others (e.g., the selection of a component implementing
an indoor navigation algorithm excludes the choice of compo-
nents providing GPS-based localization services) or one option
may make the integration of a second one a necessity (e.g., a
component implementing a visual odometry algorithm de-
pends on a component that supplies images of the surrounding
environment). Hence, only a subset of all combinations is the
admissible configuration. In [24], the options are classified into
five categories: mandatory, optional, alternative, mutually
inclusive, and mutually exclusive.

Most variation points are bound at deployment time, but
there may still be variation points that are bound only at run
time. This flexibility enables the dynamic reconfiguration of
the component system according to the execution context.

Intraassembly Configuration
The simplest example of component-based system is the
component assembly. The configuration of component assem-
blies takes place at deployment time, when binaries of sequen-
tial and service components are loaded into the target
container components.

The application developer builds component assemblies
reusing off-the-shelf components (COTS) that meet at best
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Figure 2. The OROCOS component state machine model.
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functional and extrafunctional requirements of a robotic con-
trol system. In particular, he selects container components that
are adequate to the underlying computational platform, the
sequential components that provide the required functionality
(e.g., motion planning), and adapts to or develops service
components that coordinate the execution of the component
functionality. Several realizations of the each sequential or
service component specification can be deployed as part of the
same component assembly. As an example, Figure 3 depicts
the structure of the motion planner component assembly,
which encapsulates a variety of sequential components imple-
menting algorithms for collision checking with different extra-
functional properties, such as efficiency, performance,
completeness, and exception handling. These properties are
also called software qualities. The quality of a component exe-
cuting a service is called QoS.

The quality of a component depends on both the specific
implementation of the provided functionality and the avail-
ability of required resources. For example, the completeness of
probabilistic motion planning algorithms increases with the
processing time; similarly, the accuracy of collision detection
algorithms increases with the amount of available memory;
the timeliness of a decentralized control algorithm varies with
the network bandwidth.

It is thus clear that a component QoS depends on the exe-
cution environment, which is not known when the compo-
nent is developed. At deployment time, the application
developer can select the components taking into account the
worst case of resource usage, but the selection could be limited
and the worst case assumption is not applicable. A better
approach differs with the selection of the more adequate com-
ponents at run time when the actual execution context is
known. The selection can then be based on the total amount
of system resources, the set of available component implemen-
tations, and the most appropriate level of QoS for each
component according to the application requirements.

A system is QoS aware if it is able to trade quality in one
dimension with another [25], e.g., completeness and efficiency. In

an architectural perspective, QoS awareness is achieved by means
of a QoS negotiator component that implements data structures
and mechanisms for QoS management, and in particular:

u QoS profile: Every sequential and service component
implements a provided interface that allows the QoS
negotiations to access the component’s QoS profile.
This profile consists of offered and required quality
statements as well as the resource demand. In [13],
quality statements are expressed in the CQML+ lan-
guage, as Boolean expression using current values of
some system property (e.g., response time).

u QoS negotiation: The set of component assemblies in a
system negotiate the quality level of the service provided
by their constituent components, possibly involving the
cost for the service. The result of such a negotiation is a
contract, which defines the limits on the QoS charac-
teristics that each service must operate within. In [13],
the negotiation process is centralized and managed by a
specialized component called the contract manager.

u Service planning: Each component assembly selects the
best available implementation of sequential and service
components according to the QoS contract. Service
planning [25] enables optimized sharing of resources
between concurrent services.

The QoS negotiation and service planning processes are trig-
gered by changes in the QoS profile of the components in the
system. For example, motion planning in a static cluttered envi-
ronment requires algorithms that guarantee completeness even
if computational time demanding. In contrast, more efficient
algorithms are needed for motion planning when the robot
moves in dynamic environments. Consequently, the actual
configuration of component assemblies changes at run time.

Interassembly Configuration
Complex systems are built by interconnecting different com-
ponent assemblies at run time when their binaries are instanti-
ated with configuration data that represent references to their
communicating parties.

The interactions among component assemblies can change
dynamically at run time according to the availability of their
services, that can vary during their execution because of hard-
ware failures (e.g., of a robotic device), limited network band-
width, and system overloading. In this context, configuration
programming regards changing the state of a system as an
activity performed at the level of interconnecting components
rather than within the internal purely computational function-
ality of some component [26].

Several configuration and dynamic reconfiguration lan-
guages have been documented in the literature, such as Darwin/
Regis [27], POLYLITH [28], and Rapide [29], to name a few.

