
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 59, NO. 7, JULY 2012 1839

Control-Relevant Models for Glucose Control Using
A Priori Patient Characteristics

Klaske van Heusden, Eyal Dassau, Member, IEEE, Howard C. Zisser, Dale E. Seborg, Member, IEEE,
and Francis J. Doyle III∗, Fellow, IEEE

Abstract—One of the difficulties in the development of a reliable
artificial pancreas for people with type 1 diabetes mellitus (T1DM)
is the lack of accurate models of an individual’s response to insulin.
Most control algorithms proposed to control the glucose level in
subjects with T1DM are model-based. Avoiding postprandial hy-
poglycemia (<60 mg/dl) while minimizing prandial hyperglycemia
(>180 mg/dl) has shown to be difficult in a closed-loop setting
due to the patient–model mismatch. In this paper, control-relevant
models are developed for T1DM, as opposed to models that mini-
mize a prediction error. The parameters of these models are chosen
conservatively to minimize the likelihood of hypoglycemia events.
To limit the conservatism due to large intersubject variability, the
models are personalized using a priori patient characteristics. The
models are implemented in a zone model predictive control algo-
rithm. The robustness of these controllers is evaluated in silico,
where hypoglycemia is completely avoided even after large meal
disturbances. The proposed control approach is simple and the
controller can be set up by a physician without the need for control
expertise.

Index Terms—Artificial pancreas, control-relevant modeling,
model predictive control (MPC), type 1 diabetes mellitus (T1DM).

I. INTRODUCTION

FOR people with type 1 diabetes mellitus (T1DM), the pan-
creatic β-cells do not secrete endogenous insulin, which

is essential for glycemic control. Treatment with exogenous in-
sulin is needed to avoid extended periods of high glucose levels
(hyperglycemia, glucose concentrations >180 mg/dl) that may
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lead to complications. Intensive treatment with either multi-
ple daily insulin injections or with an external insulin infusion
pump is a demanding task for the individuals with T1DM and
their families. It requires frequent blood glucose measurements,
insulin dose estimation, and estimation of meal sizes. An au-
tomated system (an artificial pancreas) for insulin delivery for
T1DM has been the focus of research for more than 40 years [1]–
[3], both to improve glycemic control and to ease the day-to-day
diabetes management. Overviews of more recent work are avail-
able [4], [5].

In the artificial pancreas considered here, glucose levels
are measured by a subcutaneous continuous glucose monitor
(CGM) and insulin is delivered by a continuous subcutaneous
insulin infusion (CSII) pump. The insulin dose is calculated
by the control algorithm. There is a substantial time delay be-
tween insulin delivery and the appearance of insulin in the blood
stream with the use of subcutaneous (sc) insulin delivery. This
time delay due to sc insulin administration limits the achievable
control performance.

While the artificial pancreas is expected to improve glycemic
control, closed-loop control introduces certain risks [5]. The
main risk is hypoglycemia (glucose concentrations <60 mg/dl)
after meal-induced hyperglycemia, caused by overdelivery of
insulin. The effect of overdelivery is not immediate due to the
time delay, and even if the insulin delivery is turned OFF, hy-
poglycemia may not be avoidable [5]. One of the problems in
the development of reliable closed-loop control algorithms is
the lack of accurate models for individual subjects. If an accu-
rate model of a subject’s response to insulin is available, the
controller design is straightforward. If no accurate models are
available, the patient–model mismatch can cause hypoglycemia
and will limit control performance.

It is well known that good control performance can be
achieved with approximate models, provided that the modeling
is linked to the control objective, see, for example, [6] and [7].
In this paper, simple, personalized control-relevant models are
developed for T1DM. The goal of this paper is to show that
with these control-relevant models, good control performance
can be achieved and hypoglycemia can be avoided. The main
difference between a control-relevant model and most models
that have been used for control in T1DM is that it is developed
specifically to achieve the desired control performance, rather
than optimized for the prediction of future glucose values.

Data-based models for individual subjects are often inaccu-
rate because clinical data in T1DM are not sufficiently rich to
identify accurate models [8], [9]. Autoregressive models can
be used to overcome the identifiability issues [10], [11], but
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they cannot be used for control because they do not contain
an exogenous input. Identification methods [12] and protocols
that improve the identifiability of the models have been sug-
gested [13]–[17], but the possibilities for experiment design
are limited due to strict safety requirements and constraints on
clinical protocols.

Average or “population” models, either data based or from
first principles, are of limited accuracy due to the large intersub-
ject variability. Personalized models or personalized controller
approaches have, therefore, been proposed for control [18]–
[23]. A personalized approach corresponds to standard clini-
cal practice. Current treatment for T1DM uses subject-specific
basal insulin delivery rates, insulin to carbohydrate (CHO) ra-
tios, and correction factors. However, in the aforementioned
studies, hypoglycemia could not be avoided for all subjects;
the proportional integral derivative controllers proposed in [24]
could not avoid hypoglycemia either.

