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I. WHAT IS DISTRIBUTED SHARED MEMORY?

Parallel computer architectures are an important technol-
ogy to accommodate the performance demands of many
emerging applications in areas such as information pro-
cessing, multimedia, and scientific and technical computing.
Research in parallel computer architectures has recently led
to an interesting unification of different architectural styles.
Distributed shared memory multiprocessors (DSM’s) are
such a unifying style which aims at combining the best of
two existing concepts—shared memory or symmetric mul-
tiprocessors (SMP’s) and message-passing multicomputers
(MMC’s).

SMP’s and MMC’s offer quite different tradeoffs when
it comes to ease of programming and scalability, meaning
incremental increase in performance when system resources
are added. In both styles, multiple high-performance micro-
processors are combined in such a way that the computation
can be partitioned across them in the hope of achieving a
speedup proportional to the number of processors. How-
ever, the models SMP’s and MMC’s expose to the software
to support coordination and communication among parallel
subcomputations are fundamentally different.

In SMP’s, all processors share the same logical address
space through a physical shared memory. Because all pro-
cessors can access any part of a data structure in a parallel
execution, the shared memory is used to support coordina-
tion and communication. This communication abstraction
simplifies parallelization by compilers or programmers and
resource utilization at run time. In terms of implementation
efficiency, however, a physically shared memory inherently
cannot be scaled to large numbers of processors. SMP’s
thus simplify programming at the expense of limited scala-
bility. MMC’s, on the other hand, offer higher scalability by
not letting processors share memory physically. The basic
abstraction for coordination and communication provided
by such systems is instead message exchanges among
processors and their private address spaces. Unfortunately,
the programmer (or compiler) experiences a more complex
model for communication and coordination, which also
complicates efficient resource utilization at run time. Thus,
MMC’s offer a higher scalability at the expense of a more
complex programming model.
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DSM systems aim at combining the ease of programming
of SMP’s with the scalability of MMC’s. They approach
this goal by letting each processor have its own physical
memory; however, all processors share the same and unique
logical address space. Consequently, DSM systems are both
scalable, since they do not physically share memory, and
they provide a simple programming model by supporting
a shared logical address space. While there still remain
problems to be solved, viable approaches to design DSM
systems have emerged, and this Special Issue summarizes
the major research findings behind their emergence.

The basic organization of a DSM system is naturally
similar to an MMC. A number of highly tuned compute
nodes are connected by a scalable interconnection network
that establishes the basic support for efficient message
exchanges. The design of the interconnection network is
then as important for DSM systems as for MMC systems.

Interconnection networks (IN’s) should offer a short
latency (traversal time) and a high bandwidth (capacity)
at a reasonable cost and with ease of packaging. This
cost–performance tradeoff often depends on the number of
nodes in the system. In systems with a few (typically tens
of) nodes, buses and rings have been popular choices owing
to their low cost and latencies. In systems with say 100
nodes, other solutions with higher bandwidths are needed.
Crossbars use a grid of buses and offer higher bandwidth
and low latencies but become impractical for hundreds of
nodes. Because DSM’s target hundreds of nodes, IN’s for
them often trade design complexity for longer latencies
by limiting the connectivity to just a few adjacent nodes.
This makes their topology and routing strategies critical
for the latencies and design cost. Popular examples of
such IN’s are meshes and tori. Typically, nodes are laid
out on a grid and messages are routed from the source
to the destination through intermediary nodes. Apart from
such specially designed IN’s, attractive alternatives from a
cost perspective also include commodity local area network
(LAN) technologies, such as Ethernet and ATM, which play
an important role in DSM’s built on top of networks of
workstations or personal computers.

Each compute node in a DSM can be a single-processor
machine or a full-blown multiprocessor (usually an SMP
machine) and consists of processors and their caches and
a portion of the system memory. Besides the memory
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hierarchy in each node, the distributed memory organization
adds another level to this memory hierarchy. The ratio of
access costs to different levels in this extended memory
hierarchy can be several orders of magnitude, making its
management performance critical. Whereas the programmer
(or compiler) is responsible for managing the additional
level in an MMC, the goal is to transparently manage it by
hardware or software mechanisms in a DSM system.

