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Book Reviews

Introduction to Artificial Life —C. Adami (Santa Clara, CA:
Springer-Verlag, The Electronic Library of Science, 1998, 374 pp.,
CD-ROM included).Reviewed by Michael G. Dyer.

Adami’s book, Introduction to Artificial Life (abbreviated here
as IAL), provides a welcome physicist’s perspective on the field
of artificial life. The emphasis ofIAL is on developing a solid
mathematical and theoretical foundation for the field, through the
application of concepts, models, and techniques borrowed mainly
from physics, and with some concepts taken from computer science
and molecular biology. The book jacket states that the reader is
assumed to have already mastered the central concepts and techniques
used in the fields of computer architecture, scientific computing,
statistical physics, thermodynamics, and biology. This statement is
really true. As a nonphysicist I found Adami’s book difficult reading
in numerous places.

According to Adami, the goal of artificial life (AL) is “...to find a
minimum number of characteristics that all those systems classified
as living have in common...” (p. 3). Furthermore, any theory must be
universal, in the sense that it should not need to refer to the materials
that make up living systems, but only to the principles involved. Thus,
carbon-based life would be just an instance within a more general
theory. The most important aspects of living systems for Adami are
self-replication, genetic information storage, and transmission in the
face of noise, selectional pressure, and low entropy.

Adami considers physiological, metabolic, and biochemical ap-
proaches to defining life but finds them overly narrow and con-
straining. The biochemical approach relies too much on nucleic
acids and thus leaves out the possibility of life within other media.
The genetic approach is more general because it allows for the
modeling of systems that encode information that undergoes mutation
and replication, without necessarily specifying the material used to
embody such a code. The most general approach according to Adami
is the thermodynamic one, in which living systems are defined in
terms of their ability to maintain low levels of entropy. Adami’s
working definition of life is that it is

... a property of an ensemble of units that share information in a
physical substrate and which, in the presence of noise, manages
to keep its entropy significantly lower than the maximum
entropy of the ensemble, on timescales exceeding the “natural”
timescale of decay of the (information-bearing) substrate by
many orders of magnitude. (p. 6)

Thus life is an emergent phenomenon in that it arises as the property
of an ensemble of elements and in that it is also defined with respect
to its environment.

Before focusing in detail on the thermodynamic definition, Adami
provides an overview of other different “flavors” of artificial life.
These include a) simulation of artificial agents and the evolution
of populations of such individuals, b) carbon-based models, and c)
virtual machine models.

For each of these approaches, Adami briefly reviews some well-
known models. For instance, in the area of simulation, he describes
Sims’ [1] model of evolved neural network controllers for creatures
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composed of multiple attached blocks of different shapes. He also
describes a model by Theraulaz and Bonabeau [2] of artificial
wasps whose collective local interactions result in the construction
of different types of three-dimensional nesting structures.

In the carbon-based area, Adami briefly reviews the work of Wright
and Joyce [3] in evolving artificial cultures of ribozymesin vitro.
This work may ultimately lead to the discovery of an RNA replicase,
namely, an RNA molecule capable of self-replication, and believed
by many to have been critical in the beginning of cellular life over
3 billion years ago.

In the virtual machine area, Adami reviews the work of both
Wolfram and Langton in the classification of cellular automata (CA)
models. Wolfram [4] originally classified CA models according to
their long-term behavior. Class I models display limit point behavior.
That is, from initial states they ultimately arrive at homogeneous
terminal states. Class II models develop toward limit cycles, in which
they exhibit periodic behavior. Class III models develop aperiodic,
chaotic behavior. Finally, Class IV CA’s exhibit potentially life-like
behavior, in which highly complex patterns appear to self-organize
and sustain themselves. Wolfram suggested that it is in this class that
there would exist CA’s capable of universal computation, which is
the ability of a CA to mimic the behavior of other CA’s that are
encoded as input to it. This is analogous to a genetic code being
interpreted by a cell to create new cells.