The use of safety layers and constraints on the delivered
insulin has been proposed to avoid hypoglycemia after meal-
induced hyperglycemia [25]–[28]. Although a safety system will
be part of a final design of the artificial pancreas, it should not re-
place a safe controller design. A good control algorithm should
meet performance specifications and prevent hypoglycemia for
normal operating conditions. The control-relevant models pro-
posed in this paper use a priori information to maintain robust-
ness margins when there is a mismatch between the model and
the patient. The approach is personalized using a priori (i.e.,
easily available) patient characteristics to limit conservatism.

The proposed models can be used to design any controller
that is based on a linear model. In this paper, the models are
implemented in a zone model predictive control MPC algo-
rithm [29]. In silico, experiments on 100 virtual subjects show
that good control performance is achieved, while hypoglycemia
is avoided even for large meal challenges of up to 160 g of CHO.
Designing the proposed zone MPC controller for an individual
requires only the subject’s total daily insulin (TDI) and an indi-
cation from the physician about the accuracy of this value. No
time-consuming identification step is needed, and no control
expertise is needed to set up the controller.

This paper is organized as follows. In Section II, the T1DM
control problem is described and control specifications are
given. Personalized control-relevant models are developed in
Section III. The implementation of these models in a zone MPC
algorithm is described in Section IV. Results of an in silico trial
for 100 subjects are given in Section V, followed by a discussion
and conclusions.

II. CONTROL SPECIFICATIONS

In this in silico study, an artificial pancreas that uses CGM
measurements and a CSII pump is considered. The sampling
period for measurement and control is 5 min. The system is
challenged by meal disturbances that are not announced to the
controller. No feedforward prandial insulin bolus is given. The
control system is required to

1) overcome unannounced meal challenges;
2) minimize postprandial hypoglycemia.

As described in Section I, avoiding postprandial hypo-
glycemia has shown to be a difficult challenge in both
in silico and clinical trials. The occurrence of postprandial hypo-
glycemia in model-based control systems can be explained by a
patient–model mismatch. Due to a patient–model mismatch, the
designed controller can be either too conservative or too aggres-
sive. If the controller is too conservative, meal challenges will
not be overcome as quickly as expected. If the controller is too
aggressive, a meal disturbance will cause an excessive correc-
tive response, which explains the low glycemic values following
postprandial hyperglycemia. The hypoglycemia is expected to
be more severe if the postprandial hyperglycemia was more
pronounced, i.e., for larger meal sizes.

III. PERSONALIZED MODELS FOR CONTROL

Good control performance can be obtained with approximate
models, if these models are relevant for control [6], [7], espe-
cially if the experimental conditions can be manipulated without
constraints. In T1DM, experimental conditions are limited and
such identification techniques cannot be applied. However, so-
phisticated first principle models are available, for example,
from [30]. These models cannot be connected directly to indi-
viduals with T1DM, but they do provide a description of the
dynamics of the insulin–glucose system and the range of the in-
tersubject variability. In the following, this a priori information
will be used to define control-relevant models for T1DM.

This paper focuses on linear controllers that use a linear model
for control design purposes. It is assumed that any designed con-
troller provides acceptable performance and robustness margins
in closed loop with the model that it is designed for. If this model
is control relevant, this controller will also be safe when applied
to an individual with T1DM, i.e., the robustness margins will
be preserved in case of a reasonable model–patient mismatch.
The trade-off for a robust design without hypoglycemia is in the
closed-loop performance.

For robustness, an approximate model needs to be accurate at
frequencies around the closed-loop bandwidth. A priori infor-
mation from first principles models [30] will be used to define
models that underestimate the robustness margins. If a con-
troller based on this model is applied to an individual with
T1DM, the margins will be maintained and hypoglycemia can
be avoided. To limit the loss of performance due to the model–
patient mismatch, the models are individualized using a priori
patient characteristics.

In the following, nonparametric models are identified from the
UVa/Padova metabolic simulator [30]. These models are used
as an indication of the dominant dynamics and the intersubject
variability. The expected closed-loop bandwidth is estimated
and parametric models are identified to provide a model struc-
ture that captures the dynamics around this expected bandwidth.
This model structure is then used to define a fixed model that
underestimates the robustness margins. The gain of the model
is personalized using a priori patient characteristics. These per-
sonalized models will lead to a safe controller only if the hy-
pothesis that the robustness margins are underestimated is met.



VAN HEUSDEN et al.: CONTROL-RELEVANT MODELS FOR GLUCOSE CONTROL USING A Priori PATIENT CHARACTERISTICS 1841

Fig. 1. Bode diagrams of the ETFE for ten subjects of the UVa/Padova
metabolic simulator [30], from insulin (pmol/min) to glucose (mg/dl). The
maximal frequency shown is 0.005 rd/s.