II. THE DESIGN SPACE OF DSM

The overall goal that DSM system designers face is to
provide cost-effective algorithms to manage the extended
memory hierarchy so that data can be accessed at a low
access cost by still preserving a logically shared address
space to the programmer. The design space is naturally
huge. In order to put key concepts in this design space into
perspective and to provide a background to the articles in
this Special Issue, we next review the major options.

Management of the extended memory hierarchy is to
a large extent a matter of finding efficient algorithms
for moving data dynamically across the different levels
(memory or cache levels). One aspect of this is how to
map the data structures in the logically shared address
space onto the memory modules in the distributed memory
organization. Portions of the logical memory space are
mapped onto the physical memory, either uniquely (one
logical portion mapped to one physical location of the same
size), as in cache-coherent nonuniform memory access
(NUMA) machines [14], or with replication (one logical
portion mapped to several physical locations, each one
of the same size as the logical portion), as in cache-
only memory architectures (COMA) machines [8] and in
reflective memory machines [17]. In general, if the mapping
uses replication, mechanisms are needed to maintain the
consistency of replicated data. Cache or memory coherence
schemes can be implemented in hardware or software or
both. These mechanisms can be based either on invalidation
or updating of copies. Advanced mechanisms can be hybrid
(using invalidation for some data types and update for other
data types) or adaptive (using invalidation during some time
intervals and update during other time intervals, with an
algorithm to switch back and forth) [19]. A key mechanism
in a DSM system to aid the coherence scheme is a central
bookkeeper, called a directory, that at any point in time
knows exactly which nodes have copies of a data item. The
exact implementation tradeoffs involved for this mechanism
have triggered a lot of research. Typical organizations that
have been studied are: 1) full directory; 2) limited directory;
and 3) linked-list-based directory. The tradeoff involved is
between performance and scalability. For details, see [15]
and [16].

Another design parameter is the granularity at which
data are moved across the levels in the extended memory
hierarchy. It can be an object without semantic meaning
(determined via address range) or an object with semantic
meaning (determined through data structures). The size of
objects without semantic meaning can range from one or

a few words to a larger portion of memory, such as a
page. Objects with semantic meaning can be a segment,
a simple data structure, or a more complex data structure.
If the DSM mechanisms are built in hardware, the unit of
consistency is typically smaller (a single word or a smaller
block of words). One reason why grain size is critical is
that it may involve a complex tradeoff between locality and
coherence overhead. While larger data chunks can exploit
spatial locality and consequently improve the performance
of the memory hierarchy, larger chunks may also cause
false sharing because accesses from many processors may
be directed to different items in the same chunk and can
then cause coherence overhead (e.g., [6]). On the other
hand, by adopting a large grain size one can amortize the
access cost on a larger number of words. This is sometimes
a good tradeoff when the DSM mechanism is implemented
in software.

The design of the extended memory hierarchy also im-
pacts issues like latency and bandwidth. Of course, these
issues are primarily technology dependent; however, con-
crete values depend on the organization of the memory
hierarchy. The needed data can be located in the cache(s)
of the same node, in the main memory of the same node,
or in another node. If the algorithm for management of
the extended memory hierarchy is not perfect, the latencies
can be harmful for performance if the processors must
wait for the data to be supplied. Ideally, the processors
should do useful work while the data are being transferred.
This is the key goal of latency-tolerating techniques. Some
latency-tolerating techniques are completely transparent to
the software, while others make the semantics of the
shared-address-space programming model more complex.
Examples of the former are prefetching schemes (consumer-
initiated data transfers) [15] and data injection schemes
(producer-initiated data transfers) [1], [19], while examples
of the latter are relaxed memory consistency models, which
we return to later.

