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{ebit}

{cost of goods sold}
{sales}

{sales volume}

{price} {advertising} {credit period} {operating expenses}

Fig. 3. Causal dependency graph for example 1.
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I. INTRODUCTION

Machine recognition of handprinted Chinese characters was con-
sidered to be a very hard problem by many researchers. This is caused
by 1) the large number of Chinese characters (there are more than
40000 characters of which more than 4000 are in common use)
and 2) the large variability in handwriting. One common approach,
known as the decision-theoretic approach, is based on some kind
of numerical feature extraction. The characters are represented as
points in a multidimensional feature space and a discriminant function
(or the equivalence) is used to perform the classification. Despite
its simplicity, many characteristics of Chinese characters cannot be
expressed in numerical form. For example, it is very difficult to
represent the structural relations between the strokes of a character
as numerical features.

Recently, structural approach begins to gain popularity. Each
Chinese character is composed of strokes that form naturally the
pattern primitives used in structural pattern recognition. Plex grammar
[1] and attributed tree grammar {2] have been proposed. However,
only preliminary results are available. One problem in using a
grammatical approach is the need for the correct ordering of the
strokes, which is nontrivial to extract in an off-line recognition
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system. In addition, the use of higher dimensional grammar is
very complex. Another approach is by pattern matching. Relaxation
matching using polygonal approximation 3] and strokes extraction
[4] have been attempted with considerable success. However, the
relaxation technique cannot represent the hierarchical characteristics
that exists in Chinese characters. By hierarchical characteristics, we
mean the fact that each character is composed of radicals (which
may themselves be complete characters) and the radicals in turn are
composed of simpler radicals or primitive strokes. It is believed that
such hierarchical characteristics are used by human in the recognition
process. Due to this hierarchical structure, we propose to use radical
matching rather than character matching and determine the character
from the radicals found.

Fuzzy set theory was first introduced by L. A, Zadeh [5] in 1965.
It is an attempt to use formal mathematical tools to investigate
problems pertaining to uncertainty, ambiguity and vagueness. The
concepts modeled by fuzzy set theory have no exact boundary
between membership and nonmembership and the change is gradual
rather than abrupt. Such concepts map well to the characteristics of
handwritten Chinese characters. The four primitive strokes in Chinese
characters, —, |,/ ,and \, have no exact boundary and the changes
between different stroke types are gradual. Hence fuzzy set theory
provides a possible vehicle in describing the uncertainty in stroke
types. Similarly, many other properties of strokes and their relations
are fuzzy in nature. Moreover, fuzzy set can be considered as a
generalization. Ordinary set can be represented as a special case of
fuzzy set, where A is the fuzzy set that represents the ordinary set
A, and p ;(z) denotes the membership of = in the fuzzy set A:

1 Veed
0 otherwise.

pile) = {

We have chosen a graph structure to represent Chinese characters.
The attributed graph proposed by Tsai and Fu [6] gives a straightfor-
ward representation of structural patterns and we have modified it to
include fuzzy attributes. We call the resultant graph a fuzzy-attribute
graph (FAG). In the next section, we will define FAG formally and
discuss its properties.

II. ATTRIBUTED GRAPH AND FAG

Attributed graph was introduced by Tsai and Fu [6] for pattern
analysis. It gives a more straightforward representation of structural
patterns. The vertices of the graph represent pattern primitives
describing the pattern while the arcs are the relations between these
primitives. The following definition of attributed graph follows [7].

Each vertex may take attributes from the set Z = {z;|i =
1,---,I}. For each attributes z;, it will have possible values taken
from the set S; = {S,‘jlj = 1,- .. ,J,}. L, = {(Zi,s,']')lj =
1,-+-,Ji;i = 1,---, 1} denotes the set of possible attribute-value
pairs of the vertices. A valid pattern primitive is just a subset of L.
in which each attribute appears only once, and II denotes the set of all
those valid pattern primitives. Thus each vertex will be represented
by an element of II.