Guidelines on how to choose the model are given for clinical
indications when violation of this hypothesis can be expected.

Note that even though the proposed approach is based on
linear control techniques, the developed control algorithms
are evaluated on the nonlinear UVa/Padova metabolic simu-
lator [30]. A population of ten representative subjects from the
UVa/Padova metabolic simulator [30] is used to develop the
models and design the controllers. In Section V, a different
population of 100 in silico subjects is used for validation.

A. Control Relevant Models

A frequency response function (FRF) is estimated for each
of the ten subjects from an open-loop experiment performed
in simulation. A first insulin bolus of one unit is given after
the fasting blood glucose corresponding to the subject’s basal
rate is reached. A second insulin bolus of two units is given
24 h after the first bolus. A third bolus of three units is given
after 48 h. The total simulation time is 72 h. The venous blood
glucose concentration was available every 5 min for the ten sub-
jects. This protocol cannot be performed clinically, but in silico
this informative experiment provides the required information,
without the additional noise of CGM measurements.

For each subject, an empirical transfer function estimate
(ETFE) is calculated [31]. Although the venous blood glu-
cose value does not contain stochastic noise, a window size
of 116 = N/4, where N is the total number of samples, was
used to reduce the effect of nonlinearities and truncation. The
Bode diagrams of the estimated responses are given in Fig. 1.
Note that these models are indicative of the behavior but are by
no means an exact representation of the system.

Because an insulin increase leads to a decrease of glucose
concentration, the phase of the transfer functions is 180◦ degrees
at low frequencies. The crossover frequency for these open-loop
systems is the frequency at which the phase angle curve crosses
zero degrees and is situated at approximately 2 × 10−4 rd/s.
Since insulin can only be added and cannot be removed in case
of overdelivery, the achievable bandwidth is limited. The closed-
loop bandwidth is expected to be situated between 5 × 10−5 and

Fig. 2. Deviation from the fasting blood glucose in response to series of insulin
boluses as described in the text for two subjects of the UVa/Padova simulator.
The first subject is an example of an individual with high insulin sensitivity, and
the second subject shows a slow response to insulin. (Black continuous line)
Measured response. (Dashed line) Response of identified OE model (partly
overlaps the measured response). (Dash-dotted line) Response of Mr . (Dotted
line) Response of the personalized model Mi .

4 × 10−4 rd/s, close to the crossover frequency. These values
are verified in Section IV.

Any model structure that captures the dynamics around the
expected bandwidth would be appropriate for control purposes.
In the following, parametric models are identified that not only
capture the dynamics around the bandwidth as required, but also
have a time response that resembles the response of glucose to
insulin. A parametric model is estimated for each subject using
the output-error structure [31]. The input variable to the model
is the insulin delivery by the CSII pump, and the output variable
is the blood glucose concentration (deviations from the steady
state). Note that in a control application, CGM measurements
will be used which cause an additional time delay. The estimated
time delay for the ten subjects was 2–4 samples. The time delay
of the models was, therefore, 2 samples, or 10 min. Third-order
models M were defined as

M(q−1) =
bq−3

1 + a1q−1 + a2q−2 + a3q−3 (1)

where q−1 is the backward shift operator and a1 , . . . , a3 and b
are the model parameters to be identified. The percentage of the
training data that is explained by a model is given by fit:

fit = 100(1 − ‖yp − y‖)/‖y − ȳ‖ (2)

where y is the measured output, yp is the output predicted by
the model, ‖ · ‖ is the two-norm, and ȳ is the mean value of the
measured output. The ten identified models achieve a fit between
89.5% and 98.6% on the training data. The improvement for ad-
ditional parameters is marginal. The improvement for different
time delays is also marginal. Note that no validation data are
used because noise-free venous blood glucose levels were used.
The model error is mainly due to nonlinearities. The model re-
sponse to the series of insulin boluses is compared to the actual
response for two subjects in Fig. 2. The pole locations of the ten
models are given in Table I.
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TABLE I
LOCATION OF THE POLES OF THE IDENTIFIED OUTPUT ERROR MODELS

FOR THE TEN SUBJECTS

Fig. 3. (Thin lines) Bode diagram of estimated frequency responses of ten sub-
jects of the UVa/Padova simulator, from insulin (pmol/min) to glucose (mg/dl).
(Thick line) Bode diagram of Mr (3). The gray band represents the frequency
band around the closed-loop bandwidth.