In Wright [30], an architectural structure is represented as a
graph of components and connectors. Both components and
connectors have interfaces, which represent points of interac-
tion. Connectors identify the logical participants and encode
the dynamism of the system configuration by explicitly identi-
fying different patterns of interactions among components. For
example, a connector may represent alternating configurations
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of a fault-tolerant client/server system, where multiple server
components offer redundant services (e.g., camera-based or
sonar-based obstacle avoidance) and are dynamically switched
in case of failures (e.g., the camera stops functioning). A special
component, called configuror, is responsible for achieving the
changes to the architectural topology according to event gener-
ated by components notifying relevant state transitions, such as
the activation or deactivation of component services.

More recently, service-oriented architectures (SOAs) [31]
have been proposed as an architectural paradigm, in which the
components are entities providing services described using a
standard description language, the Web services description
language (WSDL). Applications are built dynamically by dis-
covering services available on a computer network that provide
the required interfaces and assembling them on demand.

The ORCA Component Model
ORCA is an open-source framework for developing compo-
nent-based robotic systems [32]. It comes with a repository of
stable and tested components for a variety of robot functionality
and device drivers. In the context of ORCA, the configuration
is realized both on the component and system levels. Compo-
nents can be configured through a configuration file that speci-
fies the appropriate algorithm implementation, the active
communication ports, and service interfaces. On system-level
configuration is dictated by intercomponent connection topol-
ogy, i.e., which components are communicating with each
other. ORCA components are dynamically loadable libraries
that are deployed as services within the IceBox application server
(http://www.zeroc.com/). A single configuration file specifies
the set of components to instantiate and their individual config-
uration details. The IceGrid service enables start and stop of all
components in the system.

Communication
Communication deals with the exchange of data [8]. Compo-
nents of a robot control architecture have to communicate
with each other to cooperate. Communication can be impera-
tive, as in the case of a command issued by one component to
another, or can be reactive, as in the case of event notification.
Two communication mechanisms are deeply rooted in object-
oriented programming, namely the caller/provider mecha-
nism, which is involved when an object invokes another object
method, and the broadcaster/listener mechanism, which gives
objects the capability of broadcasting and listening to events.

One fundamental issue in communicating is that some sort of
visibility [33] must exist among the parties. The communicating
components, which are part of the same component assembly,
reside in the same address space, thus the caller holds a reference
to the provider (its memory address) to invoke its operations.

Visibility and flow of information can move in the same or
opposite direction with respect to the communicating compo-
nents, according to the mechanism used to implement the com-
munication. The caller has the visibility of the provider and
initiates the unidirectional (command) or bidirectional (query and
response) exchange of information. The listener has the visibility
of the broadcaster, which notifies events to registered listeners.

Visibility implies dependency with respect to changes, and
hence, it has consequences on the reusability of components. To
avoid the propagation of local changes to the entire architecture,
visibility relationships have to be designed, taking into account
the possible evolution of the system, and visibility loops should
be avoided between components that evolve independently.

According to the component architecture described in the
previous section, sequential components embed functionality that
are common to most robotic applications and implement stable and
harmonized interfaces defined by robotics experts. In contrast, serv-
ice components are more application specific and are implemented
by system integrators according to the functional requirements of
each specific system. Thus, it is convenient to establish a communi-
cation pattern between a service component and a sequential
component, where the former plays the role of caller and/or
listener and the latter plays the role of provider and/or broadcaster.

Component Decoupling
Service components belonging to different assembly compo-
nents are loosely coupled entities that reside on networked com-
ponents and whose relationships can change dynamically at run
time. The degree of decoupling between distributed service
components can be analyzed along the three dimensions that
have been thoroughly described in [34], namely, space decou-
pling, time decoupling, and synchronization decoupling.

Space decoupling means that interacting components do not
need to know each other, i.e., the caller does not hold a reference
to the provider, and the publisher does not know which subscrib-
ers are participating in the interaction. Space decoupling increases
the component reusability by removing explicit dependencies to
specific components and system flexibility by supporting dynamic
replacement and interconnection of individual components.

Time decoupling is enforced when the interacting compo-
nents do not need to be actively participating in the interaction
at the same time. Time decoupling enhances system reliability
by making intercomponent communication more robust to
network failures.

Synchronization decoupling guarantees that callers, providers,
publishers, and subscribers are not blocked while producing or
consuming data and events. Asynchronous communication is a
fundamental requirement of robotic control systems, where
several activities process data (e.g., sensor measurements) concur-
rently and independently.

