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where 
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Therefore, from (74) and (78) we obtain 

These two systems have asymptotically stable homogeneous parts 
with inputs y , 2 1  E M ( l X ( 0 ) l . p ) .  This proves that Z . 2  E 
,tl(lX(O)l,pL). So, from (98), we have r - 2  E ,M(lX(O)l .p) .  
and therefore, 3 E .U(/X(O)l ,p) .  Thus, U E .M(lX(O)J.p). and, 
consequently, E E M (IX (0) 1, p).  Hence 

where po and p,, are locally Lipschitz class IC, functions. The proof 
of global asymptotic stability is the same as in Theorem 3.1. We first 
rewrite the closed-loop system 

3 = 4 z  + p(21) + ba(z1)u(z1.?. <, m )  

+ p b [ c a t  + p ~ ( z i ) u ( z i ,  2 ,  C, m)] 

P = A00 + I i o ~ i  + p ( ~ 1 )  + ba(zi)u(ei .  2 .  C, m )  

C =AoC + Z c o ~ i  + ~ ( z I )  

E = AA< + bna(zi)u(zi. 2 ,  c, nt) 

7 i ~  = -67n + 122 - GIE 

in the form (66) and then proceed as in the proof of Theorem 3.1. 
0 

APPENDIX 
Delfinition A.1: The system .i = f ( t ,  z. U )  is said to be input- 

to-state practically stable (ISpS) if there exist a class KC function 
l j ,  a class IC function 7 ,  and a positive real number d such that 
for any z(0) and for any input U ( . )  continuous on [O. x), the 
solution exists for all t 2 0 and satisfies lz(t)J 5 , O ( l ~ ( s ) l . t  - 
s) + y ( ~ u p , , ~ ,  /.(.)I) + d for all 0 5 s 5 f .  
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Correction to “Adaptive Control of Robot 
Manipulators with Flexible Joints” 

B. Brogliato and R. Lozano 

I. INTRODUCTION 

The above paper’ contains two flaws that were recently brought to 
our attention by Hsu [I]. 1) The first mistake concerns the definition 
of the signal q 2 d  in (6) and (C.20): At time t = 0, the term q z d ( 0 )  
appears on both sides of the equalities in (6) and (C.20). Hence the 
initial conditions on the state and on the desired trajectory q l d  and its 
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first and second derivatives are constrained. 2) The second mistake is 
that the regressor matrix Y4 in (C.18) contains integral terms which 
are not shown to be bounded. Consequently, the stability analysis in 
Appendix C [(C.42)-(C.47)], based on some signal chasing, is not 

The last term within brackets is the new w2, following our original 
notation. After some manipulations using the robot motor equations, 
one gets 

complete. W 2  = U + JnL[-&d + x i 2 1  f k - [ Q l d  - q2d - AX]. (15) 
Concerning point l), it has been shown in [21 that the positive 
definite function V in (3) can be modified to 

Then, as in [3] ,  setting w 2  
the proposed control law yields (as in [3]) 

-u2, one obtains (8). Consequently, 

1 -  + ~ ( Q I  - i 2 ) T I i ( i l  - ~ z )  (1) which is semi-definite negative as required. 
Concerning point 2): Fundamentally. the flaw comes from the 
fact that to be able to define signals q2d ,  q 2 d  which are so that q 2 d  is now defined as (see [2, (23)]) 

measurable and q2d that does not depend on q2 (so that the 
control input in (14) is well defined), we need to filter the first 

Q2d = q l d  + Ii-'((D(ql)?lr + C ( Q 1 , 4 1 ) 4 1 r  f g(Q1) - B1V1) 

(2) dynamical equation (1) to suitably parameterize Dvl in ((2.18). 

where B1 = BT > 0 is a constant feedback gain. This allows 
us to remove the constraint on the initial conditions and to 
prove exponential Lyapunov stability of the fixed parameters 
scheme; see [ 2 ] .  In the adaptive case, the signal Q2d in (c.20) can 
be modified as well to avoid the initial conditions' constraints 
problem. Indeed the term K s," ( V I  - u p ) &  in the right-hand side 
of (C.l)  is replaced by Ii(@l - I&). Then w j  in (C.2), (CS), 
and (C.20) is modified to w5 = - q l d .  This does not affect the 
definition of the other terms in (C.20) since only w j  has been 
modified. 

Another possible solution was suggested to us [l], presented here 
in the nonadaptive case (compare with [3, (3) and (6 ) ] )  

The last term within braces is the new wl, using the notation of 
Appendix B of the original paper. From (4), obtained by requiring 
the expression in (13) to be equal to -VI, we then have 

In the above paper we filtered (1) with an integrator, hence 
the possible unboundedness of the regressor Y4 in (C.18). We 
now propose to use a first-order filter with transfer function 
instead of the integrator. 