Similarly, for the arcs, we have the attribute set F = {fi|i =
1,---,I'} in which each attribute f; may have values taken from the
set Ty = {ti;lj = L, Ji'}. Lo = {(fistij)lf = 1,---, Jisi =
1,-++,I'} denotes the set of possible relational attribute-value pairs.
A valid relation is just a subset of L, in which each attribute appears
once. The set of all those valid relation is ©.

The attributed graph can be defined as follows. Let NV be a finite
nonempty set of vertices and £ C N x N a set of distinct ordered
pairs of distinct elements in N.

Definition 1: An attributed graph G over L = (L., L,) with an
underlying graph structure H = (N, E) is defined to be the ordered

pair (V, A) where V = (N, o) is called an attributed vertex set and
A = (E, 6) is called an attributed arc set.
o : N — Il is called vertex interpreter
6§ : E — O is called arc interperter
The vertex and arc interpreter is just a mapping that maps the vertices
or arcs to their corresponding attribute sets.
When using attributed graph to represent Chinese characters,
a natural way is to represent each stroke as a vertex and the
relation between strokes as arcs. For illustration, we have attributes
STROKE _TYPE and LENGTH for each stroke and for relation, we
take JOINT_TYPE, VERT_REL and HORI_REL for example:
STROKE_TYPE = {Vertical, Horizontal, Slant 45, Slant 135}
LENGTH = {Long, Short}
JOINT_TYPE = {T-from, T-into, Ht, Cross, Parallel}
VERT_REL = {On-top-of, Below-of, No-vert-relate}
HORI_REL = {Left-of, Right-of, No-hori-relate. }

With the definition of attributed graph given previously:

Z = {:, = STROKE_TY PE, 2, = LENGTH}
51 = {511 = Vertical, s1o = Horizontal, 5,3 = Slant45,
514 = Slant135}
S2 = {591 = Long. s22 = Short}
L.={(STROKE.TY PE. Vertical),
(STROKE.TY PE, Horizontal),
(STROKE_TY PE, Slant45),
(STROKE_TY PE, Slant135),
(LENGTH, Long).(LENGTH, Short)}.

Similarly:

F = {f, = JOINTTYPE, f, = VERT REL,
fs = HORI_REL}

T, = {tin =T — from,t12 =T — into, t13 = Ht,
tie = Cross,tis = Parallel}

T, = {t21 = On — top — of,t22 = Below — of,
tas = No — vert — relate}

T; = {t31 = Left — of,t32 = Right — of,
tss = No — hori — relate}

L, ={(JOINTITYPE,T — from),
(JOINT TY PE,T — into), (JOINT TY PE, Ht),
(JOINT TY PE,Cross),
(JOINT TY PE, Parallel),
(VERT_REL,On — top — of),
(VERT _REL, Below — of ),
(VERT_REL,No — vert — relate),
(HORI.REL, Left — of),
(HORI_REL, Right — of),
(HORI_REL, No — hori — relate)}.
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The following equations are valid pattern primitives and relations:
71 = {(STROKE_TY PE,Vertical),
(LENGTH, Long)},and
6, = {(JOINTTYPE,Cross),
(VERT_REL,On —top — of),
(HORI_REL,No — hori — relate)}.

The matching of vertices and arcs can be determined by equality of
attributes.

However, it can be noted that many of the aforementioned at-
tributes are in fact fuzzy in nature, e.g., STROKE_TYPE, and even
VERT_REL and HORI_REL are rather fuzzy. It is thus a natural step
to extend the definition to include fuzzy attributes.

Since every crisp set can be represented as a particular case of a
fuzzy set by setting the membership to 0 and 1 for all elements, 1
if the element belongs to the set and 0 otherwise, we can generalize
our definition as follows.

