
6 I E E E S o f t w a r e J u l y / A u g u s t 1 9 9 8 0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0 © 1 9 9 8 I E E E

F r o m t h e E d i t o r

Alan M. Davis

Many writers far more eloquent than I have
noted that the software industry is in its infancy.
What will occur during its next major life phase,
adolescence? I do not pretend to be a soothsayer;
I hold no magic, no supernatural insight. All I have
are my opinions, my fears, and my excitement
about the future, which is based on my (what
seems to me to be a paltry) 30 years or so of expo-
sure to the software industry. How quickly one
moves from being a neophyte to being a geriatric
case!

OVERALL

The software industry is ripping itself into seg-
ments, each going its own way. These segments
are adopting standards and practices so diverse
that I expect, by 2010, we will no longer consider
“the software industry” to be an industry. The two
predominant segments today are the “increasing
control of process” (ICP) world and the “decreasing
control of process” (DCP) world. Both believe they
are on the path to conquering the inherent diffi-
culty of software construction.

The ICP world is mostly on the path toward
higher levels of the CMM or some other process
improvement path. They believe that by institut-
ing more control on the development process,
they’ll have more control over the quality of the
resulting product. The DCP world employs more
and more powerful tools to unburden itself from
the tedium and error-proneness of software de-
velopment. Thus, they program in visual lan-

guages to create user interfaces and database ap-
plications; they are more interested in achieving
higher productivity than measuring it.

SOFTWARE DEVELOPMENT METHODS

Like glaciers, the fads will continue to encroach
and retreat, carving great canyons in our terrain.
Each serves a valuable purpose in shaping indus-
try practices, and each leaves a permanent mark

when it departs. Since join-
ing the industry, I have seen
the rise and fall of the
Fortran and Cobol eras; I
have seen the rise and fall of
the Structured era; I have
seen the rise and fall of the

Case era; and we are all now witnessing the fall of
the Object era. Just as happened in earlier eras, the
Object era’s terms will disappear like glacial ice, but
the good ideas created during this era will, like
glacially carved canyon walls, persist. I do not be-
lieve that such glaciers will cease their cycling for
many more decades. The only real question is what
name the next age will bear.

REQUIREMENTS

When I wrote Software Requirements (Prentice
Hall, 1990, 1993) almost a decade ago, the world
thought that requirements management was
equivalent to model building. This has proven in-
correct. As I discussed in my March 1998 editorial,
requirements management is about people, about
communications, and about attempting to under-
stand before attempting to be understood (The
Seven Habits of Highly Effective People, StephenE

D
IT

O
R

-I
N

-C
H

IE
F

:
A

la
n

 M
.D

av
is

•U
n

iv
e

rs
it

y
o

f C
o

lo
ra

d
o

 •
ad

av
is

@
vi

va
ld

i.u
cc

s.
e

d
u

Predictions and Farewells

Each fad serves a valuable purpose
in shaping industry practices, and each

leaves a permanent mark when it departs.

.

J u l y / A u g u s t 1 9 9 8 I E E E S o f t w a r e 7

Covey, Simon & Schuster, 1989). I guess I hold little
hope in the near term for researchers in require-
ments management. This fatal proclivity to over-
look communications, according to Tom DeMarco
in his 1996 keynote at the Second International
Conference on Requirements
Engineering, is alive and well,
and researchers will continue to
solve the simple (that is, techni-
cal) parts of hard problems.

I have more hopes for practi-
tioners. Over my 20+ years of re-
quirements management consulting, I have seen a
strong movement away from having no require-
ments documents and from formal requirements
modeling, and toward

♦ communicating with customers,
♦ writing requirements in natural language, and
♦ storing requirements in a database where

they can be annotated, traced, sorted, and filtered.

DESIGN

The lack of a design discipline in software en-
gineering has made us the laughingstock of other
engineering disciplines. How pleased I was to see
the influx of books over the past five years on the
principles of software architecture (Software
Architecture, Mary Shaw and Dave Garlan, Prentice
Hall, 1996) and design patterns (Design Patterns,
Erich Gamma et al., Addison Wesley Longman,
1995). We are not there yet though, for several
reasons:

♦ Practitioners still fail to analyze alternative
software architectures before selecting one.

