
R O S T O P I C S

Welcome to ROS Topics

Steve Cousins

Robot operating system (ROS) is a free and open-
source system that has grown out of a novel collabo-
ration between industry and academia. This column

is designed to introduce you and help track this important
community effort. The latest information about ROS will
always be available on the Web (http://ros.org). My goal is to
help you decide whether or not to download and try the sys-
tem. In future columns, I’ll write about the latest develop-
ments in ROS and its progress in the ROS community.

Why ROS?
ROS is an open source-software platform designed to support a
new generation of personal robots. Personal robots move around in
a human environment and interact with the same objects people
use. These robots are sometimes called service robots or mobile manip-
ulators. Think of Rosie from The Jetsons, but without the attitude.
Robots in this class today include the PR2 from Willow Garage,
the HRP2 from Kawada Industries, and a number of academic
prototypes such as the STAIR robots from Stanford University,
HERB from Intel/CMU, and El-E from Georgia Tech.

Personal robotics research builds on many other subfields of
robotics. Because these robots move around in the world, they
make use of the research results from mobile robotics for the past
20 years, including SLAM and many navigation algorithms.
Robot perception (including much of computer vision) is
required to make sense of the world around the robot. Motion
planning is required to compute safe trajectories for the arms and
end effectors. To manipulate objects, grasp analysis and planning
are required, as well as reasoning about object properties (e.g.,
keep the cup upright or don’t squeeze the egg too hard).

This class of robots poses interesting software design chal-
lenges. The breadth of expertise necessary to program a personal
robot is beyond the capacity of a single researcher, and it is there-
fore necessary to simplify the integration of different software
libraries from different institutions. Perception and planning are
computationally expensive, so supporting many processors is a
requirement. Robotics is a challenging systems integration prob-
lem and requires a rich set of tools to successfully manage the
complexity. Personal robotics software is necessarily complex, so
the software system requires modern software engineering tech-
niques such as continuous testing and integration to be success-
ful. Finally, since robots operate in the real world, the system
must support efficient communication between its components
and be able to support real-time components. ROS provides an
approach for each of these challenges.

ROS is available for commercial as well as noncommercial
use. The software is licensed under BSD or Apache 2.0 licenses,
and the system is designed to be able to include components
written under various GNU licenses as well. Every package in
ROS is clearly labeled with its licensing terms so that research-
ers and developers can immediately know which components
can be incorporated into their work.

What Is ROS?
ROS is a thin, message-based, tool-based system designed for
mobile manipulators. The system is composed of reusable libra-
ries that are designed to work independently. The libraries are
wrapped with a thin message-passing layer that enables them to
be used by and make use of other ROS nodes. Messages are
passed peer to peer and are not based on a specific programming
language; nodes can be written in Cþþ, Python, C, LISP,
Octave, or any other language for which someone has written a
ROS wrapper. ROS is based on a Unix-like philosophy of build-
ing many small tools that are designed to work together (more
on that in a bit). ROS grows out of a collaboration between
industry and academia and is a novel blend of professional soft-
ware development practices and the latest research results.

Software libraries and ROS nodes are organized into pack-
ages, stacks, and ultimately Apps. Packages can contain any-
thing: libraries, nodes, message definitions, or tools. Each
package should have enough functionality to be useful but not
so much as to make it heavyweight. Stacks collect sets of pack-
ages that together provide useful functionality. Examples of
stacks are ros_core, which contains the basic infrastructure of
ROS, and navigation, which was used to make the PR2 auton-
omously travel around an office building for 26.2 mi (a mara-
thon). The navigation stack has also been ported to other
platforms such as the HRP2 at the JSK laboratory in Tokyo.
Applications are similar to stacks but package up an executable
robot program instead of just a library of reusable functionality.

A ROS system is a computation graph consisting of a set of
nodes communicating with one another over edges. The com-
munication consists of messages that are organized by topics.
ROS contains tools for inspecting the graph and monitoring
what is being said by node or by topic. One of the basic tools
of ROS, rostopic, allows a command-line user to see what is
being said about a topic, how frequently messages are being
published, etc. That’s where this column gets its name.

In addition to rostopic, ROS contains many useful tools.
There is a set of tools for finding or creating packages, resolving
dependencies, and compiling them. There are tools for visual-
izing the running system and graphing the output of nodes inDigital Object Identifier 10.1109/MRA.2010.935808

IEEE Robotics & Automation MagazineMARCH 2010 13

the system. ROS contains a very powerful
visualizer, based on Ogre, that can display
a three-dimensional (3-D) rendering of
what the robot is perceiving in its envi-
ronment. All of the messages in the sys-
tem, including output from cameras and
other sensors and all motor-control com-
mands, can be logged and played back
later using record and playback tools
provided.

ROS is designed to help researchers
leverage one another’s work, so it has tools
to support multisite collaborative devel-
opment. The ROS-built system supports
a federated development model, where
organizations can make code available in
repositories, and other organizations can
easily incorporate components from those
repositories into their own work. The
basic ROS tools make it easy to locate,
download, compile, and integrate code from other sites in the
community.

Large distributed software projects
require discipline to avoid exponential
complexity, but software engineering
process can be at odds with flexible,
open-community development. ROS
uses two key software engineering tech-
niques to manage the complexity: testing
and releases. Automated software tests are
run every time a change is checked in,
and notifications are automatically sent
when the tests fail. When improvements
in one part of the system break another,
tests can help warn developers that their
changes may have unintended conse-
quences. Releases help ensure that the
stability of the code base by locking down
application programming interfaces (APIs)
and verifying that documentation, tutori-
als, tests, and sample code are in place.
Researchers can choose to live on the

bleeding edge with the latest code or use a recent stable release
of ROS stacks.

Getting Started with ROS
To get started using ROS, just go to http://ros.org and follow
the installation instructions and getting started the links. As of this
writing, there are around 175 tutorials documenting the released
stacks. The getting started pages will guide you through the initial
tutorials. If you begin with an Ubuntu or other supported Linux
system, you should be up and running in well under an hour.

The initial release, ROS 1.0, contains around 50 stacks and
hundreds of packages, so spending some time understanding
what’s there could help you to avoid reinventing the wheel. As
of this writing, there are 15 repositories from around the world
in the federation. These packages are not part of the formal
release but have a wide range of useful functionality. ROS has
an active mailing list called ROS users that new users should
subscribe to. The community is very supportive of new users.

ROS Community
The ROS community began with a core group of developers at
Stanford and Willow Garage. Morgan Quigley, Brian Gerkey,
Ken Conley, and Eric Berger had all worked previously on soft-
ware systems for distributed systems or robotics (or both). The
original ROS core team included Jeremy Leibs, Tully Foote,
Josh Faust, and Rob Wheeler. By now, the ROS community
includes almost 40 software developers at Willow Garage,
numerous members of the academic robotics community at
dozens of institutions, and researchers at other companies,
notably, Intel and Bosch.

Address for Correspondence: Steve Cousins, Willow Garage,
Inc., 68 Willow Road, Menlo Park, CA 94025 USA. E-mail:
cousins@willowgarage.com.

IEEE Robotics & Automation Magazine14 MARCH 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