These kinds of decoupling are realized by means of services
provided by container components that represent neutral medi-
ators between interacting components. From an architectural
perspective, such mediation services are usually represented by
communication ports (see Figure 4).

BIP is used to produce a formal

interaction model, which can be used

to run (using the BIP engine) the

functional layer composed of all the

GenoM modules.
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Communication ports rely on a middleware framework to
exchange data and events through the network. Most common
middlewares provide concrete implementations of various com-
munication ports. Nevertheless, it is convenient to explicitly
represent them at a more abstract architectural level because, in
embedded systems, heavyweight middlewares cannot be
exploited because of system-limited resources, and communica-
tion ports are more conveniently implemented using ad-hoc
communication mechanisms, as described in [35]. In this case,
the explicit representation of communication ports makes the
properties of components’ interaction more visible [36].

The following sections illustrate the two well-known dis-
tributed communication paradigms that support, to different
degrees, component decoupling along the three dimensions
described above, namely, remote method invocation (RMI)
and publish/subscribe [34].

Remote Method Invocation
The distribution paradigm adopted by some middleware
frameworks like Object Management Group (OMG) com-
mon object request broker architecture (CORBA) [37] and
Java RMI [38] consists in making remote invocations appear
the same as local interactions. This is accomplished by means
of two ancillary objects called the stub and skeleton.

The stub is a surrogate (proxy) of the provider and resides in
the caller’s address space. It offers the same set of operations as
the remote provider. The caller invokes the stub’s operations as
if it were the provider itself. The stub is in charge of marshaling
the caller’s request and transmitting it through the network.
The skeleton resides in the provider’s address space and is in
charge of receiving and unmarshaling the caller’s request and
invoking the corresponding providers operation. Similarly, the
matched pair stub/skeleton is used to transmit the result of a
provider operation to the caller through the network.

Figure 4 shows the two component assemblies (the caller on
the left-hand side and the provider at the right-hand side). The
motion controller generates and controls the execution of robot
trajectories. It delegates the definition of the corresponding
motion paths to the path generator, which is hosted in a separate
(possibly distributed) assembly. The stub port implements a pro-
vided interface that defines standard operations for common
interaction patterns, such as push(data d), pull(data d), and
request(query q, response r). These operations are invoked by

the motion controller to interact with the path generator. A cor-
responding set of operations are defined in the required interface
of the skeleton port and are implemented by the path generator.

The RMI paradigm imposes space coupling between the par-
ties and is thus conveniently used for stable point-to-point inter-
actions. This means that the motion controller interacts with a
specific instance of path generator. It also introduces time
coupling between the interacting parties because both stub and
skeleton services should be active at the same time. The synchro-
nization decoupling depends on how the provider’s operations
are implemented, namely as synchronous, asynchronous, or
deferred-synchronous service requests. Synchronous requests
block the caller until the provider has completed the execution
of the requested operation and are typically used when a response
from the provider is required immediately or within some (appli-
cation-specific) period of time, because a lack of response may
prevent the caller from continuing its execution. Asynchronous
requests return immediately after the provider has received the
parameters of the invoked operation. Deferred-synchronous
requests return a token that allows the caller to retrieve the oper-
ation return value when needed.

Publish/Subscribe
The publish/subscribe interaction paradigm provides de-
coupling of distributed components in all time, space, and
synchronization dimensions [34]. Messages, called events, are
exchanged between publishers and subscribers in an asyn-
chronous manner without the need for the interacting par-
ties to know each other and to participate to the interaction
at the same time.

An event is typically characterized by three informations.
u The type characterizes events in such a way that sub-

scribers can recognize the events they are interested in.
Typically, it corresponds to an information subject that
is identified by one or more keywords. For example,
the navigator component is interested in alarm events,
indicating that an unexpected obstacle has been de-
tected along the robot path. Every device component
processing sensory data has to be programmed to no-
tify this type of event.

u The payload data contains application-specific infor-
mation. For example, a publisher component (e.g., the
motion controller) may issue an event that indicates a
change in its internal state (e.g., motion done).

u The timestamp indicates the instant when the event
has been generated.

Optional information may indicate the priority of the
event, the issuer identifier, and the expiration time.

Full decoupling is achieved by means of communication
ports that implement, store, and forward mechanisms both in
the publisher’s and subscriber’s containers so that the commu-
nication appears asynchronous and anonymous to interacting
service components.

