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Identification of Adequate Neurally Adjusted
Ventilatory Assist (NAVA) During Systematic

Increases in the NAVA Level
Dimitrios Ververidis, Mark van Gils, Christina Passath, Jukka Takala, and Lukas Brander∗

Abstract—Neurally adjusted ventilatory assist (NAVA) delivers
airway pressure (Paw ) in proportion to the electrical activity of
the diaphragm (EAdi) using an adjustable proportionality con-
stant (NAVA level, cm·H2 O/μV). During systematic increases in
the NAVA level, feedback-controlled down-regulation of the EAdi
results in a characteristic two-phased response in Paw and tidal
volume (Vt). The transition from the 1st to the 2nd response phase
allows identification of adequate unloading of the respiratory mus-
cles with NAVA (NAVAAL ). We aimed to develop and validate a
mathematical algorithm to identify NAVAAL . Paw , Vt, and EAdi
were recorded while systematically increasing the NAVA level in
19 adult patients. In a multistep approach, inspiratory Paw peaks
were first identified by dividing the EAdi into inspiratory portions
using Gaussian mixture modeling. Two polynomials were then fit-
ted onto the curves of both Paw peaks and Vt. The beginning of
the Paw and Vt plateaus, and thus NAVAAL , was identified at the
minimum of squared polynomial derivative and polynomial fitting
errors. A graphical user interface was developed in the Matlab
computing environment. Median NAVAAL visually estimated by
18 independent physicians was 2.7 (range 0.4 to 5.8) cm·H2 O/μV
and identified by our model was 2.6 (range 0.6 to 5.0) cm·H2 O/μV.
NAVAAL identified by our model was below the range of visually
estimated NAVAAL in two instances and was above in one instance.
We conclude that our model identifies NAVAAL in most instances
with acceptable accuracy for application in clinical routine and
research.

Index Terms—Diaphragm electrical activity, neurally adjusted
ventilatory assist, patient-ventilator interaction.

I. INTRODUCTION

N EURALLY adjusted ventilatory assist (NAVA) is a new
mode of mechanical ventilation that delivers airway pres-

sure (Paw ) in linear proportion to the electrical activity of
the diaphragm (EAdi), a signal arising from the diaphragm’s
neural activation during spontaneous breathing (Fig. 1) [1].
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The NAVA level refers to an adjustable proportionality con-
stant that determines the amount of Paw delivered per unit of
EAdi. Thus, Paw(t) [cm·H2O] = EAdi(t) [μV] · NAVAlevel(t)
[cm·H2O/μV]. EAdi is a validated measure of global respira-
tory drive that is controlled via lung-protective feedback mech-
anisms, which integrate information from pulmonary and extra-
pulmonary mechanoreceptors, from blood gases, and from vol-
untary input [2]–[5]. If the assist delivered with NAVA exceeds
the subject’s respiratory demand, EAdi is reflexively down reg-
ulated, resulting in less assist for the same NAVA level and vice
versa [6]–[11].

Several experimental and clinical studies with NAVA demon-
strated that during ramp increases in the NAVA level, transpul-
monary pressure and tidal volume (Vt) initially increase (1st re-
sponse) before being limited due to feedback-controlled down-
regulation of EAdi (2nd response) [6], [7], [9]–[11]. Hence,
the breathing pattern response to systematic increases in the
NAVA level is directed towards prevention of lung overdisten-
sion [6]–[10], [12]. Interestingly, in rabbits loaded with various
inspiratory resistors, the transition from the 1st to the 2nd re-
sponse phase occurred when the animals’ inspiratory effort was
reduced to levels similar to those observed during spontaneous
breathing (i.e., when breathing without assist and without ad-
ditional load) [10]. Thus the transition from the 1st to the 2nd
response phase presumably reflects the transition from an initial
insufficient ventilatory assist to an adequate level of respiratory
muscle unloading (NAVAAL ). Therefore, reliable identification
of NAVAALduring a NAVA level titration procedure is of po-
tential clinical relevance, since it may help to individualize the
support level during NAVA.

We hypothesized that identification of NAVAALcan be mod-
eled. In Section II, we aimed to develop a mathematical al-
gorithm that would objectively identify the transition from
the 1st to the 2nd response phase based on Paw and Vt re-
sponses during NAVA level titration procedures that were per-
formed in a previously reported clinical study on 19 critically ill
adults [11]. In Section III, NAVAALas identified by the algorithm
was compared to NAVAALas visually estimated by 18 indepen-
dent observers [11]. A discussion of the method is outlined in
Section IV, and conclusions are drawn in Section V.