Any model structure that captures the dynamics around the
bandwidth is appropriate for control for these nonresonant sys-
tems, and the exact structure is of limited importance. Based on
the structure of models 2, 3, 4, 6, 7, and 10, a control-relevant
model Mr is defined as

Mr (q−1) =
Kq−3

(1 − 0.98q−1)(1 − 0.965q−1)2 (3)

where K = 2.005 × 10−4 , when the units for insulin are
(pmol/min) and glucose (mg/dl). The Bode diagram of this
model in Fig. 3 shows that the phase of the model is lower
than the phase angle of the estimated FRF in the frequency re-
gion around the expected closed-loop bandwidth, and the gain
is overestimated. Consequently, controllers based on this model
will tend to be robust. Note that the proposed model is a conser-
vative choice for control for the expected bandwidth, but will
not be a conservative choice if the bandwidth of the closed-loop
system is, for example, 10−3 rd/s.

B. Personalized Models

It will be shown in Section V that an MPC controller designed
using the model in (3) causes no hypoglycemia, even for large
meal sizes. The trade-off for this robustness is limited controller
performance if the patient–model mismatch is large. In the fol-
lowing, personalization of the models using a clinical estimate
of the correction factor is proposed to limit this conservatism.

Fig. 4. Guidelines on choosing Fs for individuals with T1DM.

The dynamics of the personalized models are fixed and are
based on the control relevant solution described previously. A
clinical estimate of the subject’s sensitivity to insulin is used to
adjust the gain of the model and reduce the conservatism. The
personalized models Mi based on a priori clinical information
are given by

Mi(q−1) =
FsKicq

−3

(1 − 0.98q−1)(1 − 0.965q−1)2 (4)

where Mi is the model for subject i, Fs is a safety factor, and
Ki is the individualized gain based on the correction factor. It is
calculated using the 1800 rule [32] that requires the individual
TDI

Ki = 1800/TDI. (5)

In (4), c is a constant that depends on the units that are used.
The robustness margins of a controller based on Mi will

be preserved when applied to an individual with T1DM if the
hypothesis that the margins are underestimated is met. This will
be the case if the correction factor is accurate or overestimated.
If the correction factor is likely to be underestimated, the safety
factor Fs can be adjusted to compensate for the uncertainty.
This factor directly affects the gain margin of the system. It
can be chosen by the physician and should normally take values
≥1. The guidelines shown in Fig. 4 indicate when the correction
factor is likely to be underestimated based on clinical parameters
and advise how to choose Fs accordingly.

In Fig. 2, the response of the personalized models to the series
of insulin boluses is shown for two subjects. Note that the gain
of these control-relevant models is not exact, even in simulation.
Although the UVa/Padova metabolic simulator contains an exact
correction factor, it is not equal to the estimate calculated using
the 1800 rule.

IV. IMPLEMENTATION IN ZONE MPC

In MPC, the optimal input sequence that minimizes the pre-
dicted control errors is calculated at each time step [33]. A
dynamic model is used explicitly to predict future behavior,
and the predictions are updated using the latest measurement at
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each time step (receding horizon). One of the main advantages
of MPC is its ability to deal with constraints.

In the artificial pancreas, insulin cannot be removed from the
body and the delivery of insulin is constrained to positive values.
This strongly affects the achievable performance of closed-loop
control. Delivery is also limited by the CSII pump, as well as
by possible time-varying safety constraints. Although no safety
constraints are considered in this paper, they will be part of a
final design of the artificial pancreas. MPC is, therefore, used to
deal with the input constraint and facilitate the future addition
of safety constraints. A zone MPC controller has been proposed
[29], where the control objective is to control the blood glucose
level to the normoglycemic zone. This approach mimics the
control strategy of individuals without diabetes, where no clear
and invariant glycemic setpoint is present but a euglycemic zone
exists (approximately 80–140 mg/dl). Furthermore, if the blood
glucose level approaches a steady-state value in the range, the
control action is constant, limiting the system’s sensitivity to
noise.

The estimated disturbance at time k is defined as d̂(k|k) =
y(k) − yM (k|k − 1), the error between the output y(k) mea-
sured at time k and the predicted model output yM (k|k − 1).
The predicted disturbance is modeled as an exponentially de-
caying function, d̂(k + i|k) = 0.98i d̂(k|k), where 0.98 corre-
sponds to the slowest time constant in the models Mr and Mi .
Note that this simple disturbance prediction is not based on an
identified disturbance model.

The predicted output at time k + 1 is then given by

ŷ(k + i|k) = yM (k + i|k) + d̂(k + i|k). (6)

The prediction horizon is given by np and the control horizon
by nu ; therefore, the insulin delivery u can differ from the basal
rate for the first nu samples and is set equal to the basal rate after
that. In the following, all measurements and predictions as well
as input values are deviations from the point of linearization.

