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Theorem 3.2: For the LQG problem (2.1)-(2.3), the linear feed- 
back control given by (3.5) is a.s. optimal, where the Q:s are 
determined by (3.7). The pathwise optimal cost is given by (3.8). 

Some comments are in order now. 
Remark 3. I : 

i) 

ii) 

iii) 

iv) 

v) 

The condition B, # 0 for each i can be relaxed. If for some 
i, Bi = 0, then the above result will still hold if (Ai, B ; )  are 
stochastically stabilizable in a certain sense [7], [9]. 
For the multidimensional case, if B,,  Ci, oi are positive 
definite, then all the above results will hold. But the positive 
definiteness of B; is a very strong condition, since in many 
cases the Bi’s may not even be square matrices. In such a 
case if we assume that (Ai, Bi) are stochastically stabilizable, 
then the above results will again hold. Sufficient conditions 
for stochastic stabilizability are given in [2], [7], and [9]. If 
Ci is not positive definite, then the cost does not necessarily 
penalize the unstable behavior, as discussed in the foregoing. 
Thus condition (A5) of [5] is not satisfied. In this case under a 
further detectability condition, the optimality can be obtained 
in a restricted class of stationary Markov controls [2]. 
Let p be as in (3.8). Then for any admissible policy u( t )  it 
can be shown by the pathwise analysis in [5] that 

l T  
1 i I Ik f  T Jd [C(S(t))X”(t) + D(S( t ) )uZ( t ) ]d t  

2 p a s .  

This establishes the optimality of the linear feedback control 
U (3.5) in a much stronger sense, viz., the most “pessimistic” 
pathwise average cost under is no worse than the most 
“optimistic” pathwise average cost under any admissible 
control. 
For T > 0, let V(z,  i, T) denote the optimal expected cost 
for the finite horizon [O,T]. Then it can be shown as in [2] 
that 

1 
T-co T lim -V(z,i ,T) = p 

where p is as in (3.8). Thus the finite horizon value function 
approaches the optimal pathwise average cost as the length of 
the horizon increases to infinity. Thus for large T, the linear 
feedback control (3.5) would be a reasonably good nearly 
optimal control for the finite horizon case. This would be 
particularly useful in practical applications since it is com- 
putationally more economical to solve the algebraic Riccati 
system than the Riccati system of differential equations. 
The condition X i j  > 0 can be relaxed to the condition that the 
chain S( t )  is irreducible (and hence ergodic). The existence 
part in [5] can be suitably modified to make the necessary 
claim here. In the dynamic programming part, the existence 
of a unique solution in Lemma 3.1 is clearly true under the 
irreducibility condition. 

IV. CONCLUSION 
In this note, we have studied the pathwise optimality of an LQG 

regulator with Markovian switching parameters. We have assumed 
that the Markovian parameters are known to the controllers. This is 
an ideal situation. In practice the controllers may not have a complete 
knowledge of these parameters. In this case, one usually studies the 
corresponding minimum variance filter. Unfortunately, this filter is 

almost always infinite dimensional [9]. A computationally efficient 
suboptimal filter has been developed in [l] and [8]. We hope that 
our results will be useful in the dual control problem arising in this 
situation. 
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Corrections to “On the Structure of H” 
Control Systems and Related Extensions” 

Gjemt Meinsma and Hidenori Kimura 

In the above paper’ Lemma 2.1 on (J,J’)-losslessness is not 
correct. Its implications Lemma 2.2 and Corollary 2.4 are also not 
fully correct. Corollary 2.5 reappeared in [3] as Lemma 3.1. In [3], 
Lemma 3.2 is not fully correct for the same reason. 

We give a counterexample to these claims and show how they can 
be fixed by strengthening the assumption. As far as 7-1, theory is 
concerned, the additional assumption is satisfied. Throughout, J and 
J’ are signature matrices of the form 
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A proper rational matrix M that has no poles on the imaginary 
axis is called (J,J’)-lossless if [ M ( s ) ] * J M ( s )  5 J‘ for all s in 
the right-half plane, with equality holding on the imaginary axis. 
Here * denotes the complex conjugate transpose. The claims are the 
following. 

Claim I (Lemma 2.1 of the Above Paper’): A proper rational ma- 
trix M that has no poles on the imaginary axis is ( J ,  J‘)-lossless iff 
there exists a P > 0 such that 

{ A*P + P A  + C* JC = 0. 