II. DEVELOPMENT OF AN ALGORITHM TO

CALCULATE NAVAAL

Identification of NAVAAL is based on the analysis of EAdi,
Paw , and Vt recordings while systematically increasing the
NAVA level. The principles of such a NAVA level titration
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Fig. 1. Principles of neurally adjusted ventilatory assist (NAVA) [1]. The diaphragm electrical activity (EAdi) derived from electrodes on a naso-gastric feeding
tube is first amplified and processed. The EAdi signal is then multiplied by an adjustable gain factor (NAVA level) and used to control the pressure generator of a
mechanical ventilator. Thus, NAVA delivers pressure to the airways (Paw ) in direct synchrony and linear proportionality to the patient’s neural inspiratory drive as
reflected by the EAdi (Paw (t) = EAdi(t) · NAVAlevel (t). Vt = tidal volume. NAVAAL = NAVA level that provides adequate unloading of respiratory muscles.

Fig. 2. Example of a NAVA level titration session as used for estimating NAVAAL (a) visually or (b) with the proposed algorithm. NAVAAL refers to the adequate
NAVA level early after the transition from the initial steep increase in Paw (n) and Vt(n), referred to as 1st response, to the less steep increase or plateau in Paw (n)
and Vt(n), referred to as 2nd response [6]–[11]. Flow(n) is the air flow. In (a), the Vt(n) is estimated on a breath-by-breath basis. If there is false triggering of the
ventilator (e.g., based on an EAdi artifact) a minimal Vt (normally a few milliliters) is delivered. Since there is no minimal threshold for Vt, the ventilator displays
whatever Vt(n) is delivered in the graph. In (b), the Vt(n) is calculated as the integral of Flow(n) per inspiration as it is described in Section II-B (Step 4A).

procedure have been described elsewhere [6], [7], [9]–[11].
Briefly, first the NAVA level was reduced to a minimum of
0 cm·H2O/μV. When sufficient EAdi was detectable (i.e., at
least twice the EAdi trigger threshold), the NAVA level was
increased by 0.1 cm·H2O/μV every 20 sec while continuously
monitoring and recording the EAdi, Paw, and Vt signals (NAVA
tracker, Maquet, Solna, Sweden) in NT1 format. The NT1 files
were converted into Matlab format for further processing. In the
study by Passath et al. [11], the data of one patient were recorded

with different software and were, therefore, not included in the
experimental part of the present work. A characteristic example
of such a titration session is depicted in Fig. 2.

A. Visual Estimation of NAVAAL

A visual method for estimating NAVAALwas described and
validated recently [6], [7], [9]–[11]. Briefly, by observing time
plots of Paw and Vt on the ventilator monitor or on printouts
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Fig. 3. Outline of the algorithm to identify NAVAAL based on the signals NAVAlevel (n) for the NAVA level, EAdi(n) for electrical activity of the diaphragm,
and Vt(n) for tidal volume that was derived from the inspiratory flow.

(Fig. 2), NAVAALwas determined as the NAVA level early after
the transition from an initial steep increase in Paw(n) and Vt(n)
(1st response) to a less steep increase or even a plateau in both pa-
rameters (2nd response). For validation of the visual method, an
arbitrarily chosen number of 17 independent physicians blinded
to the NAVAALselected during the study were instructed post-
hoc identify a NAVA level immediately following the transition
from a steep to a less steep increase in Paw and Vt on screen
prints of the original trend graphs. The NAVAALas estimated
during the clinical study and post-hoc by the 17 independent
physicians was reported previously [11] and used for compari-
son to NAVAAL , as identified by the algorithm developed in the
present study.

B. Algorithm-Based Calculation of NAVAAL

The method to mathematically identify NAVAAL is divided
into four steps. The procedure is outlined in Fig. 3. The first step
is the identification of the titration session from NAVAlevel(n)
represented by nodes 1(A) and 1(B). The second step is the
tracking of inspiration sessions from EAdi(n) represented by
nodes 2(A), 2(B), and 2(C). The third step consists of identifying
the peaks in the Paw(n) per inspiration and of fitting a polyno-
mial function to the Paw peaks, as shown in nodes 3(A) and
3(B), respectively. The fourth step consists of calculating Vt(n)
from Flow(n), and fitting a polynomial function to the Vt, as
shown in nodes 4(A) and 4(B). The derivation of NAVAALbased
on polynomials can be found in node 4(C). The sampling rate
of all signals used was Fs = 62.5 Hz. All steps are described in
greater detail below.

