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1. Abstract 

Radio-wave transmission over the surface of the Earth is a 
subject of enquiry going back to the beginning of the century. In 
this review, an attempt is made to describe the ground-wave 

mechanism that is omni-present. We first call attention to the early 
analytical contributions of Zenneck and Sommerfeld, based on a 
flat-Earth model. The subsequent controversies, particularly with 
regard to the role of the Zenneck surface wave, are outlined. Fur
ther developments by other pioneers, such as van der Pol, Fock, 
Bremmer, Norton, and Millington, are reviewed, and an attempt is 
made to put these in a modern context. We also show that the 
trapped surface wave can be a significant contribution to the total 
ground-wave field, when the earth boundary is sufficiently induc
tive. Mixed-path theory and confinning model tests by Ray King 
arc described briefly, along with calculated propagation curves for 

two- and three-section paths. The appcndcd bibliography includes 
references to related topics, such as tropospheric refraction and 
topographic influences. 

2. Introduction 

The propagation of radio waves has been a subject of interest 
for ovcr a century. Beginning with the original investigations of 
Heinrich Hertz [I], the influence of intervening obstructions in the 
path was a question often posed. In particular, Marconi [2] investi
gated the weakening of the field strength when a hill was located 
between the transmitting and receiving antennas. 

Early conjectures, such as by the prophetic Nikola Tesla [3], 
were that the signal was guided in some fashion by the air-earth 
boundary. At that time, the possible existence of the ionosphere 
was also broached [4]. But the pervading idea at thc time (i.e., at 
the tum of the century) was that somehow the presence of the earth 
was a key factor to be reckoned with. This was the beginning of the 
subject that we now call "ground-wave propagation." In fact, such 

l [Editor's note: Jim Wait died October 1, 1998. This article had 
been reviewed and accepted for publication prior to his death. At 
Prof. Wait's request and after his death, David Hill responded to 
the recommendations of the reviewers and made the necessary 
changes. Jeffrey Young proofed the equations. The Magazine is 
very grateful to David Hill and Jeffrey Young fur their effurt�, and 
to Prof. Wait for his many years of active support of and 
contributions to the Magazine. "In Memoria" for Prof. Wait appear 
elsewhere in this issue. His many contributions to the AP-S and 
radio science communities, of which this article is but one 
example, are perhaps his most-fitting memorials. WRS] 

is the topiC of this review. Of course, the ionosphere plays a role 
that may be dominant Never-the-Iess, understanding the mecha
nism of ground-wave transmission is important in many applica

tions. 

In what follows, we will attempt to employ a consistent nota
tion, which sometimes may differ drastically from that found in the 
early literature. Of course, here we shall also employ the SI (or 

rationalized MKS) units, and a hannonic time factor exp( + jmt) is 

employed throughout. 

3. The Zenneck surface wave 

The first analytical concept that whetted the appetite of lead

ing theoretical physicists of the day was the possibility that the 
air-earth interface supported a surface wave with a low attenuation. 
Indeed, this was the subject of a seminal paper by Zenneck [5]. His 

model (in our notation) was a conducting half-space, for z < 0, 
with conductivity 0' and pennittivity s. The air or insulator, for 

z > 0 , has a pennittivity Co equal that for tree space. The whole 

region is assumed to be non-magnetic, in the sense that the penne

ability is the same as the free-space value J-I-o. For transmission in 

the x direction, following Zenneck, it is assumed that, for z > 0, 
the sole magnetic-field component can be expressed by 

and the corresponding fonn, for z < 0, by 

Hy=bexp(-+uz jgx), 

where bo and b are constants, and where 

( 2 2)112 
uo�g +yo ' 

[ . 
)]1/2 r =0 jJ-l-OW(O' + jew . 

( 2 2)112 
u= g +y , 

(1) 

(2) 

Consistent with Maxwell, the tangential electric fields, corre
sponding to Equations (1) and (2), are 

EOx = -Koboexp(-uoz- jgx) (3) 

and 

Ex = +Kb exp( +uz - jgx), (4) 
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where Ko = uo/(JE:oOJ) and K = u/( (H jE:OJ) have the nature of 
wave impedances. 

Boundary conditions are that tangential-field components are 
continuous at the interface z = O. Clearly, this means that DO = D 
and, at the same time, g is to he determined fmm 

(5) 

Thus, the desired solution for the propagation of the Zenneck wave 
is 

/( 2 2)1/2 jg = jgs = Y oy Yo + Y (6) 

Now , to be meaningful, the real parts of both Uo and u should be 
positive. Then, as a conseqnence, the imaginary part of Uo is nega
tive, while the imaginary part of u is positive. Thus, in keeping 
with the physical concept of a guided surface wave, the field 
amplitudes are attenuated in the directions away from the interface, 
but the phase velocities are downwards, both above and below the 
interface at z = 0 . 

A complementary view is to consider a plane wave, incident 
from above, where tbe x variation is fixed according to exp ( -jgx) . 
In this case, thc rcflection coefficient, at the intcrfacc Z =  0, is 

found to be (Ko - K)/(Ko + K), in tenns of the impedances Ko 
and K. The pole of the reflection coefficient is detennined pre
cisely by Equation (5) in the complex g plane. In either case, the 
phase velocity of the Zenneck surface wave, in the x direction, is 

(7) 

which is greater than c, the speed of light in air. Also, the attenua
tion in the x direction is the real part of jg, in nepers/m. 

Another easily determined property of the Zenneck surface 
wave is the wave tilt of the electric field vector in air at the inter
face. It is defined by 

(8) 

A simple exercise shows that 

(9) 

which is a remarkably simple result. The tip of the electric field 
vector in the xz plane clearly traces out an ellipse, as shown nicely 
by Zemleck [1] almost a cenlury ago. The corresponding surface 
impedance, not described by Zenneck, is given by 

(10) 

which is also remarkably simple, but a result not found in classical 
texts. 

It is useful to note that if the postulated model was a grazing 
plane wave, jg would be replaced by Yo or jk. Then, the wave tilt 
becomes 

[ 2]1/2 
W = (YoIY) 1-(YoIY) , (11) 

which reduces to Equation (\ 0) when Ir6/ y21 «1. The corre

sponding surface impedance for the grazing-incidence wave is 

[ ?]1I2 
z=(Jf1oO)ly) 1-(rolft . (12) 

The idea that a Zenneck-type surface wave could be employed to 
investigate the subsurface eartb layers was pointed out both hy 
Zel111eck himself, and by his colleague, Hack [6]. As we indicated 
above, tbe wave tilt and its cllipsc of polarization is an indicator of 
the 0' and the E: for the homogeneous half space. Actually, Hack 
[6] also extended Zenneck's fonnalism to a two-layer-earth model. 
In fact, Grosskopf and Vogt [7] interpreted their measured 
wave-tilt data in tenns of the Zenneck-Hack theory. As we know 
now, the grazing- or lateral-wave postulate is a more realistic 
descriptor where, particularly at the higher frequencies, 10' + jE:OJI 
is not large compared with 600) (i.e., for frequencies above 1 MHz 

over typical ground conductivities of 10-3 S/m). 

To put the Zenneck wave in perspective, we need to deal with 
the excitation mechanism; that is our next task. 

