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Editorial
Artificial Neural Networks to Systems,
Man, and Cybernetics: Characteristics,

Structures, and Applications
Mohammad S. Obaidat,Senior Member, IEEE

Abstract—The goal of this special issue is to present recent high-
quality papers that deal with the applications of artificial neural
networks (ANN’s) to systems, man, and cybernetics (SMC). This
special issue explores the state-of-the art in the applications of
ANN to the SMC community. ANN’s technology has reached
a degree of maturity as evidenced by the increasing number
of applications including the ones that have been reduced to
practice. In this editorial, we present background and theoretical
information related to ANN’s, general characteristics, models,
applications, and structures of ANN’s.

Index Terms—Applications of artificial neural networks, learn-
ing algorithms, models, structures.

I. INTRODUCTION

A RTIFICIAL neural networks (ANN’s) and neural en-
gineering/computing in the wide sense are among to-

day’s most rapidly developing scientific disciplines. ANN’s
are parallel computational models that consist mainly of in-
terconnected adaptive processing units. These networks are
considered fine-grained parallel implementation of nonlinear
dynamic and static systems. An ANN is an abstract simulation
of real nervous system that contains a collection of processing
units or processing elements (PE’s) communicating with each
other via axon connections. Such a model resembles the axons
and dendrites of the nervous system. Because of its self-
organizing and adaptive nature, the model provides a new
parallel and distributed paradigm that has the potential to
be more robust and user-friendly than traditional schemes
[1]–[14].

The study of artificial neural networks is an attempt to
simulate and understand biological processes in an intrigu-
ing manner. Today, we are witnessing the dawn of a new
revolution in technology that will revamp the infrastructure
of many approaches to solve cybernetics, information, and
system engineering problems, among others. It is of interest
to define alternative computational paradigms that attempt to
mimic the brain’s operation in several ways. Neural networks
are an alternative approach to the traditional von Neumann
programming schemes.
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Interest in neural networks has increased in recent days due
partly to some significant breakthroughs in research in ar-
chitecture, learning/training algorithms, and operational char-
acteristics. Advances in computer hardware technology that
made neural networks implementation faster and more effi-
cient have also contributed to the progress in research and
development in neural networks. Much of the drive has arisen
because of the numerous successes achieved in demonstrating
the ability of neural networks to deliver elegant and powerful
solutions, especially in the fields of learning, pattern recog-
nition, optimization, and classification, which have proved to
be difficult and computationally intensive for traditional von
Neumann computing schemes.

Due to its interdisciplinary nature, encompassing comput-
ing, biology, neuropsychology, physics, engineering, biomedi-
cine, communications, pattern recognition and image process-
ing, etc., the field of neural networks attracts a variety of
researchers and developers from a broad range of backgrounds.
Today, there are many different paradigms and applications of
neural networks, reflecting research and development groups.
ANN’s are viable computational models for a wide variety of
applications including pattern recognition, speech recognition
and synthesis, image compression, adaptive interfaces between
human and machines, clustering, forecasting and prediction,
diagnosis, function approximation, nonlinear system modeling
and control, optimization, routing in parallel computer systems
and high-speed networks, and associative memory. The field
of neural networks links a number of closely related areas that
include parallel and distributed computing, connectionism, and
neural computing. These areas are brought together with the
common theme of attempting to exhibit the computing method
which is witnessed in the study of biological neural systems
[5]–[10].

II. BACKGROUND

In artificial neural networks, the element that corresponds
to a biological neuron is called a processing element (PE). A
simple PE combines its input paths by adding up the weighted
sum of all inputs. The output of a PE is the signal that is
generated by applying the combined inputs to an appropriate
transfer function (see Fig. 1). Learning takes place in the form
of adjustment of weights connecting the inputs to the PE. There
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Fig. 1. A general neural model.

are various ways in which the PE’s are interconnected in neural
networks as groups called layer or slab, and also, there exists a
variety of training (learning) rules that determine how, when,
and by what magnitudes are the weights updated. For example,
a typical backpropagation type of neural network element (see
Fig. 2) transfers its inputs as follows:

(1)

where

current output state ofth neuron in layer ;

weight on connection joining theth neuron in
layer to th neuron in layer ;
activation/transfer function.

A suitable activation function can be chosen for each layer
by trial-and-error method from among several commonly used
functions such as TanH, Sigmoid, and linear. In (1), traditional
sum is used to obtain net. However, several other variants
of net may be used and their relative effect on the neural
network performance can be studied. A few of the general
purpose summation functions are

Maximum: net (2)

Minimum: net (3)

Majority: net sgn (4)

Product: net (5)

City-Block: net (6)

The information propagates through ANN’s in response to
the input patterns. Differential error at each hidden layer is
computed as follows:

net

net (7)

and the corresponding delta weights are added to all the
weights in the system.

coef momentum factor (8)

where coef learning coefficient.