Step 1. Identification of the titration session based on changes
in the NAVAlevel(n): 1A) Let NT ;S and NT ;E denote the sam-
ples where titration session starts and ends, respectively. We
wish to identify NT ;S and NT ;E . NAVAlevel(n) is modeled
with L straight line segments as {L�}L

�=1 = {(a�, b� , s� , e�)}L
�=1

where

NAVAlevel(n) = a�n + b� for n = {s�, s� + 1, . . . , e�} (1)

with � being the index of the line segment L� , a� the first-order
line coefficient, b� the zero-order coefficient, s� the starting sam-
ple, and e� the ending sample of the �th line segment. It should
be noted that there is no noise in NAVAlevel(n). The line seg-
ments are found by fitting a sequence of lines to NAVAlevel(n)
as follows. The first line is fitted to NAVAlevel(n) for s1 = 1 to
e1 = 2. e1 is updated by e1 = e1 + 1 as long as

NAVAlevel(e1 + 1) = a�(e1 + 1) + b�. (2)

If (2) is violated, a new line begins, estimated from the next two
samples. The benefit of this transformation of NAVAlevel(n) into
lines is that a great compression of signal data is accomplished.
The algorithm is summarized in Fig. 4(b).

1B) Let x� = [log(|b� − b�−1 |) log(e� − s�)] be the 2-D vec-
tor that will be used for classifying L� into Ω1 (Titration class)
or into Ω2 (Nontitration class). The first feature of x� is the dif-
ference of offset level between the previous and current line seg-
ments, which, according to the inspection of Fig. 4(a), should be
an almost constant number for L� ∈ Ω1 . The second feature of
x� is the length of each line, which should also be a statistically
constant number for L� ∈ Ω1 . A Gaussian Mixture Modelling
(GMM) algorithm is used that searches for a component with a
small determinant in {x�}L

� space where the number of compo-
nents is limited to 2. The algorithm used for GMM was found
in a previous investigation and is publicly available [13], [14].
Let G(μ,Σ) denote a Gaussian component, with μ and Σ being
its mean vector and its covariance matrix, respectively. Thus,
G(μ1 ,Σ1) and G(μ2 ,Σ2) are found, where ‖Σ1‖ < ‖Σ2‖, with
‖ · ‖ being the determinant of a matrix inside the delimiters. The
titration tracking procedure of the signal of Fig. 4(a) is depicted
in Fig. 5. A prediction ĉ� for each line is given according to the
Bayes classifier

ĉ� = argmax
c=1,2

P (x� |Ωc) (3)

where the probability density function (pdf) for each
class is given by P (x� |Ωc) = MVN (x� |μc,Σc), with
MVN (xi ;μ,Σ) being the multivariate normal pdf. Let N̂T ;S

and N̂T ;E be the estimated sample index where titration starts
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Fig. 4. (a) Tracking of the NAVA level titration session in Patient 1 (Step
1). (b) Algorithm for modeling {NAVAlevel (n)}N

n =1 with lines {L�}L
� =

{(a� , b� , s� , e� )}L
�=1 (Step 1A).

Fig. 5. NAVAlevel (n) titration session tracking by 2 Gaussian components
for Fig. 4. The component with small dispersion corresponds to Titration class
(Step 1B).

and ends, respectively. Then N̂T ;S = s�1 and N̂T ;E = e�2 ,
where

�1 := argmin
�

(s� |L� ∈ Ω1) (4)

�2 := argmax
�

(e� |L� ∈ Ω1) (5)

The estimated [N̂T ;S , N̂T ;E ] interval is depicted in Fig. 6. The
benefit of this step is that the titration session is tracked without
the need of a trigger input from the ventilation machine.

Step 2. Tracking of neural inspiration sessions: The elec-
trical activity of the diaphragm, denoted as EAdi(n) for n =
1, 2, . . . , N is used to track neural inspiration sessions. This is

Fig. 6. The result of titration tracking procedure of Fig. 5. The lines that
belong to G(μ1 , Σ1 ) are assigned to the Titration class (Step 1B).