4. The Sommerfeld problem 

Thc guiding-wave mechanism of the air-earth interface 
secmcd to be a leading contender to explain the long-distance 
transmission of radio signals, based on the statc of the knowledge 
at the beginning of the century. Arnold Sommerfeld [8], in par
ticular, took the lead here in an attempt to put the question on a 
firm matbematical basis. His classical analysis dealt, in a fully rig
orous fashion, with the problem of determining (he fields of elec
tric and magnetic dipoles located, in the insulating half-space, over 
a conducting half-space. In fact, hc also considered the dipoles to 
be located in the planar interface, but this fonnulation seemed to 
have led to some unneeded mathematical complexities. Here, we 
just deal with the dipoles being above the interface, but their 
heights may become as small as desired. The solution is outlined 
very briefly here. 

'With reference to Figure 1, a vertical electric dipole or cur
rent element, Ids, is located at z = h over the conducting half
space, of conductivity 0' and permittivity 6. Thc geometry, as 
shown, and tbe cylindrical coordinates, (r, ¢, z), will be useful for 
later reference. Of course, in Figurc 1, for the vertical electric 
dipole excitation, azimuthal symmetry prevails, and tbus 8/8¢ = 0 . 
Sommerfeld's [8] procedure, recapitulated by many, is to express 

z 

P(r,z) 

Ids 
r 

r 

Figure 1. A vertical electric dipole or current element, located 
over a conductive h alf-space. 
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the relevant field components in terms of a Hertz vector, which 
need have only z components, denoted by Uo for z > 0, and by U 

for z < 0 , Thus, for z > 0 , 

(13) 

(14) 

(15) 

On the other haml, for z < 0, 

(16) 

(17) 

(18) 

Now, we know from basic theory that the primary potential, 

ug, in the insulating region has the simple fom1 [8, 9] 

(19) 

where R = [r2 + (z - h? t2 , The key to the solution is to employ 

the equivalent form 

00 

U(( = JdS(4njsoill rl J uol exp( -uolz - hI) Jo(gr)gdg , (2 0) 
() 

where Jo(gr) is the Bessel function of order zero and argument gr. . (? 2)112 (2 2)1/2 . 
. Agam, we have Uo = g- + 10 = is - k . EquatIon (20) IS 

called the Sommerfeld Integral Identity [8], which is an apt 
descriptor. 

The secondary potential, in the region z > 0, must be added 

to U (( and the resultant potential, for z > 0 , is then 

00 

Uo = Jds( 4njsoill rl J uol{ exp( -uolz - hI) 
o 

+Re(.�-)exp[-uo(z + h )]}Jo(gr)gdg, (21 ) 

where Re(g) is a reflection-coefficient function. For the region 

z < 0, a suitable fonn for the potential is a similar integral, where 

the integrand here involves only the function exp( +uz)J o(gr). The 

boundary-value solution , implicitly contained in Sommerfeld's 
1909 and 1926 papers [8], leads to the result 

(22) 

where, as defined earlier, Ko = uo!(jsoOJ) and K = u!( (j + jsOJ). 
Clearly, the integrand in Equation (21) has a pole at g = gs' as 

given by Equation (6). Also, there are branch points at 

g = 
-./1 0 = k and at g = kN, where N is defined below. Explicit 

expressions for the field integrals are simply obtained by perform-

ing the operations indicated by Equa tions (13), (14), and (15), 
which hardly need be written out. 

While it is often feasible to employ numerical methods for 
the infinite integrals discussed here, it is always desirable to 
examine asymptotic solutions, particularly when kr is a large 
parameter and/or when z and h are small compared with r. Here, 

we will just quote some of these results. 

In the first case, let us look at the expression for the vertical 

electric field, in the air, at z = +0 , and for a source dipole at height 

h = +0. Also, we follow Sommerfeld [8] and Norton [10], and 

assume, at least initially, that kr» I, and also that Ir 0lrl2 « 1. 
For convenience hcrc and later on, we define the complex refrac
tivc index in the lower half-space by N = 1/10 ' and thus 

(23) 

where tan () = 0/( Gill) is the loss tangent, as conventionally 

defined. The restriction here, that INI2» I, seems to have been 

invokcd by nearly all workers, beginning with Sommerfeld and up 
until the present era. 

With the above provisos, 

(24) 

where Eo is a reference field given by 

Eo = -./J1.00JIds(27rrrl exp( -./kr) (25) 

being the vertical electric field at a distance r over a perfectly con
ducting flat carth. With this convenient normalization, the effect of 
finite ground conductivity is accounted for by the "attenuation 

function" F(p) as it is commonly described. In accord with 

Sommerfeld [8] and Norton [10], it is defined by 

(26) 

where p, the "numerical distance," is given by 

(27) 

It is important to note that the error function complement in 
Equation (26) is defined by 

co 

erfc{ipI/2)=(2/ll.1l2) J exp(-z2)dz , 
. 112 .lP 

(28) 

where thc contour, in the complex z plane, is from jp1l2 via a 

straight line to the origin, and then along the real axis to +00. As 
we can see, for the Sommerfeld-Norton problem, argp ranges 

from -7[12 to 0 radians as the phase angle N-1 ranges from 0 to 

7[/4 radians. Within these limits, it follows that for Ipl» 1, the 

leading asymptotic approximation for Equation (26) is 

F(p) =- -1!(2p) , (2 9) 

where succeeding terms vary as p -2 , P -3, P -4, .. .. In this case, 
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EOz ","const.xr-2exp(-jkr), (30) 

which has the expected "lateral wave" behavior to follow contem
porary nomenclature [11]. 

In view of the above, we might ask, "Why doesn 't the ZSW 
(the Zenneck �urface .\Yave) emerge in this limit? Mathematically, 
the answer is that the ZSW pole, gs' given by Equation (6), is 
improper and occurs on the lower Riemann sheet of the complex z 
plane. Physically, the explanation is that the excitation of the ZSW 
by the highly localized source is weak. But, indeed, at short dis
tances, where Ipi is relatively small, the ZSW does play a role, in 

spite of its being on the "wrong" Riemann sheet. This is evident by 
the puwer-series development of Equation (26), given by 

F( ) I .( )112 2 . 1/2 3/2 
P = -) trp + P +}ff P + .... (3 1 ) 

The second term, when multiplied by Eo, leads to an r-I!2 

amplitude dependence. But calculations of IF(p)l, such as dis
played by Norton [10], for the range 0 < Ipi < <Xl and 
- ff!2 < argp < 0, demonstrate that IF(p)1 never exceeds one. 

Thus, in effect, this r -112 term is being swamped by the other 
terms, except when Ipi is small. 

The apparent complexity of the analysis here, even for this 
highly ide<!lized problem, results from the closeness of the ZSW 
pole at g � gs' albeit on the "wrong" Riemann sheet, and the 

branch point at g = k . Dut actually, for smaller values of INI (e.g., 
N = 2), the integral representation such as Equation (2) can be 
evaluated by a first-order saddle-point method. In this case, the 
pole gs is no longer near the branch point or the associated saddle 
point [II, 12]. Then the modification of Equation (29) is 

(32) 

where 

(33) 

which is strictly only valid if IPel » I. Nevertheless, this suggests 
that a useful uniform approximation, in place of Equation (24), is 

to say that 

(34) 

can bc employed tor all valucs of Pe tor the homogeneous halt� 
space of complex refractive index N. In passing, it is also useful to 

note that Equation (33) is equivalent to Pe = -j(kr/2)W2. W is the 
complex wave tilt, as given by Equation (II), where it was derived 
for a plane wave at grazing incidence. 

To allow Equation (24) to be employed at smaller ranges, 
where the condition kr» I is violated, we may proceed effec
tively in twu ways. First of all, we note that, for (J" = <Xl, for any 

value ofkr, 

wherc the terms varying as 1/ r -2 and as 1/ r -3 correspond to the 
induction and static fields, respectively. These terms are important 
when kr is of the order of one or smaller. Bnt, in this case, the 
numerical distance defined by Equation (27) will satisfy Ipl« 1, 

so that F(p) =' I. Thus, we might argue that Equations (24) and 
(34) are uniformly valid for all kr, provided N is not near one. 