Langton [5] showed how Wolfram’s classes could be reclassified
in terms of a single parameter� that represents the probability that a
CA rule will map a cell to a nonquiescent state. Langton examined
CA rules for the cellular geometry of a two-dimensional (2-D) regular
lattice of cells where each cell contains four neighboring cells (those
immediately to its north, south, east, and, west) and whose cells may
take on one of eight possible states (0–7, with zero being quiescent).
When� = 0, all rules map to a quiescent state and so no patterns
develop. Langton experimented with many different CA rules with
� > 0 and discovered that when� is less than 0.2 then the patterns
that form tend ultimately to die out, which corresponds loosely with
Wolfram’s Class I. When� is in the general range of0:2 < � < 0:3,
then patterns tend to exhibit periodicity, which is similar to Wolfram’s
Class II. When� is in the range of about0:3 < � < 0:4, complex
patterns form, which corresponds to Wolfram’s Class IV. When�

is greater than 0.5, the patterns become chaotic and any particular
complex pattern cannot survive for long, which corresponds with
Wolfram’s Class III.

Thus � acts somewhat like the “temperature” of a CA world. If
the temperature is too cold (tending toward quiescence) or too hot
(tending toward too active) then complex, self-replicating patterns
(needed to exhibit life) cannot form. Langton hypothesized that life-
like behavior may self-organize most naturally just at “the edge of
chaos.” Much ofIAL is devoted to studying this hypothesis, both
formally and via simulation.

Probably the most famous virtual machine model is the Tierra
system, developed by Ray [6]. Adami only briefly describes this
system. Since it was such a landmark I believe it deserves a bit
more coverage. Adami, however, concentrates mainly on the avida
system, which is an improved version of Tierra, designed by Adami,
Brown, Ofria, and other Cal Tech researchers. Avida differs from
Tierra in that each virtual machine lives on a 2-D grid, has eight
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neighbors, and an orientation. In contrast, Tierra virtual programs
interact in a one-dimensional (1-D) world with little sense of locality.
In Tierra the instruction pointer (IP) of one creature can continue into
the code of a nearby creature. Thus one Tierra creature can execute
the code of another. Adami and colleagues felt that having the IP of
one creature execute the code of a another (possibly distant) creature
is not realistic. Thus, the code of avida creatures is in the form of a
loop, so that any IP that continues forward ends up looping back on
itself, which is similar to the genomes of many bacteria. Finally, the
creation of a daughter cell in Tierra could result in that cell being
placed anywhere in Tierra’s virtual memory. In contrast, daughter
cells in avida are always placed at the end of the mother cell. Thus
the avida approach is closer to that of cell division.

The above introductory material appears in Chapters 1 and 2.
Chapters 3–8 constitute the core of the book. In these chapters Adami
develops the mathematical concepts used later in analyzing the avida
experiments which appear in Chapters 9–11.IAL comes with a CD
containing the avida system code, and in the appendix of the book
is an avida user’s manual.

In Chapter 3 Adami briefly reviews (without proof) Shannon’s
fundamental theory of information, which showed that information
can be transmitted through a noisy channel with arbitrary accuracy
and that the “cost” of doing so merely involves reducing the trans-
mission rate to that of the channel’s capacity. A channel’s capacity is
the maximal mutual entropy between input and output distributions.
Adami points out that information

is not the description of an object in terms of bits, or the
number of bits necessary to describe an object, but rather
the mutual entropy between two ensembles. In other words,
information measures the amount ofcorrelation between two
ensembles, which allows you to make predictions about one
ensemble armed only with probabilities garnered from another.
(pp. 82–83)

Information theory is of fundamental importance in artificial life
because living systems must encode information and also transmit
that information through noisy channels. The encoding is that of
DNA/RNA; the transmission is that of expressing genes as proteins,
and the channel is noisy because errors occur in the DNA/RNA, due
to viruses, heat, ultraviolet light, etc. Errors also arise in the processes
of replication. Adami shows, mathematically, how uncertainty is
related to entropy and information. He calculates the amount of
redundancy in the genetic code, consisting of codons (triples of the
four nucleic acids C, G, A, and U) that encode 20 amino acids. Adami
calculates the information transmission capacity for this system. He
shows that “genetic channels are very different from the ordinary
ones, because the process that corrupts the messages also controls
how much entropy is being sent across the channel” (p. 83).