D’JD = J’; 
D* JC + B* P = 0; ( 1 )  

Here [A,  B ,  C, D] is any minimal realization of M. 
Claim 2 (Corollary 2.3 of the Above Paper’ and,!.“ 3.1 of [3]):  

Every ( J ,  J‘)-lossless matrix M has a J-orthogonal complement N .  
(That is, such that [ M  NIT is square and (J,J)-lossless for some 
permutation matrix T.) 

As stated these claims are not fully correct. Consider the following 
rational matrix and minimal realization 

r - 1  I 1 1  

It is readily checked that [ M ( s ) ] * J ~ , ~ M ( s )  = 1 for all s, hence, that 
M is (J,J’)-lossless with J := J2,l and J‘ := 1. The matrix P ,  
however, satisfying ( 1 )  is, in this case, P = 0, contradicting the first 
claim. The M in (2) also serves as a counterexample to the second 
claim. Suppose, to obtain a contradiction, that M defined in (2 )  does 
have a J-orthogonal complement N ;  that is, such that [M N ]  is 
square and ( J ,  J)-lossless, with J := J z , ~ .  Since Claim 1 is correct 
if J = J’ (more of this later), any minimal realization [A,  B ,  C, D] of 
the square rational matrix [ M  N ]  satisfies (1) for some P > 0. Then 
M obviously has realization [A,  BV, C, DV]  where V := [l 0 0IT. 
After some manipulation it follows that 

[ M ( s ) ] * J M ( s )  = J’ - ( s  + .!?)V*B*(SI - A*)-’ 

x P ( s 1 -  A)-’BV. (3) 

We know that [ M ( s ) ] * J M ( s )  = J’ = 1, so the second term on 
the right in (3) must be identically zero. This cannot be, however, 
since P > 0 and ( S I  - A)-’BV is nonzero (because M ( s )  = 
C(s1- A)-’BV + DV is nonzero, nonconstant). This completes 
the counterexample to the second claim. 

The problems can be fixed by strengthening the assumptions 
somewhat. In the counterexample the J and J‘ have a different 
number of negative eigenvalues (that is, r # p). In 71, control, 
the type of J-losslessness that is important is when J and J’ have 
the same number of negative eigenvalues. 

Lemma 3: Claim 1 and Claim 2 are correct if J and J’ have the 
same number of negative eigenvalues (that is, if r = p). 

This result is known, although it is not stated explicitly in the form 
of Claims 1 and 2 (see [4]). In the above paper’ it is shown that Claim 
1 implies Claim 2, so we only need to prove Claim 1 for the case 
that r = p. If P > 0 satisfies (1) then 

[ M ( s ) ] * J M ( s )  = J‘ - (s + .!?)B*(%I - A’)- lP(sI  - A)-‘B 

and, hence, in that case M is ( J ,  J‘)-lossless. Conversely, suppose 
the (m + T )  x ( p  + p )  rational matrix M is (J,J’)-lossless and 

partition M compatibly as 

Since r = p we have that M22 is square. It then follows (see [2]) 
that U defined as 

:= [ill &] [A’ iZJ1 (4) 

is inner, hence, in particular that U is stable. As in [l], a minimal 
realization of M easily gives a minimal realization of U. By 
minimality and stability of U, the observability gramian of U is 
positive definite and this gramian, call it P ,  can be shown to satisfy 
the three conditions (1). Note that we used here that the M22 is 
square, which is the reason we need that r = p. 
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Sampled-Data Controller Reduction Procedure 

Anton G. Madievski and Brian D. 0. Anderson 

Abstract-The problem of controller order reduction aimed at preserv- 
ing the closed-loop performance of a sampled-data closed-loop system is 
investigated. Fast sampling of the system at a multiple of the sampling 
frequency followed by lifting allows capturing of the system’s intersample 
behavior and yields a time-invariant singlerate system; this then permits 
standard order-reduction ideas to be applied. Special weighting functions 
aimed at preserving the closed-loop transfer function are obtained, and 
weighted balanced truncation is used to reduce the controller. An example 
shows that without the use of fast-sampling, an unstable closed loop can 
result from the reduction. 

I. INTRODUCTION 

The great importance and usefulness of controller reduction is now 
widely recognized, and much attention has been paid to the subject 
over the past years. The main reason is that the linear quadratic 
Gaussian (LQG) and H, design procedures lead to controllers which 
have order equal to, or roughly equal to, the order of the plant ([2] 
for LQG). Often, controllers of a lower order will result in acceptable 
performance and will be desired for their greater simplicity. 
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