The second way to deal with the problem is to asymptotically 
cvaluate thc integrals 111 the exact representations for Eoz when 
Equations (14) and (21) are employed. Then, we would find that a 
working expression, useful for any range, would be 

where Pe is given by Equation (33). This form differs insignifi
cantly from Equation (34) if Eo, defined by Equation (35), is 
employed. Actually, Equation (36) is the same as the form pro
posed by Norton [10]. 

5. Controversies rage 

While wc arc still talking about thc case z = h = 0 (i.e. 
ground-based suurce and observer), it is appropriate to give a short 
account of the famous "error in sign" in Sommerfeld's original 
fonnulation. It now appears that in his 1909 version of [R], there 
was an apparent problem on how to define the complex argument 
jpII2 of the function erfc(jp!l2) . [The reader is reminded here that 
a time factor exp( + jr1Jt) is being employed]. It appears that 
Sommerfeld placed jpl/2 in the wrong quadrant of the complex 
plane, so, as a consequence IF(p)1 actually exceeded one for a 
range of values ofp, even when the argument ofp was in the range 
from 0 to -ff!2 radians. Snch was evident in a 1911 paper by 
Sommerfeld [13], where calculations were carried out using the 
inconect sign of argp. Actually, in the 1926 version of [8], the 
error function of complex argument was handled properly. But this 
came after various claims were made that the ZSW played a major 
role in accounting for long-distance transmission of radio waves. 

The key paper to set the record straight was a brilliant analy
sis by Hermann Weyl [14] who employed a spectral formulation of 
the problem that indicated that the ZSW was not a dominant con

tribution to the total field. Unfortunately, the celebrated 1909 paper 
of Sommerfeld left its mark on the radio-engineering community. 
Fur example, a lengthy paper by Bmno Rulf [15] shuwed exhaust
ive and detailed plots of the attenuation function F(p), in both 
amplitude and phase, for a wide range of p. But, alas, the curves 
are wrong. They exhibit spurious inLerference patteTIls that play no 

role for the homogeneous half-space modeL Rolf appears to have 
used the wrong sign when dealing with arg p. Curiously, his 
curves apply to the unlikely situation that his half-space model of 
the homogeneous eanh had a negative dielectric constant. An 
example of such a homogeneous medium is a cold lossy plasma 
[12], but we will not pursue this question here. 

At this time (i.e., in the I 930s), there was a flurry of activity 
on the question of the validity of the Sommerfeld theory, including 
the modi tied 1926 version. An important analysis here was made 
by vall der Pol and Niessen [IG], who confirmed that the physical 
form of the Sommerfeld 1926 version was correct. Further careful 
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analytical studies of the basic integrals were carried out by Rice 
[17] and by Wise [18]. Both validated the Sommerfeld-Norton 
form for F(p). 

In spite of the apparent closure of the analytical debate, the 
controversies would not die. The late Kenneth Norton, an eminent 
radio engineer in the USA, exchanged numerous letters with 
Sommerfeld. An example [19] from Sommerfeld to Norton was 
written while the former was on holiday in the Austrian Tyrol. 
Sommerfeld never agreed an error or miscue had ever been made. 
Two later letters from Norton [20, 21] indicated his views on the 
separation of surface waves and space waves. Sommerfeld 
acknowledged Norton's communications, and suggested he com
pare his results with those of van der Pol and Niessen [16]. Of 
course, there is a consistency here, because Norton [10] based his 
papers on van der Pol and Niessen! 

Another leading researcher in the USA, working at the Bell 
Laboratories, was Charles Burrows. He carefully measured the 
field strength at 150 MHz, for a distance range from one to 
2000 m, over a deep, calm, lake near Seneca, in upper )Jew York 
state [22]. He showed, using data on the electrical properties of the 
lake water (independently obtained), that the observed field 
strength vs. distance was in full conformity with Norton [101, but 
differed from Rolf [23]. 

6. The space wave and the Norton surface wave clarified 

To simplify the above discussion of physical principles, we 
set z = h = O. For nearly all practical cases, one or both of the 
heights z and h are nonzero. There has been a great deal of discus
sion in the literature, for the past 50 years or more, on the form the 
theory should take for the general case of raised terminals. The 
pertinent geometry is again shown in Figure 1. Actually, van der 
Pol and Niessen [16] had considered this case. But it was the tire
less Norton [10] who developed an improved form for the Hertz 
potential for arbitrary heights (i.e., (z + h)/r need not be small 
compared with one). This writer [12], and particularly his former 
colle ague , Ray J. King [24], proposed various forms that had the 
uniform property of reducing exactly to geometrical optics, for any 
N, at higher elevation angles and under the condition that kR' » 1. 

Here, R'= [r2+(z+h)2t
2
, as indicated in Figure 1. The form 

[12] ufthe solution adopted here, for z and h greater than or equal 
to zero, is 

where 

P _.( ) 1/2 -W' ,, ( ·W.!/2) -JkR' =.1 11:pe e er,c .1 e , 

C=(z+h)/R' , 

S = rj R', 

(37) 

(38) 

(39) 

(40) 

(41) 

Of course, in terms of the real angle B, shown in Figure 1, 
C = cos e and S = sin e . So, for relatively small heights, S is near 
one. Such is often assumed, for example, in writing Equations (39) 
and (40), without proper explanation. Also, in such cases, C is, in 
effect, rep laced by (z + h) / r . 

An alternative form of P in Equation (38) is 

(42) 

where 

(43) 

is the same function as F(p) defined by Equation (26). 

Using Equation (42), it is now very instructive to rewrite 
Equation (37) in the decomposed form 

(44) 

where 

(45) 

and 

(46) 

and where D = (4tg"sollJ t . Then, on using Equation (39), we see 
that 

(47) 

(48) 

In Equation (47), (C-t<)/(C+t<) can be identified as the exact 
foml of the Fresnel reflection coefficient for a TM plane incident 
on the half-space with complex refractive index N. Thus, 

U�I) + De-jkR/R can be relabeled uf/sw, to indicate that it is the 
Norton Surface Wave. Loosely speaking, it is the correction to 
geometrical optics to account for the wave dynamics at low eleva
tion angles. It is useful to note that for the grazing limit (i.e., 
C � 0 or () � 90°) , the space wave vanishes. Then, 

(49) 

where 

Pe = -j(kr/2)t<2, (50) 

(51) 
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Then, 

(52) 

which is in accord with Equation (34). 

Sometimes, the fields associated wilh UOIVSW are identified as 
lateral waves. Indeed, such is not inappropriate, but the strict 
equivalence is really only valid for large numerical distances. Our 
point is that the NSW (Norton Surface Wave) is to be defined as 
the difference between the total wave field and the easily-com
puted space wave or geometrical-optical field. [Fortunately, such is 
consistent with the most recent recommendations of the IEEE 
Wave Propagation Standards Committee; see the Appendix for 
definitions of various waves]. 

At this stage, perhaps it is useful to say something again 
about the concept of surface impedance in the present context [12]. 
The asseltion (for want of a better word) is to specify that, at the 
surface of the half-space, 

(53) 

where, with a certain amount of hindsight, a suitable form for the 
surface impedance Zs is selected. It's an interesting exercise to 
show that the solution for Uo for the dipole source model, as in 
Figure I, can be obtained by applying this impedance condition, 
provided (hal we set Zs = 120Jr,A" where ,A, is given by Equa
tion (41). Actually, Ray King [24] has also employed the surfacc
impedance model, in an independent integral-equation solution, to 
obtain essentially the same result as given here by Equations (37) 
or (44). 