Fig. 7. Tracking of neural inspiration sessions using ̂EAdi(n) signal
(Step 2C).

accomplished by employing the GMM clustering algorithm that
searches for three Gaussian components in 2-D feature space.
The first feature is the logarithm of the short-term energy, esti-
mated as follows.

2A) A moving average (low pass filter, LPF) of order 40 is
applied to EAdi(n) to eliminate frequency components above
4 Hz that are not related to breathing, i.e.,

̂EAdi(n) =
1
40

39
∑

i=0

EAdi(n − i). (6)

The ̂EAdi(n) for Patient 1 is shown in Fig. 7, where only 6
breaths out of 350 are shown for visualization reasons. The
LPF does not introduce negative values of ̂EAdi(n) that cause
problems when the logarithm operator is applied in the following
step.

2B) Next, short-term energy is estimated. That is, ̂EAdi(n) is
split into frames f

ÊAdi
(n;m) = ̂EAdi(n) · w(m − n), where

w(m − n) is an orthogonal window of length Nw ending at
sample m. In our investigation Nw equals 15, and m starts
from 15 samples, which correspond to 240 msec. m is updated
by m:=m+15. Patients in intensive care typically have breath
cycles of approximately 1 to 4 sec duration. Overlapping is
avoided because each sample should be assigned to one class.
The first feature is the logarithm of energy for the ̂EAdi(n)
frame ending at m

e(i) = log
( 1

Nw

m
∑

n=m−Nw +1

[f
ÊAdi

(n;m)]2
)

(7)

where i = 1, 2, . . . , N/m. The second feature is the derivative
of the first feature, given by de(i) = e(i) − e(i − 1). The en-
ergy and the energy derivative are chosen because the ̂EAdi(n)
curve should be divided into valleys (expirations) and mountains
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Fig. 8. Clustering of ̂EAdi(n) frames to Neural Inspiration and Expiration
classes (Step 2C).

(inspirations). It was found experimentally that the logarithm
operator transforms the distribution of energy from exponential
to normal. In this manner, the GMM clustering algorithm can
be applied to the feature distribution as described next.

2C) GMM is applied to feature space xi = [e(i) de(i)] where
three Gaussian components are searched for. The clustering
result for Patient 1 is depicted in Fig. 8.

Each component G(μ′
j ,Σ

′
j ) is described by its center (μ′

j =
[μ′

j1 μ′
j2 ]) and its covariance matrix (Σ′

j ), for j = 1, 2, 3. The
component with the center of lowest energy μ′

11 corresponds
to Neural Expiration class, denoted as Ω′

1 . The Neural Inspi-
ration class, denoted as Ω′

2 , consists of two Gaussian com-
ponents. The component with a center signified by maximum
derivative of energy μ′

21 corresponds to rising slopes, and the
component signified by minimum derivative of energy μ′

23

stands for falling slopes of ̂EAdi(n). The Bayes classifier is
again employed in order to assign each frame to Inspiration
or Expiration class. Let ui be a frame with measurements
xi and label ci . The predicted label of ui is given by ĉi =
argmaxc=1,2 P (xi |Ω′

c), with P (xi |Ω′
1) = MVN (xi ;μ′

1 ,Σ
′
1)

and P (xi |Ω′
2) = MVN (xi ;μ′

2 ,Σ
′
2) + MVN (xi ;μ′

3 ,Σ
′
3).

A neural inspiration session is constituted by a sequence of
frames that belong to the Neural Inspiration class (Ω′

2). The
results of this step are shown in Fig. 7. Let b = 1, 2, . . . , B be
the breath index, where B is the total number of breaths. The
beginning and the end of the bth neural inspiration session are
denoted as Nn

b;S and Nn
b;E , respectively.

3A) Neural inspiration peaks estimation: Let Paw(n) =
NAVAlevel(n) · EAdi(n) be the airway pressure signal. The neu-
ral inspiration peaks indices are found by

Nn
b;P =

N n
b ;E

argmax
N n

b ;S

Paw(n) (8)

for b = 1, 2, . . . , B. The airway pressure at neural inspiration
peaks is the signal {Paw(Nn

b;P )}B
b=1 .