♦ Students of software engineering are rarely
exposed to principles of design (there are obviously
some exceptions).

♦ The books just scratch the surface when com-
pared to, say, residential or commercial building
architecture.

♦ Most importantly, we have not yet pro-
duced a discipline of “beauty” and “elegance” in
software architecture, let alone the concept of
the interplay between form and function, be-
tween beauty and utility.

And yet we are clearly making major headway
here. I suspect that these problems will go away
in a decade or so (see my later comments on
academe).

PROGRAMMING LANGUAGES

I predict an end to the language wars by 2020.
We are all too obsessed today with language. The
visual languages and their associated environ-

ments are showing us that we need not select one
language. Environments now allow us to program
bits and pieces in whatever language makes the
most sense for that piece. Those features that
make Java relatively platform-independent will
become available in most languages. User inter-
faces and database designs have already become
orders of magnitude easier to construct than they
were just 10 years ago. These aspects will continue
to progress. A few other aspects of programming
will likely follow. The result will be less emphasis
on algorithms and data structures and more em-
phasis on thinking at higher levels of abstraction.
I recently started programming again after a 15-
year hiatus; I am simply overwhelmed by how lan-
guages and programming environments have pro-
gressed. I have now been freed from details and
can think with abstractions from the application
domain.

METRICS

The software industry will continue being ob-
sessed with measurement for at least 10.375 more
years. Measurement of software product and soft-
ware process is important. It provides us with yet
one more means to assess whether we are getting
better or worse as we change. My problem is not
with measurement but what we do with data: when
we use data to drive decisions at the expense of
common sense, we have gone too far. For example,
although using a circular saw is 53.2 percent more
likely to sever a finger than using a hand saw, that
data should not be used to abandon circular saws!
In an example closer to home, data indicates that in-
spections are far more effective at locating defects
than is testing; that should be grounds for doing in-
spections, not for abandoning testing.

Those features that make Java relatively
platform-independent will become
available in most languages.

.

8 I E E E S o f t w a r e J u l y / A u g u s t 1 9 9 8

Measures should be used to verify the effec-
tiveness of change, not to drive change. We could
use a measure to verify that brainstorming was
more effective than interviews for requirements
elicitation, but trying to achieve better values for
such a measure could lead to disastrous results.
That is, select a process change that you believe in
and monitor its effectiveness by data, but don’t let
the data drive process changes. In short, keep your
brain in gear. There are only a few measurement
pundits around today who appreciate the critical-
ity of this difference. Until I see more measurement
folks acknowledging this, I will remain pessimistic
with respect to their potential for positive effect
on industry practices.

ACADEME

I wish I could say I had high hopes for academe,
but I do not. My May 1996 editorial expounded on
my views that software engineering educators
must have real experience in the real world before
they attempt to teach the next generation. We
have a responsibility to transmit knowledge, and
facts, and bases, and reality, not lies and theories
that we as academics have learned from earlier
generations of inexperienced academics. Yes, there
is a place for educating other researchers, but a de-
gree program that purports to teach software en-
gineers (not software engineering researchers)
must have educators with extensive industrial ex-
perience. It is okay for medical researchers to teach
other budding medical researchers. But physicians
of tomorrow must be educated by physicians with
real patient experience. If software engineering de-
gree programs do not start learning from medical
schools and architecture schools (thanks to Colin
Potts for pointing out that local practicing archi-
tects are often invited into the classroom to com-
ment on the beauty and utility of student designs),
we will end up with a new generation of graduates
with no ability to produce software.

Computer science programs are in even more
danger than software engineering programs. Too

much of the core of many computer science de-
grees hinges upon achieving efficiency of com-
puting resources (time, memory, and so on) that
are no longer in short supply, and on building
things that most practitioners no longer build. Too
little time is devoted to producing reliable, main-
tainable, quality software.