7. The relevance to layered mo dels 

The beauty (in the cyes of the beholder!) of the surface
impedance technique is that extensions to layered-earth models are 
readily carried out, without having to deal explicitly with solutions 
within the layers. As an example, consider the two-layer structure 
shown in Figure 2. While it is a straight-forward but tedious exer
cise to solve this particular problem, ab initio, there is a great sav
ings in labor aJld mental anguish to recognize that the surface 
impedance in the spectral g plane is [121 

(54) 

Here, ZAg), as given by Equation (54), is exact, but bear in mind 
it is a function of g. Corresponding expressions for any number of 
layers are givcn elsewhere [12, 25]. The equivalent circuit for the 
present two-layer case is shown in Figure 3. In this case, Zs(g) is 
the input impedance, at z = 0, of a section of transmission line of 
length hi, with propagation constant u" and characteristic imped
ance K, . The line is terminated by an impedance K2. 

z 

Ids I h 

P (r, z) 

----------��----------------� r 

Figure 2. A vertical electric dipole located o ver a two-layer 

conductive half-space; otherwise, the geometry is the same as 

in Figure 1. 

I 

� ------ h 1 ·� 

K� L 

Figure 3. An equivalent transmission-line circnit for a two

layer conductive half-space. 

It now follows that the desired solution for Uo, for z > 0, is 
given exactly by Equation (21), but now we replace the expression 

in Equation (22) for the reflection function by 

R ( ) _ (Ko - Z,) 
e g - (K +Zs) , 

(55) 

where Zs (=0 Zs(g) is given precisely by Equation (54). For the 
problem posed, the solution is exact, as in the case for the homo
geneous half-space. 

We then argue that the solution given by Equations (37) or 
(44) is still valid, in an approximatc sense, if ,A, there is now 
replaced by ,A,pjJ, the effective normalized surface impedance, 
given by 

(56) 

such that in Equation (54), g is everywhere replaced by kS where, 
as before, 

This seemingly ad hoc procedure certainly yields the correct result 
for the space wave part of Uo in Equation (45) . But the portion 

U62) should no longer be called thc Norton Surface Wave or a lat
eral wave. As we shall see below, the physics are quite different. 
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8. The trapped surface wave 

To illustrate the fonn of the layered-earth solution, let us 
again take z = h = 0, which means that the space wave vanishes. 
The resultant solution is given again by Equation (24), where 
F(p) is defined by Equation (26), but here, we denote the numeri
cal distance p by 

(57) 

Now it can be determined that argp indeed can be positive for 
various layer parameters. To illustrate this in the context of the 
model shown in Figure 2, let us assume that the frequency is suffi
ciently low that 0'1 » CIW and O'z » czw, and let us also neglect 
any magnetic contrasts (i.e., j.JI = /-12 = /-1 = /-10)' Then, with the 

Ii rth 
" ( . )

112 d common u er approximatIOns ul � 11 = JO'Ij.JW an 

u2 � 12 = (jO'lPW )112, it follows readily from Equation (54) that 

where 

( )IIZ 
A _ jk _ COW -)7[14 
DI --= � e , 

YI 0'1 

Q _ [YI + 12 tanh ylhl ] 
- rr-;-.+ YI tanh Ylhl ] ' 

The fonnula for the numerical distance is now given by 

where 

(58) 

(59) 

(60) 

(61) 

(62) 

As indicated, for this simple model, the complex dimensionless 
function Q plays an important role. Tn Figures 4a and 4b, the 
amplitude and phase, respectively, are shown plotted as a function 

of the parameter (UIPW )
112 hi for various values of the ratio 

yi/yz = (0'1/Uz)112 . In particular, it is noted that if this ratio is less 

than one (i.e., for a relat ively higher-conducting substratum), the 
phase angle of Q , and hence the phase angle of p, can be positive. 
Such would not occur for any homogeneous earth modcl. 

Another special illustrative case is when the lower layer is 
perfectly conducting (i.e., U 2 = (0). Then, according to Equa
tion (54), without further approximations, 

(63) 

If then one considcrs that the layer is sufficicntly thin, such that 

iulhli «1, we see that 

(64) 
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Figure 4a. The amplitude of the correction factor Q for a two

layer conducting halt�space, as shown in Figure 2. 
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Figure 4b. The phase of the correction factor Q for a two-layer 
conducting half-space, as shown in Figure 2. 

Then, again taking PI = Po = P , 

(65) 

where y?=jpW(O'I+)CIW), Now, we know that if hl=O, 
7s(g) = 0 and p = 0 , whence Eoz = Eo, so the effective value of 

g, in Equation (65), will be well approximated by k. Furthennore, 
if 0'1 = 0, corresponding to a thin dielectric coating layer, 

(66) 

This result is identical to Collin's [26] expression for the surface 
impedance for grazing incidence of a TM plane wave onto such a 
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surface. It is also useful to note that a uniform perfectly conducting 
surface of small roughness also exhibits a surface impedance 
which is highly inductive [27]. Accordingly, in such cases, the 
phase of the numerical distance approaches +11:/2 radians 

A relevant exercise is to show how the magnitude IF(p)1 
varies as a function of Ipl for various phase angles of p. To allow 
for cases of physical interest, argp = b can range from -Jr/2 to 
+11:/2 radians, or from -90° to +90°. Here, the explicit expression 
for the attenuation function is written 

where 

2 z 2 erj(Z) = 172 f exp( -z )dz. 
11: 0 

(67) 

(68) 

The contour of the error-function integral is from tlle origin to tire 
complex Z, in tire z plane, via a straight line. We note here tlrat 
jpl!2 = lp1l2 I exp[j(Jr+argp)/2] specifies the complex location of 
the upper limit. The following asymptotic expansions [12], strictly 
valid for Ipl-+ co , are useful: 

1 lx3 lx3x5 F(p)=---�--��-. . · for b < O, (69) 
2p (2p f (2p)5 

where b is the phase angle of p. The apparent discontinuity 
between Equations (69) and (70), at b = 0, is of no consequence, 
since asymptotically the multiplier e -P vanishes. Actually, the 
power-series expansion for F(p) given by Equation (31) is valid 
for all complex values ofp for thc argp from -Jr/2 to 11:/2, but it 
is only useful for smaller values of p. In general, numerical inte
gration of Equation (68) provides the necdcd data in what follows. 

The function IF(p)1 is shown plotted in Figure 5 for Ipl 
varying from 10-3 to 50, for b varying from -90° to +90°. Not sur
prisingly, there is a considerable enhancement of the field for 
positive phase angles of p. This is in conformity with Equa
tion (70); the leading term, when multiplied by Eo, can be identi
fied as a trapped surface wave: it has an amplitude variation 
according to (1/ r1l2) exp( - Re p), and a phase velocity less than 

c = (JioEor1l2 It is not a Zenneck Surface Wave, which would 
have a phase velocity greater than c! 

The importance of the trapped surface wave (TSW) for 
ground-wave transmission over stratified or uniformly rough ter
rain has not been adequately stressed in the past. But further dis
cussion can be found in the references [12,28-32]. It is interesting 
to note that in Chapter 15 of [33] and in [34], the authors deal with 
similar layered models, but the trapped surface waves do not 
appear. 