In Chapter 4, Adami applies concepts from statistical mechanics
and thermodynamics. He states that a major goal of artificial life
is to “establish a baseline for minimal living systems” (p. 85). To
do this, we must be able to describe the collective behavior of a
living entity in terms of the forces acting between its constituents.
Thus Adami argues that “statistical physics must be the basis of any
theory of complexity” (p. 85). In this chapter Adami uses the concepts
of phase space (in which every state of a system is represented as
a single point), density and trajectories through phase space, and
ergodicity (i.e., systems whose statistical distribution function can
be traced out by a single trajectory). He argues that genetic space
is highly nonergodic because only a tiny fraction of the space will
every be traced out in reality.

Adami also introduces the concepts of thermodynamic equilibrium
and relaxation time (how long it takes a system to return to equi-
librium after perturbations). He argues that large genetic systems

tend to be off-equilibrium most of the time. He introduces other
concepts, such as Liouville’s Theorem, the Second Law of Thermo-
dynamics (how systems approach thermodynamic equilibrium), the
mathematical relationships among temperature, energy and entropy,
the Gibb’s distribution, and first-order phase transitions, which he
argues is a useful language for describing major changes that occur
during evolution.

In Chapter 5 Adami introduces the concepts of Maxwell’s demon
and Kolmogorov/Chaitin complexity. Maxwell proposed his demon in
1871. The demon makes measurements of molecules passing between
two chambers and allows only fast molecules to pass into one of
the chambers. As a result, one chamber becomes hotter, ostensibly
without the expenditure of any significant work. In 1961 Landauer
[7] resolved the paradox posed by Maxwell’s demon by showing that
the storage of information requires work, even if the measurement
process itself can be achieved without work. Thus information is
something physical and must conform to physical laws.

Life exhibits a high level of complexity. Both Kolmogorov and
Chaitin [8] independently developed an algorithmically based def-
inition of complexity. The complexity of a string of symbols can
be defined in terms of the shortest program that, when fed to a
universal Turing machine, generates that string. Random strings
cannot be produced by programs that are any shorter in length than the
strings themselves. In contrast, strings with much inherent structure
can be compressed into very small programs that will regenerate
those strings. Adami points out that thealgorithmic complexity
of a string (e.g., a genetic code) might not be the best measure
for a string’s physical complexity because, in the algorithmically
based measure, the most complex strings are random strings while,
physically, random strings are not very complicated. Adami goes on
to calculate the physical complexity of ensembles of strings in terms
of the entropy of the ensemble. He points out that evolution can
be viewed as Turing machines computing on strings and attempting
to extract from random parts of the string those parts that refer
to environment in which the Turing machines reside. Thus these
machines are behaving somewhat like Maxwell’s demon, which is
measuring the environment also in an attempt to reduce entropy by
selecting the faster moving molecules within the environment. This
is similar to information entering a genome but not being allowed
to escape it.

Adami argues that the complexity of a string is conditional on
its environment because the environment is needed to determine
the mutual entropy. Thus the best measure of complexity is that of
mutual Kolmogorov complexity, which is the length of a strings
minus the length of the smallest program that can computes. As an
example Adami then goes on to apply these concepts by calculating
the complexity of tRNA, the molecule that translates a DNA sequence
into its corresponding protein.