The proposed models are implemented in two MPC con-
trollers: 1) a setpoint MPC that is linear if the constraint is
inactive; and 2) a zone MPC controller that is nonlinear. The
cost function for the setpoint MPC controller is given by

Jsetpoint(u) =
np∑

i=1

ŷ2(k + i|k)Q +
nu −1∑

j=0

u2(k + j|k)R (7)

where Q and R are the weights used for controller tuning and
u is the input signal. Let the upper and lower bounds of the
target zone in the zone MPC algorithm be given by yub and ylb ,
respectively. The zone MPC control objective is then defined as

Jzone(u) =
np∑

i=1

ŷ2
z (k + i|k)Q +

nu −1∑

j=0

u2(k + j|k)R (8)

where

ŷz (k + i|k)=

{
ŷ(k + i|k) − yub , if ŷ(k + i|k) > yub

0, if ylb ≤ ŷ(k + i|k) ≤ yub

ylb − ŷ(k + i|k), if ŷ(k + i|k) < ylb .
(9)

The controller tuning is fixed for all subjects and is based on
simulations of the closed-loop system of the model based on a

Fig. 5. Comparison of different controller settings. Response of the closed-
loop system of the model and the zone MPC controller to a typical meal distur-
bance of 60-g CHO. TDI = 30 was used both by the controller and the plant.
(Dash-dotted line) Q to R of 1:500. (Dashed line) Q to R of 1:50. (Continuous
line) Q to R of 1:5. The setting chosen based on these results is a Q to R of
1:50.

TDI of 30 units and the zone MPC controller. This represents a
subject that is relatively sensitive to insulin. Since the Q to R
ratio is fixed, this tuning will be more conservative for subjects
that are less sensitive to insulin. A typical disturbance result-
ing from a meal of 60 g of CHO in the UVa/Padova metabolic
simulator [30] is added to the output signal. The achieved dis-
turbance rejection is used as the measure of performance for
the controller. ylb = 80 mg/dl, yub = 140 mg/dl, np = 100, and
nu = 5. The response is shown in Fig. 5 for three different Q
to R ratios. Based on these results, a Q to R ratio of 1:50 is
chosen, both to avoid having the controller shut down the in-
sulin delivery after larger meals, and to limit the sensitivity of
the system to measurement noise.

The closed-loop bandwidth of the model controlled by a set-
point MPC controller is estimated to verify whether the expected
bandwidth used in the model design is achieved. The sensitivity
function of the controlled plant is estimated using a multisine
disturbance signal. The bandwidth, defined as the frequency
where the sensitivity function crosses −3 dB [34], is situated
between 6 × 10−5 and 10−4 for Q to R ratios of 1:500 and 1:5,
respectively.

V. RESULTS

The performance of the controllers presented in Section IV
is tested in simulation using 100 in silico subjects from the
FDA accepted UVa/Padova metabolic simulator [30]. Note that
this testing population is different from the population of ten
subjects used in Section III.

The nonlinear UVa/Padova metabolic simulator is accepted
by the FDA as a substitute for certain animal trials. The follow-
ing characteristics of this simulator should be taken into consid-
eration while examining these results. The simulator contains

1) 100 subject models with a large intersubject variability;
2) subject-dependent values for the TDI;
3) a subject-dependent correction factor. This correction fac-

tor is not equivalent to its estimate Ki based on the 1800
rule;
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4) time-invariant subject models, i.e., it does not include di-
urnal insulin sensitivity variation;

5) an optimal bolus treatment, assuming the exact meal size
is known. This treatment is defined per subject model and
combines a basal rate with optimal boluses to compensate
for meals, for this specific basal rate. If either of these
parameters are changed, the programmed treatment is no
longer optimal.

The performance is compared to a previously published zone
MPC algorithm [35]. This algorithm is similar to the algorithm
presented in [29], but an average population model is used rather
than identified individual models. For comparison, results for
the optimal bolus treatment as implemented in the UVa/Padova
metabolic simulator are also given. Note that noise corrupted
CGM measurements are used for closed-loop control in all the
presented results.

The performance of the controllers is evaluated using two
protocols.

Protocol #1 The simulation is started at midnight and the con-
troller is turned ON after 2 h. A single meal of either 75-,
120-, or 160-g CHO is given after 7 h. The total simulation
time is 24 h.

Protocol #2 The simulation is started at midnight and the con-
troller is turned ON after 2 h. A 50-g meal is given at 7 h, an
80-g meal at 14 h, and a 60-g meal at 20 h. The next day, 50
g of CHO is given at 7 h, 80 g at 14 h and 60 g at 20 h. The
total simulation time is 55 h.

Although protocol #1 is unlikely to happen in reality, it is
used to evaluate the safety of the different approaches. In this
protocol, any hypoglycemia caused by overdelivery of insulin
will be visible, since no second meal is given that can save
the subject. Protocol #2 includes two days and two overnight
periods.