For the sake of conciseness, we have restricted attention, up 
to this point, to a flat-earth model for a veI1ical-electric-dipole 

3·2 r-
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Figure 5. The amplitude of the propagation factor F(p) or thi' 

attenuation function as a function of the numerical distance 
(detail for large p values is not shown). 

excitation. As such, we are really talking about vertically polarized 
ground-wave transmission, to distances where earth curvature is 
not important. The extensions to magnetic dipole excitation and to 
arbitrary orientations of both dipole types, again for a flat earth, are 
described elsewhere [8, 10, 32-41]. Also, the excitation of the 
Zenneck Surface Wave by an appropriately tapered vertical apcr
ture is considered in [37]. 

9. Earth spbericity considered 

We have deferred the discussion of earth curvature in order 
to clarify some contentious issues that have arisen in the distant 
and recent past. But to deal with the actual physical world, we 
certa.inly need to adopt a spherical model. Perhaps the key paper 
here is by G. N. Watson [42]. He began with the classic harmonic
series solution for a dipole, in the presence of a homogeneous 
sphere of radius a, and with electrical propeliies given by 0', [;, 
and Ji. The surrounding space had properties So and )1.0, with 
zero conductivity. While the solution was mathematically correct, 
the series representation, involving spherical Bessel functions of 
integer order, was notoriously poor in convergence, because ka, the 
sphere radius in wavelengths, was enormous. Watson's first step 
was to represent the series by a contour integral that enclosed the 
real axis of the complex wave-number plane. Then, he wrapped the 
contour around a manageable number of complex poles, which 
providcd a highly convergent residue series in the shadow region. 
We refer the reader to other places [e.g. 12,43,44], or to Watson's 
original analysis [42] for details. 

To implemcnt the residue series solution it was necessary to 
locate the poles in the complex wave numher plane. An e�sential 
task here is to deal with the solution of the eigenvalue equation: 

(72) 

where h�2)(x) is the spherical Hankel function of complex order v 
and argument x ( � ka ). In our lexicon, '" is the surface impedance 
of the sphere which, strictly speaking, is a function of v. As usual 
in our exposition, '" has been normalized by (Jio/ CO)1!2, or 12011:. 

The discrete pole locations, at v = v s' determine the angular varia
tion of the propagation. Staying away from the antipode, we can 
say that the field of an individual mode of order s varies as 
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[sin(d/a )t/2 exp( -jvsd/a), where d is the great-circle distance to 

the observer. Important contributions to determining the complex 
pole locations Vs were made by Wwedensky [46], van der Pol and 
Bremmer [47, 48], and Eckersley and Millington [49]. Recognize 
that for the important modes (i.e., those with low attenuation), both 

v sand ka are large parameters, but their difference, Iv s -kal ' is of 

the order of (ka )1/3 . This suggests that a key variable is t, defined 

by 

( 2 )1/3 t =  ka (v-ka), (73) 

as employed consistently by Fock [50], Feinherg [51], and other 
Soviets. The key asymptotic approximation amounts to represent
ing the spherical Hankel function by 

w(t) is the Airy integral, defined here by 

w(t) = 1r -112 J cxp[tz -.iJdZ , 
c 3 

(74) 

(75) 

where the contour C runs, in the complex Z plane, from 00 ej2rr/3 to 
the origin, and then along the real axis to +00. Actually, Equa
tion (74), or its equivalent, was employed over a century ago by 
the Dane, Ludwig Lorenz [52], who employed cylindrical Hankel 
functions of order 1/3 and 2/3 and complex arguments. van der Pol 
and Bremmcr [47, 48], in their extensive studies, also consistently 
employed these rather awkward multi-valued functions that are 
prone to misinterpretation. This writer, in all deference to his 
mentor HendriclIs Bremmer, prefers the more convenient Airy 
function forms. Then, the mode equation, as given by Equation 
(72), takes the simpler form 

w'(t)-qw(t) =0, (76) 

where 

q = -j(ka/2)1/3 A. (77) 

H's also useful to note that w(t) satisfies what is known as Stokes' 

equation 

w"(t)- tw(t) '" 0, (78) 

valid for all complex values of l. Primes here in Equations (76) and 
(77) indicate differentiation with respect to t. 

The next non-trivial chore is to determine the roots of Equa
tion (76), which are designated ts' There are many good references 
to this particular task, notably [12, 48, 49, 53, 54]. The evaluation 
of the needed residues of the complex poles is straight forward, 
where typically one makes use of Stokes' equation or its equiva
lent. 

Leaving aside many details, we will now write down the 
resulting radial (i.e., vertically oriented) electric field EOr in the 

air, at a great-circle distance d, for the radial (i.e., vertical) electric 
dipole source of moment Ids. The result is given by the so-called 
"residue series:" 

where 

Eo = -J!JoOJJds e jkd 
2nd 

(79) 

(80) 

is a reference field, and W(x,q) is the propagation factor. Actually, 

Equations (79) and (80) are analogous to Equations (24) and (25), 
respectively, for the flat-earth case. In the present case, 

x=(ka/2)1/3(d/a) is a normalized range parameter, and q is 

defined by Equation (77). Then, 

where 

(82) 

is a "height-gain" [unction. Here, Ya =: [2/(ka )f3 kha and 

Yb = [2/(ka )t3 khb, where ha and hb are the heights of the source 

dipole and the observer, respectively, above the surface of the 
earth. A number of approximations are intrinsic here. These are 
that ha and hb are somewhat less than the range, d, while the latter 

is less than the earth radius, a. Actually, the approximation 
Gs(Y) =: I + jAkh, where h = ha or hb, is valid for the dominant 
modes being the same as for a flat earth. 

The most extensive presentation of numerical results for EOr 
is by Rothcram [55J, who also accounted for the modification 
caused by normal atmospheric refraction. The well-known and still 
very useful paper by Norton [56J is based essentially on the leading 
tem1 of Equation (81), which is then augmented by the comple
mentary flat-earth results. The transition between the spherical and 
the planar predictions is "cngineered" by a graphical procedure, 
which is surprisingly accurate. Another early and also very useful 
development was made by Burrows and Gray [57]. Their "shadow 
factors," in a sense, were a concept later known as "Fock Theory." 
In this c011llection, there exists a beautiful exposition in a Lockheed 
report by Nelson Logan [58]. A follow-on paper by Logan and Yee 
[59] dealt specifically with the attenuation and phase characteris
tics of the creeping waves on convex cylinders. 

An interesting question can be posed. \Vhat happens to the 
residue-series representation, such as given here by Equation (81), 
when the earth curvature vanishes, that is, when a -c> 00 ? The con
vergence of the series would seem to be increasingly bad. Earlier 
numerical studies showed that the spherical-earth propagation fac
tor did lend to the flal-earth case, if 100 or more terms in the resi
due series were taken. But the analytical connection was not at all 
obvious. Here, the genius of Bremmer [60] came to the fore. Using 
his approach, this writer [45, 61J found that the following series, in 
inverse powers of ka, was valid: 
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W(x, q) '" F(P) -( �} - j(fffJ)1I2 - (1 +2P)F(P)] 

+06 {1 - ;(np)112(1 _ P) - 2p +%p2 +r�2 - 1]F(P)} (83) 

+ terms in 89, 012, etc . ,  

where (53 = -V (2q3) = j / (kals') . This type of expansion was use

ful in a region where the flat-earth atlellllation F(p) was becoming 
inadequate to predict the phase of the ground wave. Of course, at 
larger distances, the residue series has a manageable convergence. 
Furthermore, in the overlap region at intennediate ranges, thlC con
sistency of the flat-earth-curvature-corrected form, as given by 
Equation (83), with the residue series, was an excellent check on 
the numerical work. 