Applying the filter to (1) one gets (we drop the arguments for 
convenience) 

(17) 
1 

s+l 
-{Del + Cbl + .q + K(q1 - q 2 ) }  = 0. 

Now we have 

1 
- {Di i }  = 0 4 1  - D(O)i1(0) -- I 
s+l s + 1  

(1x1 

Indeed (18) can be obtained by first noting that Dql = $(Oil) - 
Dq1. Now 

1 
x (04.1 - D(0)41(0)} - -{h41}. s + l  

Then using integration by parts one gets 

which finally yields 

Using the fact that (still integrating by parts) 

lt e - ( t - ' ) l j i l d r  

v -$vi + vT[.JmG2 - IL(xrc + (GI - Gz)] .  (14) we then get (18) by combining (21) and (22). 
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Now from (17) and (18) we have 

1 
DUL = D(0)41(0) + --{041 - D(0)41(0)} 

s + 1  
1 ’  1 + ---{D41} S + l  - -{(c41 s + l  + g + K q l }  

1 
s + l  

+ - - - { I i q 2 } .  

The terms between brackets can be written as Y , ( q l .  &)0 ,  
for some constant vector 8,. Hence & { Y , ( q 1 . & ) 0 , }  = 

&{X(q1,&)}Ot  a KfO, with %s + Y , f  = X(q1.41). 
It follows that (C.18) can be written as 

0 2 1 1  = Y 4 f 8 4  (24) 

with Y 4 f  + Y 4 f  = Y4 for some Y~(QI,&, q 2 ) .  Note also that q 2 d .  & d  

in (C.20) can be computed from position and velocities measurements 
only which is crucial for the algorithm to be implementable. From the 
new parameterization, it follows that if q1,  i1 and q 2  are bounded, 
so is Yd. This was not the case when integrators were used. 

The stability analysis is much simplified. Note first that the 
modification of Y404 leaves the rest of the analysis and algonthm 
unchanged. Hence from (C.41), q1 and 41 are bounded. From (23) it 
follows that q 2 f  = & { q 2 }  is bounded. Hence from (C.20) q 2 d  is 
bounded, and consequently qz  and ql  are bounded. Boundedness of 
4 2  follows by differentiating (C.20) which proves that i 2 d  is bounded. 
Hence from (C.41) 4 2  is bounded. Boundedness of U can be inferred 
by inspecting (C.27) and (C.32). Consequently i2 is bounded also. 

Fig. 1. A tree structure of TS2 

(i. j )  E D should be set to be as large as possible. This conclusion 
is wrong. 

11. A COUNTEREXAMPLE 

Fig. 1 is a TS2 

1 

0 -1 
E =  [B -1 ‘1, B=[l , -1 , -1] .  

The following special type of LIP: 

max BV 
s.t. {;I;% -x 

has a solution 

V’ = [ ” l , l , O , O ] T  

BV* = [1, -1, -1][21,1, 0,OlT 

and 

- 
- 21, l .  

REFERENCES According to the conclusion mentioned above,’  VI,^, V I J ,   VI,^ 
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BV = 21,’ -  XI,^ 
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So it is shown that the proof of Appendix 7‘ is incorrect. 

Comments on “Control of Vector Discrete-Event 
Systems 11-Controller Synthesis” Authors’ Reply by Y. Li and W. M. Wonham 

Zhengyi Zhao 
The result of Appendix 7’ is correct, and its proof’ is intentionally 

sketchy. However, without further clarification, the statement of the 
“basic idea” in the proof is indeed unclear and can lead to an incorrect 
conclusion. We thank Zhao for noting this. A complete proof is now 

Abstract-This paper notes that the proof of Appendix 7 in the above 
paper’ is wrong. A conterexample is given. 

I. INTRODUCTION 

In the proof of Appendix 7 of the above paper,’ the following 
conclusion was used: To maximize  VI,^ - C ~ z , 3 ) t ~ c i . 3 , ~ L , J  for 

Manuscript received May 8, 1995. 
The author is with the Research Institute of Automation, Southeast Univer- 

Publisher item Identifier S 0018-9286(96)04367-X. 
lY .  Li and W. M. Wonham, ‘Control of vector discrete-event systems 

11-Controller synthesis,” IEEE Trans. Automat. Contr., vol. 39, pp. 5 12-531, 
1994. 

sity, 210096, P.R. China. 

provided in the following. 
As in Fig. 4,l we arrange the events and state variables of a TS2 

G into levels as shown in Fig. 1. Denote the set of events in the TS2 
as C and the set of state variables as Cl. Let 2 be the set of integers. 
Define the index set 
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