FAREWELL

This is my time to say good-bye. I am honored
to have had the opportunity to serve all of you,
IEEE Software’s readers, over the span of my tenure
as editor-in-chief. I hope that I have made a dif-

ference. My goal from the
beginning was to do just
that: to make the magazine
more meaningful and more
useful to the practitioner. To
share words with you that
would help you, the soft-
ware developer, realize that

your profession is an honorable one, that you are
fulfilling a cause, but most of all that you have a
responsibility to be more than “just” software de-
velopers. You have a responsibility to your fellow
humans—to make others’ lives more meaningful,
enjoyable, or satisfying as a result of being
touched by either you or your wares. As I have
evolved the technical content from research-like
articles to the highly practical, I have been hap-
pily inundated with letters of support from prac-
titioners. At the same time, I have also received
hate mail, mostly from researchers who claim that
I have made the magazine less professional, less
rigorous, and in their opinion, less helpful. It is im-
possible to please everybody. I have, however,
been true to the goals I put forth when I accepted
the honor and the responsibility of this position.
Only the to-be-written history books of the
Computer Society will judge if my actions were
good or bad.

I leave as editor-in-chief with a mission just
begun. The transformation of IEEE Software is well
underway, but it still has many miles to travel. I
know of no person more capable or more worthy
of serving as the next editor-in-chief than Steve
McConnell. He has already made a major differ-
ence to those who have been fortunate enough
to read his books (Code Complete, Rapid

F r o m t h e E d i t o r

Select a process change that you believe in
and monitor its effectiveness by data, but

don’t let the data drive process changes.

.

J u l y / A u g u s t 1 9 9 8 I E E E S o f t w a r e 9

Development, and Software Project Survival Guide,
Microsoft Press) or work with him over the past
few years, as I have. As readers of this magazine,
all of us have been exposed to gifts from his hand
and mind in his monthly Best Practices column.

Good-bye, my friends. I hope to meet many of
you during our miscellaneous travels. I thank you,
the readers, for your dedication and many letters;
without you there would be no magazine. I thank

you, the reviewers, for all the assistance you have
given the readers and the editorial staff over the
years. I thank you, my fellow volunteers on the
Editorial Board and Industry Advisory Board, for
your vision, for your time, and for your guts; it
takes all three of these qualities to effect change.
And finally, I thank you, the IEEE Computer
Society staff, for the tireless devotion that makes
it all possible. ❖

EDITORIAL BOARD

Ted Biggerstaff (Microsoft), Maarten Boasson (Hollandse Signaal-
apparaten), Terry Bollinger (MITRE), Andy Bytheway (Information
Systems Research Centre), David Card (Software Productivity
Consortium), Carl Chang (Univ. of Ill., Chicago), Larry Constantine
(Constantine & Lockwood), Alan Davis (Univ. of Colorado), Tom
DeMarco (The Atlantic Systems Guild), Christof Ebert (Alcatel
Telecom), Ophir Frieder (Florida Inst. of Technology), Robert Glass
(Computing Trends), Sadahiro Isoda (Toyohashi Univ. of
Technology), Natalia Juristo (Universidad Politécnica de Madrid),
Barbara Kitchenham (Univ. of Keele), Tomoo Matsubara (Matsubara
Consulting), Steve McConnell (Construx Software Builders), Nancy
Mead (Software Eng. Inst.), Stephen Mellor (Project Technology),
Tsuyoshi Nakajima (Mitsubishi), Roger Pressman (RS Pressman &
Associates), Chandra Shekaran (Microsoft), Pradip Srimani (Colorado
State Univ.), Wolfgang Strigel (Software Productivity Centre)

INDUSTRY ADVISORY BOARD

Stephen Andriole (Safeguard Scientifics/TL Ventures), Robert
Cochran (Catalyst Software), Annie Kuntzmann-Combelles
(Objectif Technologie), Enrique Draier (Netsystem SA), Kenneth
Dymond (Process Inc US), William Griffin (GTE Labs), Arthur Hersh
(Hersh Group), Eric Horvitz (Microsoft), Takaya Ishida (Mitsubishi),
Dehua Ju (ASTI Shanghai), Donna Kasperson (Unisys), Günter Koch
(Austrian Research Centers), Wojtek Kozaczynski (System
Software Associates), Karen Mackey (Lockheed Martin), Masao
Matsumoto (Univ. of Tsukuba), Susan Mickel (Rational Univ.),
Melissa Murphy (Sandia), Kiyoh Nakamura (Fujitsu), Grant Rule
(Guild of Independent Function Point Analysts), Martyn Thomas
(Praxis), Sadakazu Watanabe (Toshiba)