Another major challenge for DSM designers is to find
implementations which are both speed superior and com-
mercially efficient. Obviously, there is a tradeoff between
these two issues (the traditional performance/complexity
tradeoff). One of these tradeoffs is concerned with whether
to implement the DSM algorithms in software, in hardware,
or in some combination of the two. Therefore, it is not sur-
prising that all three approaches have been investigated in
the research community. Historically, software implemen-
tations appeared first (as library routines on the user level,
as compiler-level modifications, or as operating system
modifications), but they were relatively slow. That is why
some researchers turned into hardware implementations, but
these were time consuming to implement. Consequently,
many have decided that hybrid approaches are the best way
to go (some DSM mechanisms implemented in hardware
and some in software). As already indicated in the case of
the grain size, concrete values of major design parameters
depend a lot on the choice of the implementation domain
(software, hardware, or hybrid). For more details, see [16]
and [17].
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The freedom by which the DSM memory hierarchy is
managed, be it in hardware or software, is to a large
extent limited by the semantics of the shared-address-
space programming model. This model views the memory
system as if it consisted of one monolithic memory. This
monolithic-memory view guarantees that: 1) individual
load and store accesses are carried out atomically, i.e.,
coherence, and 2) a sequence of loads and stores to different
locations from the same processor appears as if it were
carried out in program order with respect to that processor,
i.e., sequential consistency [13]. Another key challenge
then is to implement this semantic view with minimal
performance losses. Sequential consistency is an example
of a memory consistency model (MCM), and elaboration
of its implementations and alternative MCM’s is currently
a major research avenue in the general field of DSM.

Two major types of MCM’s are strict (e.g., linearizability
and sequential consistency) and relaxed (e.g., processor,
weak, release, lazy release, and entry consistency). Lin-
earizability (or strong ordering) typically requires that each
memory operation (a load or a store) is performed before the
next one can be issued [5], [11]. If the system adheres to this
model it also adheres to sequential consistency, although
sequential consistency enables some optimizations not pos-
sible under strong ordering. Processor consistency allows
loads to bypass previously issued stores and thus pro-
vides higher performance at the expense of more complex
semantics for the program system [2]. Relaxed memory
consistency models [5], such as weak ordering, introduce
the notion of synchronization variables; in between the
synchronization variables, ordering of memory operations
is not imposed, while the synchronization variables them-
selves have to follow the rules of sequential consistency
(ordering is imposed both at acquire and release points).
The release consistency model [7] is a relaxation of weak
ordering in which ordering is only imposed at the release
points (execution does not proceed beyond the release
point until after all memory operations to shared variables
are performed). The lazy release consistency model [12]
imposes access ordering only at the next acquire point;
this means that only the process that requests exclusive
access to data being released must wait. Also, this waiting
time is shorter on average, because the next acquire point
comes later than the previous release point. Finally, the
entry consistency model [4] requires the programmer to
introduce new synchronization variables to protect specific
data structures or even some important single variables;
consequently, the data are passed to the next process only
when absolutely needed, and at a later time, which means
a potentially better performance but a higher programming
effort. From this, it is clear that the more sophisticated the
memory consistency model utilized, the more difficult it is
to program the underlying machine, but the faster is the
code in execution. For more details, see [2].

III. W HY DSM?

The concept of DSM has potential applications in a
number of different fields, as evidenced by the articles

in the IEEE COMPUTER Special Issue on Applications for
Shared-Memory Multiprocessors (December 1996). Some
of them are listed and elaborated on here. Others are yet to
emerge, as the computing and communications are merging
and changing their face. At this time it is obvious that all
application domains of DSM listed below will find their
niche (more or less wide) in the years to come; however, at
this time it is difficult to predict the relative importance that
various application domains will get in the years to come.

According to some, shared memory multiprocessing con-
cepts will likely find their way into a next generation of
multimicroprocessors on a single chip [10]. After the era
of a single microprocessor on a chip is over, one possible
next step is to have two microprocessors on a chip, and
then more than two on a chip. While the number is about
16 or less, the SMP concept is the obvious choice. However,
when the number surpasses about 32 or so, the DSM
concept represents a choice which is more suitable. The
numbers given here are, of course, technology dependent,
and they may change as we see the changes of relative
delays of CPU’s, buses, and memory.