This is done for each (input, desired output) pair when delta-
learning rule is in effect. However, the convergence speed for
ANN’s can be improved when other rules such as normalized-
cumulative-delta (Norm-Cum), Delta-Bar-Delta (DBD), and
Max-Prop. rules are used along with a suitable momentum
factor [6], [7].

The direction of signal flow, types of training and activation
function, values for learning parameters, number of neurons
in each layer, etc., are a few of the current active research
areas. The following design factors are important aspects to
the characterization of ANN models [9], [10], [15].

1) supervised, unsupervised or reinforcement learning
paradigms;

2) decision and approximation/optimization formulations;
3) ANN structures;
4) static and temporal pattern recognition;
5) activation functions
6) individual and mutual training strategies.

III. CHARACTERISTICS AND MODELS OF ANN’ S

A fundamental feature of artificial neural networks is their
adaptive nature, where learning by examples replaces program-
ming in solving problems. This important feature makes such
computational paradigms very appealing in the application
domain where one has little or incomplete understanding
of the problem to be solved, however, there exists some
training data. The parallel and distributed architecture feature
of ANN’s allows for fast computation of solutions when
these networks are implemented on parallel and/or distributed
computer systems [16]–[18].

One aspect of ANN’s is the use of simple processing
elements which are essentially approximate models of the
neurons in the brain. It is estimated that the brain contains
over 100 billion (10 ) neurons of different types and 10
synapses in the human nervous system. Recent studies in the
brain have found that there are more than 1000 synapses on
the input/output of each neuron. A neuron is the fundamental
cellular unit of the nervous system and, in particular, the brain.
The “artificial neuron” is the basic building block unit of any
ANN. Each neuron can be regarded as a simple processing
element that receives and combines signals from many other
neurons through input structures called “Dendrites.” For a
combined input signal having values greater than a certain
threshold, the firing of a neuron takes place resulting in an
output signal that is transmitted along a cell component called
“axon.” The axon of a neuron splits up and connects to
dendrites of other neurons through the “synapse.” The strength
of the signal transmitted across a synapse is called synaptic
efficiency, which is modified as the brain learns [9], [16]–[18].

There are two types of ANN models.

1) The biological type which encompasses networks mim-
icking biological neural systems such as audio functions
(cochlea) or early vision functions (retina). The main
objective of the first type is to develop a synthetic
element for verifying hypotheses related to biological
systems. The ANN’s are not used directly for data
processing. For instance, research on biological type
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Fig. 2. Two-layered feedforward neural network.

vision neural networks has focused on functions such
as motion field, edge detection, and binocular stereo
vision [19]. In natural retina vision processing, edge
information is extracted via lateral inhabitation between
retinal neurons. Depth perception (stereopsis) is formed
by comparing images from the two eyes in primates.
Many of such biological processing examples have pro-
vided useful results for the development of ANN’s.
The structure of the cerebral cortex can be modeled by
3–6 layers of neurons. The neurons (PE’s) and inter-
connection synapses constitute the major elements for
information processing. Most neurons possess tree-like
structures called “dendrites” that receive input signals
from other neurons across synapses (junctions). Some
neurons communicate with few nearby ones while others
make contact with thousands. The branching extension
that carries neurons output to the dendrites of other
neurons is called the axon. A neuron sends its output
to other neuron via its axon. The axon carries the data
through a series of waves of current that depends on
the neurons voltage potential. A neuron collects signals
at its synapses by adding all excitatory and inhibitory
influences acting upon it. The neuron fires and sends this
message to other neurons via the outgoing synapses. The
neuron function is often modeled as a threshold function,
if the excitatory influence is dominant [17], [18].

2) The second type is the application-driven neuron
which depends less on faithfulness to neurobiology.
An application-driven ANN can be defined as an ANN
architecture that comprises massively parallel adaptive
PE’s with an interconnection network. In these models
the architecture is dictated by the application needs.
Many of such ANN’s are represented by the so-called
connectionist models. In general, neurons and axons
are mathematically modeled by activation and net
functions, respectively (see Fig. 1). The selection of
these functions depends in most cases on the applications
of the ANN models. In other words, application-driven
ANN models are only loosely tied to the biological
realities. They are tightly associated with advanced
and intelligent processing in recognition, optimization,
and classification. Such models have the potential of
offering a revolutionary technology for modern high-
performance computer and information processing. The
reasons for the strengths of application-driven ANN’s
can be enumerated as follows [9], [10].

a) Parallel and distributed processing capability: they
employ a large number of PE’s that are intercon-
nected together using an interconnection scheme that
depends on the type of the paradigm.

b) Adaptiveness and self-organization: they offer adap-
tive and robust processing capabilities by adopting
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adaptive learning (training) and self-organization
rules.

c) Fault-tolerance: this is a very attractive feature for
many applications.

d) Nonlinear processing: this characteristics is very im-
portant as it enhances the networks approximation,
noise immunity and classification capabilities.