There is another theoretical point of view which helps one 
(i.e., this writer) reconcile the apparent disparity of the solution 
forms between the flat-earth results and the residue series at short 
ranges over the spherical earth. The original Sommerfeld solution 
for the dipole over the homogeneous half-space involved an inte
gral with a branch cut at g = k .  The corresponding branch cut, in 
the lower half-space of the complex g plane, led to a continuous 
spectnun of waves. But this was really equivalent to the totality of 
the residue series, when the infinite string of these was considered 
in the limit of zero curvature. 

A related and highly desirable property of the spherical-earth 

residue-series solution is that the radial wave functions h��)(kr) 
are orthogonal over the range a < r < 0') ,  when the physical prob
lem is formulatcd with an impcdancc boundary condition at r = a . 
[The joker, of course, is that the surface impedance must not 
depend on the mode number. In this case, for a finite earth radius a, 
the mode spectrum is entirely discrete, much to the surprise of 
some of my esteemed colleagues] .  

10.  Mixed-path theory 

The needed extension of the spherical earth, as formulated 
above, to allow for lateral non-uniformity is now considered in a 
rather limited context. The classic example is the situation when 
the path, between source and observer, passes from lahd to sea or 
from sea to land. Apart from some early empirical approaches to 
predict the field-strength-versus-distance variation, the first ana
lytical proposal was put forth by George Millington [62]. He 
argued that (he transmission up to the coastline, from a land-based 
transmitting antenna, behaved in the manner as for a fully uniform 
or homogeneous path. Beyond the coastline, the propagation was 
assumed to behave as i t  should for all al l-sea path, but with an 
adjustment to allow continuity of the venical electric fidd at the 
coastline. For transmission in the reverse direction, he employed 
the same argument. But, 10 and behold, he found that the resultant 
fields, for the same source-dipole current moment, were different. 
Undeterred, he then took the geometric mean of the two predic
tions and asserted that such was a "good'" estimate of the actual 
field. Indeed, reciprocity is now satisfied. George's keen intuition 
did not fail  him, because later analytical developmcnts, as dis
cussed below, showed (hal slIch a "Iashed-logether formulation" 
had validity, in a limited sense. 

Again it was Bremmer [63] who was inspired then to provide 
a firm analytical basis for this mixed-path problem. This writer 

received an early personal account of this work in 1 955, from 
Bremmer, following his presentation at the 1954 URSI General 
Assembly in The Hague. His multiple-scattering approach, while 
rather complicated, did, in an asymptotic limit, reproduce 
Millington' s  geometric-mean formula. 

A somewhat more general technique (0 deal with mixed-path 
geometries is based on the compensation theorem, as formulated 
by G. D. Monteath [64, 65J. I had the good fortune to visit 
"Monty" at the BBC Research Labs in Tadworth, Slmey, in May, 
1 956. At the time, we discussed how his formulation could be 
employed to set up an integral equation for propagation over later
ally inhomogeneous paths. But, to introduce the topic here, let me 
outline the basic concepts. 

Monteath' s  compensation theorem is actually related to 

Lorentz's reciprocal relationship for vector B and H fields [66]. 
In the present context, it is applied to a smooth surface or interface 
of surface impedancc Z' , which may be any function of the sur
face coordinates. Then, an identical reference surface is taken, 
which has a laterally uniform surface impedance Z. In what fol
lows, Z' and Z are referred to as the modified and unmodified sur
face impedances, respectively. Now, we locate two short antennas, 
denoted a and b, over the surface. Then, the mutual impedance 
between the terminals of these antennas is denoted Z �b for the 
modified surface, and zab for the unmodified surface. Following 
Monteath [64, 65], we have the elegant-but-deceptively-simple
appearing result: 

Z�b - zab = Ua1hflJJ[Ea x Hh- Ebx HaL dS , (84) 
s 

where BE, and HI, are the vector electric and magnetic fields over 
the modified surface for a current Ib injected into the terminals of 

antenna b, and Ea and Ha arc the vector fields over the unmodi
fied surface for a current fa injected into the terminals of antenna 
a. As indicated by the subscript n in Equation (84), the normal 
components of the cross products are taken, and the integration is 
over the surface S where Z' differs from Z. In our discussion, the 
tangential fields satisfy the appropriate surface-impedance bound
ary conditions, but actually, Equation (84) is valid in a more gen
eral sense. 

In Monteath's engineering research, Equation (84) was 
applied to antenna ground systems at MF, where the modified and 
unmodified tangential magnetic fields did not differ significantly, 
so that the modified tangential field Hbt could be replaced by the 

unmodified field Hbt . The modified tangential electric Held Ebt is 

then replaced by -2'[ DX Hbt ] . Such an approach can be very use

ful for a number of problems, in order to gain an initial assessment. 
But, here we will go a step further, and show how one accounts for 
the change of the modified tangential fields hefore doing the dou
ble integral in Equation (84). 

To simplify the discussion, we consider an idealized two
section mixed path, as indicated in Figure 6, where the great-circle 
distance bctween antennas a and b is d. The surface impedance is a 
constant Z, except for the modified portion of constant surface 
impedance Zj of length dl , measured from antenna b. Now, 
according to Equation (84), 

z�b - zab = Ua1bfl(ZI - Z)JfHat ' Hbt dS , 
s] 
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Figure 6. The geometry for propagation over a two-section 

spherical earth, where great-circle distances d and d1 are 

shown. 

Figure 7. The geometry fur a three-section spherical-earth 
path. 

where Rat and Rbt are the tangential magnetic fields over the sur
face SI to the right of the junction between the two regions . The 
double integral can be simplified if we apply a stationary-phase 
argument, to reduce it to a line integral of length dl • This is justi
fied by noting that contributions from ofIthe great-circle path tend 
to be self-canceling. This aspect of the problem is discussed in 
some detail elsewhere [3 1 ,  36, 67]. Also, in Equation (85), it is 
useful to note that 

and 

fJ ' . _ ·a' h.Jf-lOw -jkd W( ) 2ab - 2nd e x,q , 

(86) 

(87) 

where W' and W are the propagation factors for the modified and 
the unmodified cases, respectively. Here, fa and .eb are the effec
tive lengths of antennas a and b, respectively. We can also express 

Hat and Rbt in terms of these propagation factors. Leaving aside 
further details, we anive at the following one-dimensional integral 
equation [681: 

W'(X, q,ql ) = (x/n)
l IZ e-}JrI4(ql _ q) 

Xl 
x f W(x - X" ,IJ)W'(x",ql ,q)[x"(x - x" )r1l2dx'" 

o 

where, to be consistent with earlier notation, 

x = 
( ka )113 !J. , . _ (ka)113 dl x,, = (ka)1/3 � , 

2 a XI - 2 --;; ' 2 a 

( ka )113 (ka )113 

jq = 2 "" , JIJI = 2 ""I ' 

"" = � /'; = � 120n ' I 120n ' 

(88) 

Here, the unknown attenuation function or propagation factor is to 
be detem1ined. Various numerical methods can be brought to bear 

without making any further approximations. But in the case of 
radiowave propagation over the earth's  surface, across junctions 
such as flat-lying coastlines, the reflections are very weak. This 
means that when Xl is negative or when dl < 0 in Figure 6, 
W'(X,q,IJ1) can be replaced by W(x, IJ) . For the same reason, 

W'(x" ,ql, q) in the integrand of Equation (88) can be replac�d, for 

the case XI positive or for dl > 0 ,  by W(X" ,ql ) ' Thus, in effect, 

we have reduced tl1e integral equation to an integral formula to cal
culate the field variation as the observer crosses the coastline. It i s  
somewhat of an improvement uver the case where w e  replace W' 
in the integrand of Equation (88) by W( x", qd , which would be a 
first-order perturbation . 