According to many, the DSM concept is believed to be
the underlying architectural concept of the next generation
of multimicroprocessor workstations. The ever increasing
need for more processing power, which is so dominantly
present in the current globalization trends of computing
and communications, makes the DSM concept (due to
its scalability and programmability) a natural solution for
large-scale servers. These days, it is especially true for
strategically important Internet servers, but also for servers
in other applications traditionally known for their extraor-
dinary large processing power consumption.

The DSM concept is also efficient in combining multiple
workstations (or even personal computers) to act as a
single system with impressive performance—however, at
a much lower cost compared to traditional supercomputers;
in this domain of special interest are the experiments
which bring DSM into the personal-computer market (e.g.,
[18])—the approach which is given a special emphasis
in the ongoing research oriented to the low-cost markets.
Performance issues are supposed to be on the side of the
supercomputer approach. (Even if also using the DSM
concept, supercomputers can use a number of expensive but
efficient technologies for packaging, cooling, and intercon-
nect, which are prohibited for the clusters of workstations
or personal computers due to their high cost.) However,
the price/performance is definitely on the side of the ap-
proaches which utilize the clusters of relatively inexpensive
workstations or personal computers.

Thanks to the simple programming model, most major
operating systems have been ported to run well on shared
memory multiprocessors in general and on DSM systems
in particular. The operating system is presumably the most
important piece of software and is an important enabler
for most applications. The intuitive programming model of
DSM systems greatly simplifies operating system imple-
mentations, but efficient management of the their memory
hierarchies still poses important challenges.
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Higher application levels of a typical system can also
be supported by DSM. If a DSM concept is built into an
operating system it can become better suited for a num-
ber of important applications like transaction processing,
distributed data engineering, collaboration engineering, and
similar applications [21]. Also, DSM may be utilized to
bring in the elements of fault tolerance—another dimension
of the overall picture which is, unfortunately, frequently ne-
glected and where there are still many important problems
to be solved.

IV. WHERE DO WE GO NOW?

For a number of years in the past, DSM was a research
topic. However, the time has arrived for DSM to start
making money, and numerous commercial products are
currently on the market with good chances to survive and/or
to turn into qualitatively new products with a better market
edge. For this reason, an effort has been made in this Special
Issue to invite people from industry to prepare a special
technology overview. One such technology overview is
given by Hagersten and Papadopoulos [9] from Sun Mi-
crosystems, Inc., and another one is given by Bell and
van Ingen [3] from Microsoft. On the other hand, it is still
the academic research which is currently most responsible
for moving the state of the art, and papers from leading
universities play an important role, both in the real world
and in this Special Issue.

The best way to improve the personal awareness of all
these research efforts is to consult the proceedings from
the major international conferences in the field, e.g., ISCA,
HPCA, ASPLOS, and similar. Actually, this is generally an
excellent way to create and maintain the awareness of the
peak research efforts in this entire field, which is slowly
but steadily gaining in its importance.

V. ABOUT THIS SPECIAL ISSUE

This Special Issue contains ten papers that to a great
extent summarize the major breakthroughs that have led
to the viability of the DSM approach. In “Scanning the
Technology,” Hagersten and Papadopoulos provide insight
into parallel computing in the commercial marketplace.
In the next paper, “DSM Perspective: Another Point of
View,” we invited Bell and van Ingren to help us place
the DSM field in greater perspective. The goal set out
for the topics of the remaining eight papers is to find an
implementation strategy that strikes a good compromise
between ease of programming, high performance, and low
implementation cost. Two fundamentally different imple-
mentation strategies with different market goals in mind
have led to two research directions. One is to approach
the high-end market, which then allows quite aggressive,
predominantly hardware-oriented DSM systems. The first
four papers represent this research track. The other direction
is to target the low-end market by superimposing a software
layer on top of a network of workstations and/or personal
computers that implements the DSM paradigm. The last
four papers represent this research track.