Each vertex may have attributes from the set Z = {zli
1,---,I}. For each attribute z;, it may take values from S; =
{sz; |] = 1,---,J;}. The set of all possible attribute-value pair is

L, = {(zl,As )i = 1,---,I} where As, is a fuzzy set on the
attribute-value set S;. A Valld pattern primitive is just a subset of L,
in which each attribute appears only once, and i represent the set
of all those valid pattern primitives.

Simi]arly, each arc may have attributes from the set F = { f,li =

-,I'} in which each f; may take values from T: = {t;;|j =

S JY Le = (foBr)li = 1,---,1' denotes the set of all
p0551blc relational-attribute value pair, whcre B T, is a fuzzy set on
the relational attribute-value set T;. A valid relation is just a subset
of L, in which each attribute appears only once. The set of all valid
relation is denoted ©.

Definition 2: An FAG G over L = (L, La) with an underlying
graph structure H = (N, E) is defined to be an ordered pair (V, A)
where V = (N, 7) is called a fuzzy vertex set and A= (E, 6) is
called a fuzzy arc set and

G : N — 11 is called a fuzzy vertex interpreter

6: E — © is called a fuzzy arc interpreter.

The definition also applies when there are nonfuzzy attributes.
With the aforementioned definition, we may have strokes repre-
sented as

71 ={(STROK ETY PFE, {0.7/Vertical,0.85/Slant45,
0.01/Horizontal,0/Slant135}),
(LENGTH, {0.6/Long,0/Short})}

6, ={(JOINTrY PE,{0.7/T-from,0.65/Cross,
0/T-into,0/Ht,0/Parallel}),
(VERTREL, {0.9/On-top-of,
0/Below-of,0.25/No-vert-relate}),
(HORIREL, {0.2/Le ft-0f, 0.4/ Right-of,
0.77/No-hori-relate})} .

When we use the aforementioned extension, problems will arise
when considering matching between two different vertices or arcs.
For example, consider another vertex,

7z = {(STROKErY PE, {0.7/Vertical,0.5/Slant45,
0/Horizontal,0/Slant135}),
(LENGTH, {0.4/ Long, 0/ Short)}.

When we match 7, against 72, obviously, we can no longer use
equality as criterion because equality of two fuzzy set is too stringent
a condition. We need other criteria. In the next section, we will
define three measures feasibility, compatibility and A-monomorphic
to handle this problem.

III. MONOMORPHISM BETWEEN FAGS

Consider two FAG’s G, and G2 Monomorphism problem is to
find a one to one mapping from G1 to G that preserves incidence
relations. As described in the previous section, we cannot use equality
as a criterion. The proposed criteria for matching is defined as follows.

Definition 3: Feasibility o is a measure of similarity between two
primitives v, and vz of G1 and G- respectively, and

0 < (I(Ul,UQ) S 1

With the definition of fuzzy vertex set in Section II, let Als be the
fuzzy set that gives the attribute value for z; of v; and Azs be that
of z; of v2. The value of feasibility can be defined as

A V

alv1,V2) =
o= A

{(Mlsi (si)) A pays (8ii))}

where p 5, . (si5) is the membership value of s;; in the fuzzy set

AKS“ K = 1,2, and, A and V are the min and max operators
respectively. The formula comes from the following analysis.

The membership of a fuzzy set can be interpreted as the compat-
ibility of a2 member and its properties, or in other words, the truth
value of a member possessing that properties, for example:

Ars, = {Mlsi(sm/sz‘jlsz;‘ € Si}
and
Aps, = {p,;gsi(s,-,')/s;,-lsl', € St}

can be interpreted as
vy is s;; with truth value Ris, (sij)
and
va is s;; with truth value Bigs, (sij)-
Taking disjunction over all the p0351b1e attribute values, for a
particular attribute z;, the feasibility with respect to this attribute
can be defined by the fuzzy logical expression,