First, the proposed control strategy is verified using setpoint
MPC controllers, where the setpoint is 110 mg/dl and the con-
troller tuning is as described in Section IV. If the meal distur-
bance is small and the constraints are not active, this controller is
linear. If the disturbances are small, the system is approximately
linear and the linear control theory that is used in Section III
can be assumed valid. The TDI defined in the simulator for the
100 subjects is used to define a personalized model. The accu-
racy of the estimate of the correction factor is not verified for
the different subjects and the default safety factor Fs = 1.25 is
used for each subject. As expected, no hypoglycemia occurs for
any subject, not even for heavy meals with 160-g CHO, both for
Mr and for the personalized models Mi . The average responses
in Fig. 6 show that, as expected, the solution based on Mr is
conservative and the performance of the personalized approach
using Mi is superior.

Second, the zone MPC algorithm is evaluated with the two
protocols with the following zone settings of ylb = 80 mg/dl
and yub = 140 mg/dl and the controller tuning is as described
in Section IV. The zone MPC algorithm is more aggressive than
the setpoint algorithm for this controller tuning. For the 100
in silico subjects in the simulator, hypoglycemia occurs for one
subject for larger meals if the default safety factor Fs = 1.25 is

Fig. 6. Average blood glucose responses and average insulin delivery for 100
in silico subjects to a 75-g meal, unannounced to the setpoint controller. (Thick
continuous line) Setpoint MPC controller based on personalized models Mi (4).
(Thick dash-dotted line) Setpoint MPC controller based on Mr (3). The thin
lines indicate the envelope of the minimum and maximum responses at each
time step for the 100 subjects.

Fig. 7. Average blood glucose responses and average insulin delivery for 100
in silico subjects to a 75-g meal, unannounced to the controller. (Continuous
line) Zone MPC controller based on personalized models Mi (4). (Dash-dotted
line) Zone MPC controller based on Mr (3). (Dashed line) Zone MPC controller
using average model as presented in [35]. The thin lines indicate the envelope
of the minimum and maximum responses at each time step for the 100 subjects.

used. The safety factor for this outlier in the simulator is set to
Fs = 3. For the other 99 subjects, the default value Fs = 1.25
is used (note that the correction factor is not verified for these
subjects, the estimate can be inaccurate).

In Fig. 7, average time responses are given for protocol #1
with a 75-g meal. The differences in the insulin dosage after
2 h are due to noise in the CGM measurements. The initial
blood glucose level is at the upper bound of the zone; there-
fore the noise has a large effect on the insulin delivery when
the controller is turned ON. No hypoglycemia occurs for any
of the 100 in silico subjects for both models proposed in this
paper, Mi and Mr . The approach in [35] leads to hypoglycemia
for two subjects. The use of personalized models reduces the
conservatism with respect to the use of Mr , as was the case for
the setpoint controller. The proposed approach also outperforms
the controller in [35], based on an average model.
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TABLE II
AVERAGE RESULTS FOR 100 in silico SUBJECTS OF THE UVA/PADOVA SIMULATOR FOR PROTOCOL #1, FOR DIFFERENT MEAL SIZES

TABLE III
SENSITIVITY TO Fs : AVERAGE RESULTS FOR 100 in silico SUBJECTS OF THE UVA/PADOVA SIMULATOR FOR PROTOCOL #1 WITH A MEAL OF 100-g CHO

TABLE IV
AVERAGE RESULTS FOR 100 in silico SUBJECTS OF THE UVA/PADOVA SIMULATOR FOR PROTOCOL # 2

In Table II, average results for the 100 in silico subjects are
given for different meal sizes. For comparison, results for the
standard bolus treatment as defined in the simulator are also
given. This treatment is effective if the size of the meal is es-
timated correctly and if the estimate of the subject’s insulin to
CHO ratio is correct. In practice, the meal size is difficult to
estimate and the insulin to CHO ratio is time varying. The ef-
fect of a wrongly estimated bolus size is shown by over- and
underestimating the meal sizes by 30%. The fasting blood glu-
cose level that corresponds to the basal rate for the optimal
bolus treatment is not in the zone. In the closed-loop case, it
is assumed that the basal rate corresponds to a fasting blood
glucose level in the zone, and the basal rate is chosen ac-
cordingly. The resulting average prandial blood glucose lev-
els for zone MPC and for the bolus treatment are therefore
different.

The results in Table II indicate that the proposed approach
is safe also for large meals. Clearly, the increase in blood glu-
cose after a large meal cannot be avoided when the meal is

not announced to the controller. A performance equal to that
of an (announced) optimal bolus treatment can therefore not
be achieved. Note that all controllers use CGM measurements.
The use of noise corrupted measurements can explain why one
subject reaches a blood glucose value below 80 mg/dl for a 75-g
meal, but does not for a larger meal disturbance.

The sensitivity of the proposed approach to changes in Fs is
shown in Table III. The average response to protocol #1 with a
large meal of 100 g is given for different safety factors, using
zone MPC based on Mi . Note that the safety factor should nor-
mally be chosen as Fs >1 and the default value is Fs = 1.25,
according to the guidelines in Fig. 4. Since changes in Fs and Ki

have the same effect on Mi , Fs = 0.75 corresponds to a strongly
underestimated correction factor. The table clearly shows the
trade-off between robustness and performance. One case of hy-
poglycemia occurred for Fs = 1.25, which corresponds to the
outlier in the simulator as mentioned previously.