The publisher posts events in the local container’s communi-
cation port, which asynchronously (i.e., by means of a dedicated
thread) forwards them to the communication port of registered
subscribers. When an event is received, an event handler notifies
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Figure 4. Container services for distributed component
interactions.
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the subscribers asynchronously. In case of network failures or
unavailability of a subscriber, the publisher’s communication
port stores the event until it can be notified correctly.

For example, in Figure 4, the path generator plays the role of
a publisher and notifies the motion controller (the subscriber)
that the generation of a new path has been completed.

Subscriptions can be handled in two ways. If the publisher’s
communication port maintains the list of subscribers to its
events, it can establish a point-to-point connection with each
subscriber when an event needs to be notified. In this case,
publishers advertise the type of event they intend to notify to
inform interested subscribers, which register themselves with
the publisher. Alternatively, the publisher’s communication
port sends events through the network using hardware multi-
cast facilities like IP multicast. Every subscriber in the subnet-
work receives the event, which is filtered by the local
communication port according to the subscriber’s criteria.

The SmartSoft Component Model
SmartSoft [39] is a project that specifically addresses issues
related to communication among software components of a
robotic control system. It aims at simplifying the integration of
complex systems by defining a limited set of communication
patterns typically found in robotic control applications. A
communication pattern is an interface of a component with
strictly defined interaction semantics.

SmartSoft defines the following set of generic patterns:
u send—defines one-way communication with a client/

server relationship
u query—two-way request communication with a client/

server relationship
u push newest—1-to-n distribution (broadcast) with a pub-

lisher/subscriber relationship
u push timed—1-to-n distribution (broadcast) with a pub-

lisher/subscriber relationship
u event—asynchronous conditioned notification with a

client/server relationship
u dynamic wiring—dynamic compo-

nent wiring with a master/slave
relationship.

These are sufficient since they cover
request/response interaction as well as
asynchronous notifications and push
services. Communication patterns en-
force standardized service contracts
between loosely coupled components
(Figure 5). The interaction patterns can
be enriched with resource information
and timing constraints such that the
deployment of components can be
cross-checked against the capabilities of
the target platform.

Coordination
Coordination is concerned with the
interaction of the various system com-
ponents [8].

Service components embed the control logic of a robot
control application. They cooperate with each other locally or
through a communication network to achieve a common goal
according to the robot control architecture and compete for
the use of shared resources, such as the robot sensors and actua-
tors, the robot functionality offered by sequential components,
and the computer processing and communication resources.

Cooperation and competition are forms of interactions
among concurrent activities, implemented as sequential
threads of control encapsulated inside service components.
Concurrency means that computations in the system overlap
in time [40] and are interleaved with one another on a single
processor. Correct interleaving of concurrent activities is gov-
erned by algorithms called interaction protocols [41], such as
mutual exclusion protocols, which ensure that a nonsharable
resource is only used by one activity at a time and that an activ-
ity that wants to access the nonsharable resource will get access
to it eventually.

Interaction protocols are implemented using synchroni-
zation mechanisms such as locks, semaphores, and event
handlers. An event handler in an event-driven control envi-
ronment is the most commonly used synchronization
mechanism. It blocks the current thread until an event is
received from one of the objects it monitors. Every time a
thread calls the waitEvent(Symbol filter) method of the
event handler, it is suspended until the event named filter is
raised. When one of the events to which the event handler is
attached is raised, the threads waiting for this event are awak-
ened in turn and continue their execution.

Modeling and designing complex concurrent systems is a dif-
ficult task, which is even more exacerbated in component-
based system design, where abstraction, encapsulation, and
modularity are the main concerns. Components encapsulate
and hide to the rest of the system how computations are ordered
in sequential threads and how and when computations alter the
system state. The consequence of improper management of the
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order and containment relationships in a complex, concurrent
system is a deadlock [42].

Coordination Models and Languages
To alleviate the difficulties of designing complex concurrent
systems, coordination languages and models have been pro-
posed as valid tools to managing the interaction among con-
current components [26].

Coordination languages and models fall into one of two
major categories of coordination programming, namely, either
data-driven or control-driven coordination [26]. Data-driven
coordination models define the state of the computation of the
entire system at any moment in time in terms of the actual sys-
tem configuration and the data exchanged by system compo-
nents through a shared tuple space [43]. A tuple is an ordered
list of structured data, has an existence which is independent of
its producer, and it is equally accessible to all components until
it is explicitly withdrawn by some component. Typical exam-
ples of data-oriented applications are transactional information
systems. In contrast, control-driven coordination models
define the state of the computation of the entire system at any
moment in time in terms of the current internal state of each
component. Components observe state transitions in the sys-
tems by listening to events notified by other components.