3B) Polynomial fit to airway pressure peaks: The polynomial

HPaw(n) =
K

∑

k=1

qknk (9)

Fig. 9. The air flow signal, Flow(n), is divided into inspirations and expira-
tions by zero crossing indices (Step 4A).

of order K = 10, with qk being the polynomial coefficients, is
fitted onto {Paw(Nn

b;P )}B
b=1 with the reweighted least-squares

method [15]. By finding the argminn

[

dHP aw (n)
dn

]2
one is able

to derive the time index of plateau of airway pressure peaks.
The order of the polynomial is chosen empirically, so that it is
a trade-off between tracking the underlying number of curve
peaks and capturing the trivial sudden peaks. However, this is
not the only information needed for choosing the optimum time
index. Also, the signal formed by the sequence of polynomial
fit error values

εPaw(Nn
b;P ) =

√

|HPaw(Nn
b;P ) − Paw(Nn

b;P )| (10)

for b = 1, 2, . . . , B is taken into consideration. Paw(n) peaks
may present great variance around the fitted polynomial, a fact
denoting the patient’s inability to synchronize his breath with
the ventilation machine. So, another polynomial of order K − 1
is fitted onto εPaw (Nn

b;P ), i.e.,

HεPaw(n) =
K−1
∑

k=1

qε
knk (11)

with qε
k being its coefficients. The polynomial of 2K − 2 order

H Info
Paw

(n) =
[dHPaw (n)

dn

]2
+ [HεP aw

(n)]2 (12)

includes both information about airway pressure peaks plateau
and small variance, where the latter indicates that the plateau is
stable.

4A) Tidal volume estimation: The Flow(n) signal for Patient 1
is depicted in Fig. 9.

Let the tidal volume Vt(Nf
b;S ) be the air inhaled during bth

flow inspiration, where Nf
b;S and Nf

b;E are the starting and end-
ing index of bth airflow inspiration. A flow inspiration session
is defined as the time during which air flow is positive. So, a
flow inspiration session is found by applying the zero crossings
method on Flow(n). Then, the tidal volume is found by inte-
grating the inspiration flow for each b = 1, 2, . . . , B inspiration

Vt(Nf
b;S ) =

1
Fs

N f
b ;E

∑

n=N f
b ;S

Flow(n). (13)
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Fig. 10. A fuzzy logic factor used for exploiting n∗ bias to 0.25 of total
duration of titration session (Step 4C).

4B) Polynomial fit to tidal volume: The polynomial

HVt(n) =
K

∑

k=1

rknk (14)

is fitted onto {Vt(Nf
b;S )}B

b=1 , where rk are the polynomial co-
efficients, in a similar manner as in Step 3B. The sequence of fit
errors, i.e.,

εVt(N
f
b;S ) =

√

|HVt(N
f
b;S ) − Vt(Nf

b;S)| (15)

for b = 1, 2, . . . , B is also exploited. The polynomial

HεV t (n) =
K−1
∑

k=1

rε
knk (16)

is fitted onto (15), where rε
k are the polynomial coefficients. So,

the information about the tidal volume plateau and its variance
is given by

H Info
Vt (n) =

[dHVt(n)
dn

]2
+ [HεV t (n)]2 . (17)

4C) Estimation of plateau: NAVAALequals a cer-
tain NAVAlevel(n) when signals {Paw(Nn

b;P )}B
b=1 and

{Vt(Nf
b;S )}B

b=1 reach a plateau and simultaneously present
small variance around the fitted polynomial. Let n∗ be the time
index when the plateau occurs and small variance is observed.
An estimate of n∗, denoted as n̂∗ is found when both (12) and
(17) are minimized. A function that includes information about
the time index where polynomial derivatives and fitting errors
are minimized is

HDecision(n) =
[

H InfoP
aw (n) + H Info

Vt (n)
]

·

(

1.5 −
MVN (n; NT ;D

4 ,
NT ;D

3 )

maxMVN (n; NT ;D
4 ,

NT ;D
3 )

)

︸ ︷︷ ︸

Fuzzy logic factor

(18)

where the fuzzy logic factor is plotted in Fig. 10.
The fuzzy logic factor is biased toward the first quarter of

titration session duration. It will be shown in experiments that
physicians are highly biased at NAVAAL = 2.5. Since NAVA is
increasing from 0 to 10 linearly through time, this corresponds
to a bias in time toward 0.25NT ;D . The optimum time index is

Fig. 11. Time index of plateau, n̂∗, is found when HDecision (n) is minimized,
as described in Steps 3 and 4.

then given by

n̂∗ =
NT ;E

argmin
n=NT ;S

HDecision(n). (19)

Finally, we define ̂NAVAAL = NAVAlevel(n̂∗). As an example,
in Fig. 11, the curves resulting from (9), (14), and (18) are
plotted for Patient 1.