Neural networks can be classified into different categories
based on the selected criterion. Based on the learning (train-
ing) method (algorithm), we can divide neural networks into
supervised, unsupervised, and reinforcement learning types.
Supervised learning refers to the design of a classifier in the
case that the underlying class of available samples is known.
In supervised learning, each input pattern received from the
environment is associated with a specific desired target pattern.
The weights are usually synthesized gradually, and at each step
of the learning process they are updated in order to minimize
the error between the networks output and a corresponding
desired target. In the unsupervised learning case, it is necessary
to classify data into a number of groups without the aid of a
training set. The goal here is to separate the given data into M
classes. The idea is to optimize some criterion or performance
metric/function defined in terms of the output activity of the
units in the network. The weights and outputs in this case are
usually expected to converge to representations that capture the
statistical regularities of the input data. In order to accomplish
this a clustering criterion is defined which assigns a numerical
value to each possible assignment of samples to clusters. It is
too costly in general to simply evaluate the criterion for each
possible assignment, therefore, a method must be used to find
an optimal assignment. The third class is the reinforcement
training (learning) algorithm which is between supervised
and unsupervised learning. Reinforcement learning involves
updating the networks weights in response to an “evaluative”
teacher who basically tells whether the answer is correct or
incorrect. It involves rules that may be viewed as stochastic
search mechanism that attempt to maximize the probability of
positive external reinforcement for a given training set.

From the point view of estimation, we can classify artificial
neural networks into estimating and nonestimating families.
The estimating neural networks use the Parzen estimators for
estimating the probability density function (PDF) for a given
data set. The other family is made up of no-estimating neural
networks which cannot estimate PDF automatically from the
data set.

It is the author’s expectation that in the future we will have
open computing and processing systems where application-
driven ANN’s will play a great role along with traditional von
Neumann and optical computing paradigms. A scheduler will
decide where the task has to be scheduled. For example, if
the task to be executed is an optimization or recognition task,
then ANN-based platform/paradigm (neurocomputer) will be
selected to execute it. If the task is a pure numerical compu-
tation such as matrix arithmetic then traditional von Neumann
platform/paradigm will be used. For image processing and
other similar tasks, optical computing platform/paradigm will
be selected.

Fig. 3. A classification example.

Fig. 4. Global minimum of the functionf(x).

IV. A PPLICATION CATEGORIES

We can divide the application domain of ANN’s into
the following main categories: 1) classification, clustering,
diagnosis and association; 2) optimization; 3) regression and/or
generalization; and 4) pattern completion [1]–[10], [20]. A
brief description of each category follows.

1) Category 1: Classification, clustering, diagnosis, and
association: In this paradigm, input static patterns or
temporal signals are to be recognized or classified. A
classifier should be trained so that when a slightly
distorted version of a stimulus is presented it can still
be correctly recognized. The network should have a
good noise immunity capability which is critical for
some applications such as holographic and retrieval
applications. An example is shown in Fig. 3.

2) Category 2: Optimization: ANN’s are very appealing for
solving optimization problems which involve finding a
global minimum function (see Fig. 4). The determina-
tion of the synaptic weights is relatively easy once the
energy function, , is found. The cost function is easy
to find for some applications, however, in other appli-
cations, it has to be derived from a given cost criterion
and some constraints related to the problem at hand.
One of the main issues related to optimization problems
is the possibility of obtaining a solution converging to
a local minimum instead of a global minimum. Among
the techniques that are proposed to tackle this problem
are the simulated annealing and mean-field annealing
[21]–[24].
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Fig. 5. A generalization example.

3) Category 3: Regression and generalization: Regression
problem has been studied extensively. Linear and non-
linear regression provide a smooth and robust curve
fitting to training patterns. Usually, the system is trained
based on the supervised training scheme using a large
dataset. An ANN’s is considered successful if it can
closely approximate the teacher values for the trained
data set and can provide smooth interpolations for the
untrained data set. Generalization is used to yield a
correct response to an input stimulus to which it has
not been trained. The system must induce the salient
feature of the input and detect the regularity. This
regularity discovery is vital for many applications. It
enables the system to function efficiently throughout
the entire dataset (space), although it has been trained
only by a limited portion of the entire data set (space).
Fig. 5 shows an example. It is important to note that
each ANN model tends to impose its own prejudice in
how to generalize from a finite set training data. A good
example that shows the difficulty with generalization
is the parity-check problem where the backpropagation
model consistently generalizes into a wrong result [22],
[24].