The average results for the 100 in silico subjects responses
to protocol #2 are given in Table IV. As expected, high blood
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Fig. 8. Average blood glucose responses and average insulin delivery for 100
in silico subjects to protocol #2. (Continuous line) Zone MPC controller based
on personalized models Mi (4). (Dash-dotted line) Setpoint MPC based on
personalized models Mi . (Dashed line) Zone MPC controller using average
model as presented in [35]. The thin lines indicate the envelope of the minimum
and maximum responses at each time step for the 100 subjects.

Fig. 9. CVGA [36] of the 100 simulated responses to protocol #2. (Black)
Zone MPC controller based on the proposed Mi (4). (White) Zone MPC con-
troller using average model as presented in [35].

glucose values cannot be completely avoided for closed-loop
control with unannounced meals and the performance of an
optimal bolus treatment cannot be met. However, the use of
personalized models limits the conservatism and the average
time in the target region of 70–180 mg/dl is 79.9%. The average
response for both the setpoint and zone MPC controller based
on Mi is shown in Fig. 8. The average response of the zone
MPC controller of [35] is given for comparison. The control
variability grid analysis (CVGA) plot in Fig. 9 shows the 95%
confidence bounds of the maximal and minimal blood glucose
values for the 100 in silico subjects for the zone MPC controller
with Mi and the zone MPC controller in [35]. Low glycemic
values are avoided if the approach proposed in this paper is used,
without increasing the high values with respect to the approach
in [35].

Fig. 10 shows three examples of individual responses to
protocol #2. In Fig. 10(a), an example is given of a subject
for whom the average response is a good representation of the
individual response to insulin. The use of this average model in
the controller does not lead to hypoglycemia and is not overly
conservative either. The response of the controlled system with
the average model is comparable to the response of the con-
trolled system with the proposed personalized model. The total
amount of delivered insulin is also comparable. Fig. 10(b) shows
an example where the subject’s correction factor is lower than
average and the average model leads to a conservative controller.
The controller based on the proposed personalized model is less
conservative and achieves a better time in range for this sub-
ject. Fig. 10(c) shows an example of a subject that has higher
insulin sensitivity and/or a slower response to insulin than av-
erage. For these subjects, the controller based on the average
model is potentially unsafe. The proposed approach leads to a
safe controller also for this subject.

Fig. 11 shows the average results to protocol #2 for the zone
MPC controller using Mi with and without meal announcement.
When the meal is announced, an optimal bolus is given at the
same time as the meal, the controller uses the information of the
given bolus but no meal disturbance model is introduced. The
results show that the proposed controllers are safe also if the
meals are announced. The use of meal information decreases
the postprandial glucose peak as expected.

VI. DISCUSSION

This paper evaluates the proposed control-relevant models
using a fixed controller. This approach is personalized since
the models are personalized. The current controller design is
based on a model for an individual that is sensitive to insulin,
and consequently, this controller is conservative for individuals
that are less sensitive. A personalized controller tuning could
improve the results.

The proposed approach is shown to be safe in silico when the
meals are not announced to the controller. In this case, the meal-
induced hyperglycemia is expected to be large and avoiding
hypoglycemia due to overdelivery of insulin is challenging. The
in silico results in Section V show the possible performance
improvement if the meal is announced and the meal information
is accurate. In practice, this accurate meal information is rarely
available and the development of robust meal announcement is
an active field of research.

The UVa/Padova simulator contains a set of time-invariant
models. In practice, the behavior of the glucose–insulin sys-
tem is unpredictable and time varying. The guidelines given for
the tuning of the safety factor need to be tested clinically and
updated accordingly. A run-to-run approach can be envisioned
(see, for e.g., [37]), where the physician initially chooses a large
value for safety, and updates it as more information becomes
available. A time-varying safety factor could be used to com-
pensate for diurnal variations.
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Fig. 10. Representative responses to protocol #2 for three subjects of the UVa/Padova simulator. (Continuous line) Zone MPC with proposed personalized models
Mi (4). (Dashed line). Zone MPC with average model from [35]. The total insulin that is delivered in the 44 h of the protocol is indicated in the figure.

Fig. 11. Comparison of announced and unannounced meals. Average blood
glucose responses and average insulin delivery are shown for 100 in silico
subjects to protocol #2. (Continuous line) Zone MPC controller using Mi and
no meal announcement. (Dashed line) Zone MPC controller using Mi with
announced meals. (Thin lines) Min and max envelop of the 100 responses.