The signals {Paw(Nn
b;P )}B

b=1 and {Vt(Nf
b;S )}B

b=1 are also
plotted in order to demonstrate the polynomial fitting. It is
inferred that HDecision(n) is minimized at n̂∗ = 2114, which
is close to n∗ = 2065 which was given by the clinician. The
NAVAAL is 2.5, whereas the algorithm found ̂NAVAAL = 2.7.

III. EXPERIMENTS

For all titration sessions performed in the 19 patients,
NAVAALcalculated by our algorithm was compared to
NAVAALas visually estimated by the investigators when per-
forming the clinical study (i.e., by author LB) and by an ar-
bitrarily chosen number of 17 independent physician observers
posthoc using printouts of the signal trajectories [Fig. 2(a)] [11].
Median NAVAAL , as estimated by the 18 physicians, was
2.5 cm·H2O/μV with a range from 0.4 to 5.8 cm·H2O/μV. In
the study by Passath et al. [11], the number of steps neces-
sary to reach NAVAALand the highest NAVA level used differed
among patients. The highest NAVA level used in the 19 patients
included in the present work was (median [range]) 4.9 (1.9–7.4)
cm·H2O/μV and the time to reach this level was 978 (377–1478)
sec. The time to reach NAVAALwas 498 (198–997) sec.

Median NAVAAL identified by the algorithm was
2.6 cm·H2O/μV with a range from 0.6 to 5.0 cm·H2O/μV. In
most cases, NAVAAL identified by the algorithm was within the
range of NAVAALestimated by the physicians (Fig. 12). In Pa-
tient 7, the NAVAAL identified by the algorithm was higher, and
in Patients 15 and 17 it was lower than the NAVAALestimated
by the physicians. In order to calculate the correlation between
NAVAAL , as identified by the observers with the results of our
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Fig. 12. Comparison between NAVAAL independently estimated by one of
the authors (L.B., a physician) and by 17 independent physicians based on
visual inspection of the airway pressure (Paw ) and tidal volume (Vt) response
to systematic increases in the NAVA level (circles) and NAVAAL identified by
the algorithm described in this paper (squares).

TABLE I
PEARSON CONCORDANCE COEFFICIENT OF NAVAAL ESTIMATES BETWEEN

PHYSICIAN OBSERVERS AND ALGORITHM

algorithm, we computed the multiple correlation coefficient
(MCC) [16]. MCC ranges from 0 (no correlation) to 1 (linearly
dependent). In our case, MCC indicates the correlation between
the matrix of NAVAALestimates for all observers across all
patients with the algorithm result. Furthermore, the Pearson
concordance coefficient is used to estimate the concordance
between a single observer and the algorithm [11]. The confi-
dence limits are estimated at 95% level of significance. The
MCC between NAVAALas identified by the algorithm and as
estimated by the 18 physicians is 0.54± 0.06. The Pearson
concordance coefficients between the NAVAALas identified
by each observer and the algorithm are presented in Table I.
In the last row, the concordance between median NAVAAL for
all observers and the algorithm is computed. It can be seen
that the concordance of the NAVAALbetween each observer
and the algorithm is always positive. The lower limit of the
concordance coefficient is slightly negative, with a median
value of −0.13. The upper confidence limit median is 0.69.

A graphic user interface (GUI) for the algorithm is presented
in Fig. 13. The GUI includes most of the figures presented in
Section II-B. The final result is compared to the ground truth,
i.e., the NAVAALestimated visually, and displayed as bands in
the uppermost panel of Fig. 13.

Fig. 13. The graphic interface provides a synopsis of the signal processing
steps described in Figs. 2, 5, 8, and 11, and allows for real time assessment
of how the algorithm identifies NAVAAL . Ground truth NAVAAL denotes the
visually estimated adequate NAVA level.

IV. DISCUSSION

We developed a multistep algorithm and a user interface to
identify adequate assist (NAVAAL ) based on analysis of the
Vt, Paw , and EAdi responses during a systematic increase in
the NAVA level. The algorithm revealed results that were com-
parable to the previously used visual method for estimating
NAVAAL .