4) Category 4: Pattern completion: In some classification
problems, an implied task is the completion of informa-
tion, that is, the recovery of original data given only par-
tial information. We differentiate between static and tem-
poral pattern completion problems. Markov models and
time-delay dynamic networks are for temporal pattern
completion while most traditional multilayer ANN’s,
Boltzmann machines, and Hopfield ANN’s are for static
pattern completion [10], [22].

V. STRUCTURE OF ANN’ S

The major structural factors of ANN’s are network size,
connection structure, and all-classes-in-one network (ACON)
versus one-class-in-one network (OCON) schemes.

In a feedforward multilayer ANN, there are one or more
layers of hidden neuron (PE) units between the input and

output neuron layers. The sizes of ANN’s depend on the
number of hidden neurons (PE’s) per layer and the number of
layers (slabs). The number of hidden PE’s is directly related to
the network capability. There is an optimum number of hidden
PE’s that must be properly determined in order to have the
best performance. The number of layers is usually counted as
the number of weight layers instead of neuron layers. There
are one or more layers of hidden PE’s between the input and
output.

An ANN comprises of the neuron and weight building
units/blocks. The behavior and performance of the ANN
depends mainly on the interaction between these units/blocks.
Layers are of three types: input, hidden and output layers.
Two layers of neurons communicate using a weight connection
network. We can identify four types of weight connections:
feedforward, feedback, lateral, and time-delayed connections.
In the feedforward type of connection, data from neurons of
lower layer are propagated forward to neurons of upper layers
via feedforward connection networks. In the feedback type,
data are brought from neurons of upper layer back to neurons
of lower layer. One excellent example on the lateral networks
is the winner-takes-all-circuits, that serves the important role of
selecting the winner. In the feature map example, by allowing
PE’s to interact via the lateral network, a certain topological
ordering relationship can be preserved. Delayed elements can
be included in the connections to provide temporal dynamic
models. Such connections are more suitable for temporal
pattern recognition.

There are two general plausible ANN structures: the ACON
and the OCON. In the first approach, all classes are lumped
into one large-size super network. In the OCON structure, a
huge ANN is decomposed into many subnets in order to have
subnets of small sizes where one subnet is devoted to one
class only.

The ACON and OCON ANN’s differ significantly in the
size, and speed, that is the total number of synaptic weights
and the training time. Let us assume that all subnets are
of uniform size, say k. The number of hidden units of the
ACON large ANN is denoted as where . The two
structures, ACON and OCON, differ significantly in the size
and speed, or in other words total number of synaptic weights
and training time. Let and denote the input and output
vector dimensions, respectively. The number of total synaptic
weights for the ACON structure is equal to . On the
other hand, the total number of synaptic weights for the OCON
structure is equal to . When is
relatively small compared to, the ACON structure could have
compatible or less weight than the OCON structure. While if

is large, then OCON could have a major advantage in terms
of network size. Moreover, OCON seems to perform better
than ACON in training and recognition speed when the number
of classes is large. Empirical studies have found that the
convergence rate of ACON degrades drastically with respect
to the size of the network due to the influence of conflicting
signals from different teachers on the training process. By
eliminating the inter-class connections, the OCON structure
approach helps obviate such confusion. Each subnet in OCON
type is specialized for distinguishing its own class from the
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alien patterns. Therefore, the number of hidden unitsneeded
should be relatively small. Recent experimental results based
on some speech and optical character recognition (OCR) have
shown that 3–5 hidden neurons are all it needs for each subnet.
The OCON structure may offer computational saving in the
training stage and performance enhancement in the retrieving
stage [9], [25].

VI. SCANNING THE ISSUE

In this special issue, we have accepted 11 regular papers
and three correspondences out of 43 papers received from
all over the world with representation from academia and
industry. Each paper was refereed by at least three qualified
reviewers according to the practice of this TRANSACTIONS. The
accepted papers cover important SMC areas including estima-
tion, associative memories, classification, diagnosis/analysis,
pattern recognition, visualization, prediction and anticipation,
diagnosis, and optimization.

Oommen, Altinel, and Aras present a method that applies
the general philosophies of vector quantization (VQ) and
discretized automata learning to estimate arbitrary distance
functions. The proposed algorithms were tested on actual road-
travel distances and they converged very quickly.