CONTRIBUTING EDITORS

Ware Myers, Shari Lawrence Pfleeger, Ellen Ullman, Mike Yacci

MAGAZINE OPERATIONS COMMITTEE

Carl Chang (chair), William Everett (vice chair), Gul Agha, George
Cybenko, Alan M. Davis, Stephen L. Diamond, William Grosky,
Bertram Herzog, Daniel E. O’Leary, Edward A. Parrish, Dave Pessel,
Charles Petrie, Michael R. Williams, Yervant Zorian

PUBLICATIONS BOARD

Benjamin Wah (chair), Jon Butler, Carl Chang, Alan Clements, Dante Del
Corso, Richard Eckhouse, William Everett, Francis Lau, Sorel Reisman

Editorial: Send 2 electronic versions (1 word-processed and 1 postscript) plus 2 hard copies of articles to
Managing Editor, IEEE Software, 10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-1314; soft-
ware@computer.org. Articles must be original and not exceed 5,400 words, including biographies, tables,
and figures. All submissions are subject to editing for clarity, style, and space. Unless otherwise stated,
bylined articles and departments, as well as product and service descriptions, reflect the author’s or firm’s
opinion. Inclusion in IEEE Software does not necessarily constitute endorsement by the IEEE or the IEEE
Computer Society.

Copyright and reprint permission: Copyright © 1998 by the Institute of Electrical and Electronics
Engineers, Inc. All rights reserved. Abstracting is permitted with credit to the source. Libraries are permitted
to photocopy beyond the limits of US copyright law for private use of patrons those post-1977 articles that
carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through
the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. For copying, reprint, or republica-
tion permission, write to Copyright and Permissions Dept., IEEE Publications Admin., 445 Hoes Ln.,
Piscataway, NJ 08855-1331.

Circulation: IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer Society. IEEE head-
quarters: 345 E. 47th St., New York, NY 10017-2394. IEEE Computer Society Publications Office: 10662 Los
Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-1314; (714) 821-8380; fax (714) 821-4010. IEEE Computer
Society headquarters: 1730 Massachusetts Ave. NW, Washington, DC 20036-1903. Annual
electronic/paper/combo subscription rates for 1998: $26/33/43 in addition to any IEEE Computer Society
dues, $43 in addition to any IEEE dues; $73 for members of other technical organizations. Nonmember sub-
scription rates available on request. Back issues: $10 for members, $20 for nonmembers. This magazine is
available on microfiche.
Postmaster: Send undelivered copies and address changes to Circulation Dept., IEEE Software, PO Box
3014, Los Alamitos, CA 90720-1314. Periodicals Postage Paid at New York, NY, and at additional mailing
offices. Canadian GST #125634188. Canada Post International Publications Mail Product (Canadian
Distribution) Sales Agreement Number 0487805. Printed in the USA.

IEEE

EDITOR-IN-CHIEF: ALAN M. DAVIS

10662 LOS VAQUEROS CIRCLE

PO BOX 3014
LOS ALAMITOS, CA 90720-1314
software@computer.org

EDITOR-IN-CHIEF EMERITUS

CARL CHANG

ASSOCIATE EDITORS-IN-CHIEF:
TED BIGGERSTAFF, LARRY CONSTANTINE,
TOMOO MATSUBARA

MANAGING EDITOR: DALE C. STROK

dstrok@computer.org
STAFF EDITORS: JAMES SANDERS, ANNE LEAR

DESIGN DIRECTOR: JILL BOYER

COVER ILLUSTRATION: DIRK HAGNER

TECHNICAL ILLUSTRATOR: ALEX TORRES

PRODUCTION ARTIST: JILL BOYER

PUBLISHER: MATT LOEB

MEMBERSHIP/CIRCULATION

MARKETING MANAGER: GEORGANN CARTER

ADVERTISING MANAGER: PATRICIA GARVEY

ADVERTISING COORDINATOR:
MARIAN ANDERSON

MANUSCRIPT ASSISTANT: ANGIE SU

software@computer.org

BPA
INTERNATIONAL ®

.