The extension of the above procedure can be carried out for a 
multi-section path. For example, in the case of a three-section path, 

such as shown in Figure 7, the resultant form for the propagation 
factor is given by 

Xl [ ]1/2 f [ ]-1I2 + x/Un) (ql - q) W(x - x", q)W(x" ,qd x"(x - x") dx" 
o 

Xl +X? [ ]1/2 f [ ]-112 
+ x/Un) (qz - q) W(x - x",IJ)W'(X",IJI , IJZ) x"(x - x") dx" 

(89) 

where 

Using Equation (88), we see that in Equation (89) 

W'(X" ,IJl o q2 )  = W(x" ,IJz) (90) 
1 /2  

x"-xI 

+[x"/(Jn)] (q2 IJI ) J W(x"  X', QI )W(X', q2 )[(X" - X')x't /Zdx'  

Thus, Equation (89) is an explicit formula to calculate transmission 
over the three-section path. Actually, the integrations can be done 
employing the residue-series representations for the W functions, 

f = 1 .1 2  M Hz 
CTs = 4 
crt ;;: 9 X 10-3 

300 

Figure 8. Millington's data for transmission from land to sea, 
where the coastline is 80 km from the transmitter (the solid 
curve is calculated). 
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but tbese lead to doubly and triply infinite series. Usually, it is 
simpler to employ numerical integration of these convolution inte
grals. 

As indicated earlier, these mixed-path formulations consis
tently neglect reflections at the junctions between different homo
geneous regions . Also, near-field effects are ignored, in that static 
and induction fields are not incorporated into formulations. Further 
discussion of tho methodologies, such as reviewed here, and exten
sions of the analytical techniques, are given in the references [29, 
36, 61 , 69-72, 74, 75-90]. 

1 1 . Experimental studies 

The experimental confirmation of mixed-path propagation 
theories is available in a few limited places. The classic example is 
shown in Figure 8, where the transmission from a BBC transmitter 
in England at 1 . 1 2  MHz is recorded as a function of distance, for 
propagation across a coastline, 80 k111 from the source, out over tbe 
North Sea to a range of 200 km. The data points are taken from 
Millington [62], while the calculations are based on Equation (88) 
for a sea conductivity of 4 mhos/m and a land conductivity of 

9 x 1 0-3 and a dielectric constant of 10. The dashed curve is the 
calculated extension, assuming the path was all land. The cele
brated "recovel)' effect" is certainly in evidence here. One shonld 
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bear in mind that the observations of the vertical electric field were 
effectively at zero elevation, as were the calculations. For receiving 
antenna heights of 300 m or more, the "recovery effect" is much 
diminished. 

While experiments in-situ are useful, the conditions upon 
which they are based are not usually known in sufficient detail to 
allow for a fully satisfaclory confirmation of the theory. In such 
cases, tbere is much to be said for scale-model tests. Vv'hen dealing 
with low or medium radio frequencies (e.g., 1 0 kHz to 3 MHz), the 
microwave range is particularly convenient for scaling the essential 
frequencies. This writer was involved in facilitating a program at 
the University of Colorado, in Boulder, which was carried forth by 
Professors Sam Maley, Ray King, David Chang, Ezzy Bahar, and 
others, including graduate students. The time period was roughly 
from 1 957 to 1 977, hut the activity was not continuous. Certainly, 
the pinnacle of achievement during this era was the PhD research 
by Ray King. His thesis [67] was completed in 1 965. He continued 
his efforts at lhe University of Wisconsin for the next decade. 

An early example of the scale-model work was to confirm tbe 
grOlmd-wave propagation theory over a smooth homogeneous 
spherical earth. Actually, in the laboratory model, the surface 
employed was cylindrical, rather than spherical. A 2.5 em foam 
coating on the melal cylinder exhibited an effective (normalized) 

surface impedance [,0 = 0.625 eiO at 4.765 GHz. In Figure 9, the 
results of Ray King [36, 67] are shown when the relative fields are 

1 8  IEEE Antennas and Propagation Magazine, Vol. 40, No. 5,  October 1 998 



plotted for the distance d from I O ta 60 cm, both for a flat surface 
and for a cylindrical surface with a radius of 123.4 cm. (i.e., 19.6 
free-space wavelengths). The agreement between theory and 
experiment is rather good. While this particular test was for a 
cylindrical surfacc, the diffraction process is closely related to that 
for a spherical coated metal sheet, which is a bit difficult to fabri
catc. The main difference is that the reference field for the cylin
drical model is slightly different than for the spherical modeL 

A rather convincing confirmation of the two-section mixed
path theory is shown in Figure 1 0. Here, propagation takes place 
from the simulated land of (normalized) surface impedance 
�o = 0.625 up to a distance of 40 cm, and then beyond the simu
lated coastline, out to a distance of 70 em over the simulated sea, 
where the effective conductivity is effectively infinite. Also shown 
in Figure 10 are the results for transmission in the reverse direc

tion, where the junction (simulated coastline) is at a distance 
d = 3 0 cm from the source over the "sea." As Ray King [67] points 
out, the experimental data were "adjusted" by 0.8 dB, to account 
for the changed sensitivity of the receiving probe as it crossed the 
junction. This change was not empirical, but determined by inde
pendent means [36]. Also, as may be seen in Figure 1 0, 
Millington's "recovery effect" was quite noticeable when transmis
sion was from land to sca, whilc for transmission in the reverse 
direction, the field strength was weakened beyond the j unction. 
Many related microwave scale-model tests, by Ray King and his 
colleagues, are described in the references [36, 67, 76, 91] .  

12. Sample terrestrial mixed-path calculations 

It's fair to say that one should have considerable confidence 
in the mixed-path ground-wave theory, as expounded above. Thus, 
it is appropriate to show some samples of calculated field-strength 
curves, for terrestrial paths at low radio frequencies. Following the 
well-founded practice [21,  56, 75J, the effective earth's  radius, a, 
was taken as 4/3 the actual radius, to account for normal atmos
pheric refraction. Thus, in Figures l l a and l ib, we show the amp
litude and phase, respectively, of the propagation factor, W, as a 
function of distance for 1 to 1000 lan, for a land-to-sea trans-path 
where the junction (i.e., the coastline) is at various distances 
d2 from the source [88] . The two special cases shown are for an 

all-sea path and for an all-land path. The land conductivity is 

10-2 mhos/m, while thc sca conductivity is 4 mhos/m. These cal
culations where carried out for a frequency of 1 MHz. Clearly, here 
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Figure 1 1 a. The calculated amplitude of the attenuation func

tion for a two-section path on a spherical earth, at a frequency 

of 1 MHz (note that d2 = d - dl ). 
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tion for a three-section path on a spherical earth, at a fre

quency of 1 MHz. 

the recovery effect is very striking. Also, one should notice here 
that there is a corresponding drastic drop in the phase lag as the 
observer crosses the junction. The case for a three-section path is 
shown in Figure 12, where the amplitude of W is plotted as a func
tion of distance, going from land to sea, and then from sea to land. 
Again, the same electrical properties are adopted as in Figure 1 1  a, 
and the frequency is also 1 MHz. Other such examples are avail
able [88, 92]. 