Delivering mechanical ventilatory assist during spontaneous
breathing aims at unloading the respiratory muscles from exces-
sive work of breathing while preventing both fatigue and disuse
atrophy of respiratory muscles. However, determining an assist
level that adequately meets the patient’s needs is not straight-
forward. Both too high and too low assist may cause harm.
While respiratory muscle fatigue may result from insufficiently
unloading the patient from his work of breathing [17], disuse
atrophy may follow prolonged delivery of assist in excess of the
patient’s needs [18]–[20].

Thus, defining an adequate level of respiratory muscle un-
loading based on the patient’s individual response to changes in
the assist level is of clinical relevance but requires reliable mea-
surement of the respiratory drive. The recent introduction of a
technology to monitor EAdi, a validated measure of respiratory
drive [2]–[5], provides the opportunity to integrate the patient’s
response in the process of identifying an adequate level of as-
sist. NAVA is unique in that it directly translates changes in the
respiratory drive into changes of the ventilatory pattern. Since
with NAVA the ventilator receives the same control signal as the
diaphragm, it conceptually acts as an additional external respi-
ratory muscle pump that is directly controlled by the patient’s
respiratory drive. Thus, NAVA provides the patient with far-
reaching control over the ventilatory pattern and with the ability
to limit the assist once the inspiratory efforts occur at a level
that corresponds to nonloaded conditions, i.e., at a satisfactory,
and hence adequate, assist level with NAVA (NAVAAL ) [6], [7],
[9]–[11].
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Fig. 14. NAVA level titration session in patient 17. In this patient the algorithm
identified the transition from a steep increase in peak airway pressure (Paw ) to a
less steep increase or plateau in Paw (i.e., the adequate NAVA level, NAVAAL )
clearly below the range of NAVAAL as visually estimated by the clinicians. The
discrepancy is most likely due to a short, transitory interruption of the Paw
increase during the initial steep increase, i.e., during the 1st response phase
(asterisk). We assume that the physicians outperformed the current version of
the algorithm in recognizing pattern irregularities.

In the present study, we demonstrate that NAVAALcan be
identified using a multistep polynomial fitting model based on
analyzing the Vt, Paw, and EAdi responses during systematic
increases in the NAVA level. The NAVAAL identified by the
algorithm was in agreement with the NAVAALestimated visu-
ally for most patients. We previously demonstrated not only
good reproducibility among physicians for visual estimation of
NAVAAL [10], [11] but also stable cardio-pulmonary function
without evidence of respiratory failure or distress when imple-
menting NAVAAL for various time spans [6], [7], [9]–[11].

In 3 out of 19 titration sessions, the NAVAAL identified by the
algorithm was either clearly above or clearly below the range
of NAVAALestimated visually. We assume that the discrepancy
between the methods in these three patients is most likely due
to the fact that the physicians outperformed the current version
of the algorithm in recognizing pattern irregularities, as illus-
trated in Fig. 14. Also, the current version of the ventilator.s
graphic interface does not differentiate between real breaths
and artifacts when displaying the trend graphs. Therefore the
graphs may be difficult to read for users non-experienced with
the NAVA level titration procedure. This suggests that, although
NAVAAL identified by the algorithm was within the range of
NAVAALestimated visually for >80% of the titration sessions,
a visual verification is advisable before using NAVAAL identified
by the current version of the algorithm. Further refinement and
validation of the algorithm is required before it can be safely
implemented in clinical practice.

Of note, since the transition from the 1st to the 2nd response
does not occur acutely, some inter-individual variability and
discrepancy between methods used in determining NAVAALcan
be expected. Also, as Paw and Vt do not or only minimally
change after the transition from the 1st to the 2nd response
phase, any NAVA level within the 2nd response phase can be
expected to have only minor, if any, effects on breathing pattern.

The mathematical algorithm developed is based on post pro-
cessing of the signals obtained. The algorithm not only allows
faster identification of NAVAAL than the visual method but is
also independent of observer-related biases and inter-individual
variability. However, the algorithm should be modified to iden-
tify NAVAAL in real-time, and thus help shorten the time needed
for a titration session.

V. CONCLUSION

NAVAALcan be identified quickly and reliably using our poly-
nomial fitting model based on the analysis of the Paw , Vt, and
EAdi responses to systematic increases in the NAVA level. The
correlation between the NAVAAL identified by the algorithm
and the NAVAALestimated visually suggests that our model
has acceptable accuracy for application in clinical routine and
research.
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