In Chapter 6 Adami introduces the notion of self-organized crit-
icality (SOC), which is applied in areas of physics concerned with
phase-transitions in condensed matter systems. The classical model
for SOC is the sandpile [9]. Grains of sand are dropped anywhere
on a sandpile. As the grains accumulate, sometimes the height of
the pile rises while other times the dropping of a single grain will
cause a phase-transition (an avalanche) to occur. Small avalanches
will occur more commonly than very large avalanches, which tend to
be rarer events. Although the size of a particular avalanche may not
be predictable, the relative occurrence of different-sized avalanches
follows what is known as a power law. Adami goes on to explain the
three main types of power laws that arise in physical systems. For
instance, one type of power law, such as the Gutenberg–Richter law
concerning earthquakes, relates the size of an event (the magnitude
of the earthquake) to its frequency.
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After examining SOC in sandpile avalanches on a 2-D lattice,
Adami proposes a set of requirements that must be met for a system
to exhibit SOC. This list is neither necessary nor sufficient because
“as of yet, there is no universal theory of SOC” (p. 146). Adami’s
requirements include that the system be a “dissipative dynamical
system with (locally) interacting degrees of freedom.” Adami assumes
that readers are already familiar with notions such as “dissipative
systems” and “dissipative transport equations.”

The Tierra system exhibits long periods of stasis followed by
rapid evolution of novel organisms (similar to avalanches). Adami
discusses whether or not Tierra can be characterized as exhibiting
SOC because SOC is apparently associated more “with second-
order versus first-order critical phenomena” (p. 152). (Again, Adami
assumes that the reader is already familiar with the difference between
first-order and second-order phase-transition dynamics.) If Tierra is a
self-organized critical system, then all sizes of evolutionary advances
in the model can be explained via the concept of SOC, even though
each individual major evolutionary event will be unpredictable.

In Chapter 7 Adami introduces the notion of percolation, which
seems to be a process by which some property spreads throughout a
medium. Percolation has been studied in the abstract, for example,
by placing dots randomly in unfilled areas on a 2-D lattice with
some probability between zero and one. Dots near each other are
then linked. Percolation theory then studies the types of clusters
(sets of connected dots) that form on different types of lattices.
For example, aninfinite cluster is one that spans a lattice by
connecting one edge to another. “If such a cluster exists, the system
is said topercolate...The appearance of an infinite cluster changes
the properties of the system drastically” (p. 177). For instance,
if connected dots represent electrical conductors, then percolation
suddenly allows electric current to flow. Thus, percolation represents
a geometrical phase transition. Percolation theory is useful in studying
the connectedness of any space. In genetics, percolation theory can
be used to examine what the probability is that a random genome
might support self-replication, or what the probability is that some
evolutionary path connects two genomes. Adami goes on to develop
mathematics for percolation on 1-D, 2-D, and high-dimensional
Euclidean lattices and on also what is called a Bethe lattice, which is
geometrically a tree. Adami speculates that “evolution is much like
percolation on a Bethe lattice, where the connectivity of the lattice
is controlled by the length of the genome” (p. 193).

In Chapter 8, Adami introduces mathematical techniques to char-
acterize fitness landscapes, by extending the theory of percolation.
A Lyapunov function is used, which “provides a ranking between
sites that determines their occupation probability according to some

functional value” (p. 200). Landscapes Adami examines include
Derrida (random energy) landscapes, Kauffman’sN � k landscapes
[10], fractal landscapes, and RNA landscapes.

Chapter 9 concerns experiments with the avida system. Adami
states that avida “implements a simple artificial chemistry in which
the molecules are computer programs, and the chemical action of
these molecules is obtained by executing those programs” (p. 225).
The experiments described are restricted to a 2-D regular lattice where
the boundaries wrap around. Adami shows how avida’s adaptation
behavior produces curves that display aDevil’s staircasetype of
property, which indicates a fractal landscape.

Chapter 10 involves running percolation/diffusion experiments
using sanda, which is “a variant of avida designed to run on
arbitrarily many parallel processors” (p. 251). Chapter 11 involves
more advanced discussions, including evolution in avida that includes
cosmic-ray-based mutations and the mathematics of molecular evo-
lution as an Ising model. Again, the reader is assumed to be familiar
with the concepts of Ising crystals, spin chains, and spin glass models.

I believe that nonphysicists with find it difficult reading, but
this book clearly makes an important contribution to the field of
artificial life by bringing together in one text many of the relevant
mathematical concepts developed originally within physics and by
showing how these concepts can be applied in analyzing complex
systems that exhibit storage and diffusion of information, self-
organization, criticality, phase-transitions, and adaptation.
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