The two categories of coordination languages also differ in
terms of programming style. Data-driven languages like LINDA
[44] generally lead to intermixing of coordination primitives
with computation code, making the coordination model and
the coordination protocol implicit. In contrast, control-driven
models enable a clear and complete separation of coordination
and computation concerns. This is usually achieved by using
different languages for expressing computation and coordina-
tion and by developing coordination components separately
and independently of the computation components they coor-
dinate. An example of coordination language is Manifold [26], a
strongly typed, block-structured, event-driven language, meant
for writing coordinator program modules.

Connectors As Coordination Components
Recently, the relations between software architectures and
coordination models have been explicitly studied [45], with the
goal of profitably and coherently exploiting both approaches to
component-based system design.

Connectors represent first-class architectural entities embody-
ing component interaction. For example, the UniCon language
[46] defines a set of predefined connector types that correspond
to common communication primitives. In the Wright language

[47], the interactions among components are fully specified by
the user, and the complex interactions can be expressed by nested
connector types.

The taxonomy of software connectors presented in [48]
identifies and analyzes the basic tasks a connector should per-
form, such as

u interface adaptation and data conversion for components
that have not been originally designed to interoperate

u control and data transfer between local and remote
components

u communication intercepting for implementing various
filters (e.g., cryptography, data compression, load mon-
itoring, etc.).

u access coordination and ordering of method calls on a
component interface.

The connector task indicated in the last item is particularly
relevant to the discussion on component coordination. The
permitted orderings of method calls on a component interface
are usually determined by a behavioral specification of the
component, which represents the contract between a compo-
nent and its client and assumes the form of a coordination
protocol. For example, a coordination protocol may specify
that two operations of a component interface must be invoked
immediately one after the completion of the other.

Several formalisms have been proposed to specify interac-
tion protocols, such as abstract states and state transitions [49],
process algebra-based specification [47], pi-calculus [50], and
algebraic constraints on the relevant interface elements [29].

Coordination connectors are in charge of enforcing com-
pliance with the protocol of a set of interfaces, mediating the
client’s access to the component. In [20], connectors com-
pletely encapsulate control and data flow between connected
components. This means that components do not request
services in other components but perform their provided serv-
ices only when invoked externally by connectors. In an archi-
tectural perspective, the interconnection of components and
connectors can be described as in Figure 6: a connector plays
the role of subscriber to the events published by two or more
connected components and of a caller for the operations
defined in their provided interface. Connectors represent the
means to achieve compositionality of individual software com-
ponents into complex component systems. In [20], connectors
are organized into hierarchies of composition, where lower-
level connectors behave as computational components and are
interconnected by higher-level connectors. In [51], a com-
pletely decentralized approach to composition is presented.

The GenoM/BIP Component Model
GenoM [52] is a component-oriented software package devel-
oped by Laboratoire d’analyse et d’architecture des syst�emes
Centre National de la Recherche Scientifique (LAAS CNRS)
robotics group. Components interface hardware devices or
encapsulate common robotics algorithms. GenoM components
(see Figure 7) are collections of control services, which manage
incoming requests and execution services that implement specific
algorithms. Every incoming request is represented with a finite-
state automaton and is implemented by a set of C functions called

Connector

Assembly
Component

Assembly
Component

Figure 6. Architectural relationships between components
and connectors.
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codels, which get appropriately called during specific state transi-
tions (i.e., start, exec, error, etc.). One of the most important
property of codels is that they are nonpreemptive as soon as they
are active. When a codel is executed in a thread all the resources
that it uses are released after a specific period of time (the length
of this period is defined in module specification file) regardless of
results of the execution. GenoM components exchange data and
events through posters that are regions of shared memory. System-
level coordination is achieved by means of the behavior interac-
tion priorities (BIPs) framework. BIP is used to produce a formal
interaction model, which can be used to run (using the BIP
engine) the functional layer composed of all the GenoM mod-
ules. BIP allows the hierarchical construction of compound com-
ponents from GenoM components by using connectors and
priorities. A connector interconnects the ports of GenoM com-
ponents and models two basic modes of communication, namely,
synchronous and broadcast. Priorities reduce nondeterminism in
component interactions.

Conclusions
In this second part of a two-part tutorial on component-based
robotic engineering, we have illustrated the design guidelines
to decompose the functionality of complex robotic control
systems into different types of components and techniques to
assemble them into large and distributed component systems.
The focus was on the architectural models that enable the
independent evolution of different variability concerns of a
component-based robotic system.
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