13. Concluding remarks 

As indicated in the foregoing text, we have restricted atten
tion to smooth, flat, and curved surfaces, with piece-wise uniform 
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sections. Extensions to irregular and topographic obstacles are cov
ered elsewhere [79, 93-97]. Further details on the refraction effects 
in the lower neutral atmosphere, and the validity of the effective
earth-radius concept, are fOlmd in references [ 1 2, 49, 55,  56, 98, 
99]. But most importantly, we should stress again that the influ
ence of the ionosphere has not been considered at all. By defini
tion, "ground-wave propagation" refers to that mechanism of 
transmission that does not include ionospherically reflected sig
nals. Such an assumption is meaningful, in a physical sense, out to 
a range of 400 km in the daytime, and for shorter distances at 
night. Of course, one can treat the combined effect of ground 
waves and the reflected sky waves using a modified ray theory, 
which is feasible out to 2000 km or more [ 1 2, 53].  Also, transient 
or pulse transmission has not been considered; relevant references 
are [ 100-1 04]. Other related references, covering material not cited, 
are [ 1 05-122]. 

14. Appendix: Definitions of Various 'Waves 

Over the years, the terminology for the various waves 

involved in ground-wave propagation has not been totally consis
tent in the literature. The terminology in this article follows that of 

the recently revised IEEE Standard 2 1 1 ,  "IEEE Standard Defini
tions of Tenns for Radio Wave Propagation." The most relevant 
definitions are reproduced below [ 1 23] .  

Gronnd wave. From a source in the vicinity of the surface of 

the Earth, a wave that would exist in the vicinity of the surface in 
the absence of an ionosphere. Note: The ground wave can be 
decomposed into the Norton surface wave and a space wave con
sisting of the vector sum of a direct wave and a ground-reflected 
wave. 

Improper mode. Refers to a mode of propagation which 
cannot be excited by a physical sonrce in the absence of other 
modes, e.g.,  Zenneck surface wave. 

Lateral wave. A wave, not predicted by geometrical optics, 
excited at and propagated along the interface of two (possibly 
lossy) dielectric media. For sufficiently large distances from the 
source, the magnitude of the field varies as the inverse square of 

the distance measured along the interface. Note: The lateral wave 
is similar to the component of the radio ground wave when the 
geometrical-optical component is separated out. 

Norton snrface wave. The propagating electromagnetic 
wave produced by a source over or on the ground. The Norton 

wave consists of the total field minus the geometrical-optics field. 

Surface wave. A wave guided by a boundary with a surface 
impedance whose reactive part exceeds the resistive part. A surface 
wave is generally characterized as a slow wave having a magnitude 
which exponentially decreases with distance from the interface but 
may be modified .by curvature. [This definition applies equally 
well to the trapped surface wave analyzed in this paper.] 
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Editor's Comments Continuedfrom pa!;e 6 

languagcs, using something close to the best of the currently avail
able compilers or interpreters? You should read the contribution by 
J. E. Moreira, S. P. Midkiff, and M. Gupta in John Volakis' EM 
Programmer's Notebook. I think you'll find the information there 
interesting . 

I h ave been meaning to get a current photograph above this 
column for more years than I 'm going to admit. After reading 
Randy Haupt's Ethically Spcaking column, I really am going to 
have to do it. It's a matter of time, you see. To get a photo in which 
you don't disappear into the background requires something more 
than going to the nearest passport-photo place. I'm also making 
excuses. Randy's  column has some interesting perspectives on the 
importance of "appearances." It also contains somc feedback 
relating to the issues of d uplicate submissions, papers "trapped" in 
the review process, and some of the results these can have. 

Mure sad news, This has been a very bad year for the AP
SIURSI family, in terms of members lost. Two "in memoria" for 
Jim Wait appear in this issLle. Jim was a good friend. He was also 
an important part of AP-S and this Magazine, often suggesting 
articles, offering advice, and providing encouragement. He was a 
very important part of URSI and URSI-related publications, too, 
having been instrumental in the foundmg of Radio Science, and a 
major solicitor of articles and an Associate Editor for the Radio
Scientist and its successor publications. 

Georges Deschamps died June 20; an "in memoriam" appears 
in this issue. In addition to having a brilliant grasp of electromag
netic theory, he was a great educator. ITe was also part of the Uni
versity of Illinois team that made the Antenna Laboratory so great, 
having been its Director for many years . I first came across his 
name on a fundamental paper that gave insight into how log-peri
odic antennas worked. He also made many contributions to 
USNC/URSI. 

As this was going to press, word came that Korada 
Umashankar of the University of Illinois at Chicago has died. We 
will try to have a contribution remembering him in the next issue. 

An IEEE Web course. The IEEE is trying an experiment in 
Internet-based education. "An Introduction to Antennas" will be 
taught through the month of April, 1 999, by Eric Michielssen. The 
stated purpose of the course is to provide an analytical and intuitive 
understanding of antem1a physics, some exposure to computer-

aided-design software for antennas, and an introduction to a variety 
of practical al1teuna structures. A full-page aunonIlcement for lhe 
course appears in this issue. Continuing Education Units can be 
earned. If you or your colleagues have any interest in this, I urge 
you to participate in the experiment. This should open a whole new 
realm of educational opportunities for the IEEE. 

Some further comments regarding e-mail. In the last issue 
(pp. 44, 49), I commented on the variety of probably unintended 
formats and attachments some people seemed to be using when 
they sent e-mail .  I suggested that you send yourself or a friend an 
e-mail message, and look at the result. T should probably have also 
pointed out that one reason some of this happens is that many peo
ple arc now using Web browsers to send their e-mail, and they 
have not looked at some of the default settings. Of course, lhost=' 
defaults could be set by a variety of sources, including network 
administrators and Internet service providers who have supplied 
the browser software. Here are some of the things yon should take 
a look at, if you use Netscape to send e-mail (some comments 
regarding Internet Explorer follow). 

In Netscape Navigator (or Communicator) version 4.0 or 
higher, click on EdiLPreferences . . . .  In the Category box, click on 
the "+" ncxt to Mail and Ncwsgroups. Click on Formatting. You 
will then see your two choices for the editor used to create e-mail 
messages (text or HTML, and this also determines the output for
matting of the message), and four choices for the format in which 
the message is to be sent. In particular, note that the HTML editor 
is often the default (at least, that was the default installed by the 
version of Communicator as downloaded from Netscape's Web 
site, at the time this was written).  Also note that if the bottom 
choice for the fonnat to be Llsed in sending messages is chosen, 
you will automatically send two copies of each e-mail message: 
one in plain text, and the other in HTML I find receiving two 
copies of e-mail like this very annoying. Since I don·t use a 
browser to receive e-mail (and my e-mail software isn't HTML
enabled), receiving e-mail in HTML format is also quite aunoying: 
you end up having to "manually decode" the message out of the 
HTML fonnatting. 

After yon are satisfied that the choices in the window dis
cllssed above rel1ecl what you really want to do, click on Identity, 
under Mail and Newsgroups, in the Category box. See if the box 
next to "Attach my personal cmd to messages (as a Vcard)" is 
checked. If it is, then every e-mail message you send will have at 
least two parts: the body of the message, and a "binary attach
ment." This attachment is typically a few hundred bytes, and con
tains whalever information is present in the window displayed 
when you click on the "Edit Card" bntton. You may not want to 
send this information with every message. Even if you do, you may 

prefer to include it (e.g., by "pasting" it into the editing window) in 
the text portion of the message, rather than as a binary attachment. 
As I've discussed in previous "Screen of Stone" columns, such 
attachments can cause problems with some recipients' e-mail soft
ware, and because they are "hinary," they shOLtld always be virus
checked before being "opened" by the recipient or his or her e-mail 
software. Note that in thIS window you can also elect to have a 
"signature" fi'om a si gnature file included with your e-mail mes
sage. 

You need to click on the "OK" button after making any 
changes to the above settings to have them take effect, of course. 

Continued on page 39 
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