Whether or not DSM systems offer significant advantages
in terms of programmability and scalability as compared
to message-passing multicomputers has been an important
motivation for many research efforts. Two projects—DASH
and Alewife—were launched in the late 1980’s to focus on
this general issue. The first two papers in this Special Issue
summarize the major findings and give perspectives on the
lessons learned from these projects. In “Cache-Coherent
Distributed Shared Memory: Perspectives on Its Devel-
opment and Future Challenges,” Hennessyet al. provide
an excellent overview of the technology. The fundamental
challenge they faced was to find scalable solutions to
the cache-coherence problem. DASH also contributed with
several architectural innovations, and their article also dis-
cusses them. In “The MIT Alewife Machine,” the approach
taken by Agarwalet al. to integrate shared memory with
message passing in the Alewife system is a hybrid of
hardware and software techniques. The experience in using
these techniques on a large number of applications is the
theme of their article.

While the DASH and the Alewife projects demonstrated
that the DSM approach is indeed viable, there is still con-
siderable room for improvement. One important approach
is to remove the waiting time for the processors by trying
to overlap delays in the extended memory hierarchy by
computations. Latency-tolerating techniques have gained
significant attention, and the next two papers in this issue
focus on two important approaches in this direction. In
“Recent Advances in Memory Consistency Models for
Hardware Shared Memory Systems,” Adveet al. discuss
what optimizations can be enabled under different memory
consistency models and how a good compromise can be
struck between ease of programming and a high perfor-
mance. Finally, in “Producer–Consumer Communication
in Distributed Shared Memory Multiprocessors” by Byrd
and Flynn, the key focus is on techniques to hide the
latency inherent to coordination among subcomputations.
The approaches they take are to inject speculatively or
prefetch data as soon as the value is produced or the
consumer knows that it will be needed in the future. They
study when the former and latter approaches are beneficial
by analyzing their impact on application performance.

Network-connected workstations or personal computers
can be converted into a quite powerful DSM system at
an attractive cost level if efficient DSM algorithms are
incorporated into the software layer. The challenge then
lies in finding aggressive software-based policies that can
reduce or hide the significant message latencies in such
environments. The last four papers summarize state-of-the-
art research done in this area and also present prospects for
future research. Amzaet al. implemented the first feasible
implementation of a software DSM: the Treadmark system.
The key strategies that made it feasible were aggressive
use of replication, relaxed memory consistency models, and
adaptation to program behavior. In “Adaptive Protocols
for Software Distributed Shared Memory,” they focus on
the implementation of software DSM algorithms and espe-
cially how adaptation to program behavior in a program-
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transparent way can boost the performance of their imple-
mentation. Message-passing programming is of course an
alternative also on network-connected workstations and/or
personal computers. Indeed, compiler technology exists that
can convert serial applications to message-passing parallel
programs that can provide good performance for problems
with predictable and static communication behavior. For
problems with less structured and irregular communica-
tion behavior, the overheads may severely hamper the
performance obtained. Dwarkadaset al. have developed a
powerful environment in which programs can be compiled
and take advantage of the programming model that best
matches the application. In “Combining Compile-Time
and Run-Time Support for Efficient Software Distributed
Shared Memory,” they report on their experience in using
this environment on a large number of scientific codes.
A critical performance aspect of any parallel program
implementation is to strike a good compromise between
locality and load balance. In “Thread Migration and Com-
munication Minimization in DSM Systems,” Thitikamol
and Keleher report on the CVM run-time system that aims
at minimizing the execution time by migrating the threads
in such a way that load imbalance and communication
between threads are also minimized. A large number of
approaches have been taken to implement software DSM’s.
The final article, “Shared Virtual Memory: Progress and
Challenges” by Iftode and Singh, puts all these ideas into
perspective and identifies some important problems that
need attention in the future.

This Special Issue gives evidence that the DSM paradigm
is maturing; research institutions as well as companies have
already demonstrated that the technical challenges can be
overcome. At the same time, many open research issues
are yet to be addressed. This makes us strongly believe
that this technology will increase in its importance in the
years to come as demanding applications as well as better
implementation technologies will emerge.
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