VII. CONCLUSION

Control-relevant models for glucose control in T1DM are
presented, where the model structure is based on the a priori in-
formation available in the UVa/Padova metabolic simulator. The
gain is personalized using patient characteristics. The approach
is tested in silico for 100 subjects, without meal announcement
or prandial insulin boluses. The robustness of the controllers
based on the proposed individualized models is confirmed by
the simulation results. No hypoglycemic events occurred for
meal disturbances up to 160 g of CHO, and the MPC controller
was not overly conservative. The simulation results are promis-
ing, but need to be verified clinically.

The personalized models are based on a priori patient char-
acteristics; therefore, no time-consuming identification step is

needed to develop a model. Minimal control expertise is required
to set up the presented zone MPC.
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[37] H. Zisser, L. Jovanovič, F. J. Doyle III, P. Ospina, and C. Owens, “Run-
to-run control of meal-related insulin dosing,” Diabetes Technol. Ther.,
vol. 7, pp. 48–57, 2005.

Klaske van Heusden received the M.Sc. degree in
mechanical engineering from the Delft University of
Technology, Delft, The Netherlands, and the Ph.D.
degree from the Ecole Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland, in 2004 and 2010,
respectively.

She held a Postdoctoral Fellow in the Department
of Electrical and Computer Engineering, University
of Cailfornia, Santa Barbara, and is currently a Post-
doctoral Fellow in the Electrical and Computer En-
gineering in Medicine Group, University of British

Columbia, Vancouver, BC, Canada. Her research interests include modeling,
identification for control and control applications in biomedical engineering
and mechatronics.

Eyal Dassau (M’08) received the B.Sc., M.Sc., and
Ph.D. degrees from the Technion—Israel Institute of
Technology, Haifa, Israel, in 1999, 2002, and 2006,
respectively, all in chemical engineering.

He is currently a Senior Investigator and the
Diabetes Research Manager with the University of
California, Santa Barbara. He is also an Adjunct Se-
nior Investigator with the Sansum Diabetes Research
Institute, Santa Barbara, CA. His current research
interests include modeling, design, and control of
an artificial pancreas for type 1 diabetes mellitus,

and process and product design with emphasis on medical and biomedical
applications.

Dr. Dassau is a senior member of the American Institute of Chemical Engi-
neering and a member of the American Diabetes Association.

Howard C. Zisser received the B.S. degree from the
University of Florida, Gainesville, and the M.D. de-
gree from The Johns Hopkins University School of
Medicine, Baltimore, MD.

He is currently the Director of Clinical Research at
Sansum Diabetes Research Institute, Santa Barbara,
CA. He also serves as an Adjunct Professor in the
Department of Chemical Engineering, University of
California, Santa Barbara. His current research inter-
ests include the testing of new drugs and devices for
the treatment of diabetes. He is currently involved

with a team of researchers to combine these new technologies into an artificial
pancreas.



VAN HEUSDEN et al.: CONTROL-RELEVANT MODELS FOR GLUCOSE CONTROL USING A Priori PATIENT CHARACTERISTICS 1849

Dale E. Seborg (M’81) received the B.S. degree from
the University of Wisconsin, Madison, and the Ph.D.
degree from Princeton University, Princeton, NJ, both
in chemical engineering.

He is a Professor Emeritus and a Research
Professor in the Department of Chemical Engineer-
ing, University of California, Santa Barbara. He has
published more than 220 articles on process control
and related topics, and is the coauthor of the book,
Process Dynamics and Control (3rd ed. New York:
Wiley, 2010), which has been translated into several

foreign languages, including Chinese.
Dr. Seborg is the recipient or corecipient of many awards and honors; the

most recent include: election to the Process Automation Hall of Fame (2008),
corecipient of the Best Application Paper Award from the Journal of Process
Control (2008), and a Festschrift in the Journal of Process Control (2008).

Francis J. Doyle III (M’02–SM’04–F’08) re-
ceived the B.S.E. degree from Princeton University,
Princeton, NJ, in 1985, the C.P.G.S. degree from the
University of Cambridge, Cambridge, U.K., in 1986,
and the Ph.D. degree from the California Institute of
Technology, Pasadena, CA, in 1991, all in chemical
engineering.

He holds the Duncan and Suzanne Mellichamp
Chair in process control in the Department of Chem-
ical Engineering, University of California, Santa
Barbara, as well as appointments in the Electrical En-

gineering Department and the Biomolecular Science and Engineering Program.
He is also a Guest Investigator with the Sansum Diabetes Research Institute,
Santa Barbara. His research interests include systems biology, network science,
modeling and analysis of circadian rhythms, drug delivery for diabetes, model-
based control, and control of particulate processes.

Dr. Doyle is a Fellow of a number of societies including the Interna-
tional Federation of Automatic Control, the American Institute of Medical and
Biological Engineering, and the American Association for the Advancement
of Science. In 2005, he was awarded the Computing in Chemical Engineering
Award from the American Institute of Chemical Engineers for his innovative
research in systems biology.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