Shi et al. propose a general model for bidirectional as-
sociative memories that associate patterns between the-
space and the -space. Their model does not require the
assumption that the interconnection weight from a neuron
in the -space to a neuron in the -space is the same as
the one from the -space to the -space. The effectiveness
of their scheme was tested for recognition of noisy patterns
and the performance in terms of storage capacity, attraction,
and spurious memories was demonstrated by experimental
results. Their results demonstrate that their general paradigm
outperforms the most promising symmetrical bidirectional
associative memory and the newly proposed asymmetrical
bidirectional associative memory.

Pantazopouloset al. present two neurofuzzy approaches to
predict financial variables in a way that could be meaningful
from an investment point of view. Their methods were tested
with actual financial data and have shown a promise in
decision making and planning.

Tang introduces a multiple competitive learning neural
network fusion method for pattern recognition. Two distinct
feature vectors are used along with gray-scale morphological
granulometry and Fourier boundary descriptor, to show the
efficacy of the classifier. His proposed algorithms were applied
to 8000 underwater plankton images.

Lerner investigates the application of ANN’s to automatic
analysis of chromosome images. He analyzes this application
from the point view of segmentation, feature description,
selection, extraction and classification.

Murino proposes a new scheme for the design of struc-
tures of ANN’s for pattern recognition. The method relies
on subdividing the entire classification problem into smaller
and simpler problems at different levels, each managed by
appropriate components of complex neural network structures.
He proposes three structures that are applied to surveillance

systems aimed at monitoring a railway waiting room classify-
ing potential dangerous situations. His approach shows better
performance than classical statistical classification techniques.

Kusnadiet al. present a heuristic scheme to solve hierarchi-
cal graph layout problems. Their results show that this scheme
is effective in replacing the constraint terms which otherwise
are required in the formulation of the energy equation. In
addition to guarantee a valid solution quickly, this scheme
reduces the number of simulation parameters to adjust which
provides flexibility in tuning the objective parameters.

Tsoukalas reviews the role of anticipation in intelligent
systems and presents a new scheme for anticipatory control
algorithms that use the predictive capability of ANN’s in
conjunction with the descriptive power of fuzzy if/then rules.
His method is illustrated through the anticipatory control
of a nuclear power plant. The results of the application to
tracking control of reactor power indicate that the controller
has excellent robustness and performance features.

Wang et al. apply fuzzy logic-inspired features to improve
bacterial recognition through classifier fusion. A fuzzy logic
rule-based system was used as a guide to find a good feature set
for the recognition of Escherichia coli (E. coli) O157:H7. The
fuzzy integral was utilized in the fusion of ANN’s trained with
different feature set to reach an almost perfect classification
rate of E. coli O157:H7 PFGE patterns made available for the
experiments.

Bolla et al. derive a neural network-based controller for
the optimal allocation of bandwidth between two traffic types
over a time division multiplexing link. The control is exerted
through a randomized decision strategy that acts upon the
acceptance of incoming connection requests of isochronous
circuit-switched traffic, and minimizes a cost function account-
ing for connection refusal and packet loss rate.

Obaidat and Khalid propose a novel and adaptive cache
replacement scheme based on an estimating type of ANN’s
where statistical prediction property of such ANN’s is used
to develop an ANN-based replacement policy which can
effectively identify and eliminate inactive cache lines. Such
an approach will provide larger free space for a cache to
retain actively referenced lines. The proposed strategy can
yield better cache performance as compared to the traditional
schemes. Trace-driven simulation results have shown that with
a probabilistic neural network, a significant improvement of
11% in the miss ratio can be achieved over the least-recently-
used (LRU) scheme. The best-performing conventional near-
optimal algorithm provided only 3.46% improvement over
LRU for the same used benchmark suite.

Ornes and Sklansky demonstrate the visualization capabil-
ities of the visual neural classifier using synaptic data. They
also compare the visualization performance of Kohonen’s self-
organizing map. They demonstrate that visualization enables
a designer to refine the classifier in order to achieve low error
rates and enhances a user’s ability to make classifier-assisted
decision.

Lee and Tsai propose an improvement to an ANN proposed
by Hussein and Kabuka [26] that can recognize features. They
use the vigilance parameters and matching degrees to allow
the combination of similar training patterns automatically in
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the same subnet. Networks obtained by their method can be
smaller than those obtained by earlier work.

Finally, Al-Mulhem and Al-Maghrabi propose an efficient
convex-elastic net algorithm to solve the Euclidean traveling
salesman problem. Experimental results show that their al-
gorithm outperforms many similar algorithms reported in the
literature.
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