(viis s;1and vais s;1) or (viis sioand veiss;e) or
--or (viis s;7; and vais s;i7;)
and the truth value of this fuzzy logical expression is,
(s, (8i) A pigs (30 V (14, (52) AR, (s:2))V
Vg, (800) A By (8i0)-
Taking conjunction over all attributes, we define feasibility of two

vertices v; from Gy and vy from Go as

((v1 is s11 and vg is s11) or

- or (vy is s14, and vy is s15,)) and
((v1 is s21 and vy is sg)) or

- or (v is s2J, and vy is s27,)) and

({(vy is sy and w2 is spy) or -+ -

or (vy is sry, and vais syu;))-
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Definition 4: Compatibility 3 is a measure of similarity between
two arcs, e1 and e of Gy and G respectively, and

0 S ,9(61,62) S 1.

Similarly, with the definition of fuzzy arc set in Sgction 11, let B T; be
the attribute value of the attribute f; of e, and Bor, be the attribute
value of f; of e2. The value of compatibility can be obtained by

1 /

I
A v (kg (ti) A g, p (1i5)}

z]]1

Bler,ez) =

where p By, (ti;) is the membership of t;; in the fuzzy set Brr,,
K=12.

Definition 5: Let G, and Gy be two FAG’s with the underlying
graph H; = (N1, Ey) of G is monomorphic to the underlying graph
H, of G2 The degree of matching v is defined as

G, Go) = A

iEN a(l’h(l))(i,j) € E
e2(h(i), k(7))

where h(i) is the vertex in G that matches vertex i in Gl, and
ek (4, ) is the arc joining vertices ¢ and j in Gk

Definition 6: Let G1 and G be two FAG’s. G is A-monomorphic
to Gy if the underlying graph H, of G, is monomorphic to the
underlying graph H» of G, and the degree of matching v > \.

The G, is A-monomorphic to Gy is equivalent to say that the
underlying graphs are monomorphic and also for every matched pairs
from N1 x N, v1(7) is feasible with vo(h(4)) with truth value of
at least A, and for every matched pair from E; x Es, e1(i,j) is
compatible with ez (h(¢), h(j)) with truth value of at least A.

The matching between two FAG’s, as defined previously, is a kind
of inexact matching. Most inexact matching in pattern recognition
is based on probability [8], [9]. However, as discussed earlier, the
inexactness of Chinese character is fuzzy and can be modeled by
fuzzy set theory. There have been works on applying fuzzy set theory
to inexact matching—fuzzy matching [10]-[12]. This is another
attempt in this direction, using fuzzy logic for inexact matching of
fuzzy data.

Bler(i.g),

IV. A-Curs oF FAGs

In this section, we will discuss some properties of FAG’s and
explain its advantages over attributed graph in pattern recognition.

Definition 7: Let G be an attributed graph, with attribute set Z and
F, and attribute values S; and 7;. Then an extended attributed graph
G' is an attributed graph with the same attribute set Z, but for each
attribute, it may take values from

S/ =S, U{L}
T =T.u{L}

where L has the meaning of empty.

Definition 8: Let G be a FAG and G be an extended attributed
graph with the same sets of attributes Z and F, the same set of
attribute values S; and T}, V i, and the same underlying graph
H = (N,E). Let §; = o(n;) and 6; = d(n;), Vn; € N, and
i = 8(e;) and #; = b(e;), Ve; € E. G is said to be a A-cut of
G if Vni € N,Vz; € Z,if (2:,5:;) € 65, and (z;, As,) € 6, then
si; € A-cut of Asl, if the A-cut is nonempty, otherwise, s;; =1,
and Ve; € F V~f, € F,if (fi,ti;) € m; and (f.,BTt) € 7;, then
ti; € A-cut of Br,, if the A-cut is nonempty, otherwise, t;; =.L.

We can note that the A-cut of a FAG is in fact a nonfuzzy version of
the FAG and is not unique. That is, each FAG represents a number of
possible (nonfuzzy) attributed graphs, depending on the value A. The

introduction of extended attributed graph is to ensure that the A-cut
always exists, even when the A-cuts of some fuzzy sets are empty.

The following two properties describe the relation between the
fuzzy version and the nonfuzzy ones.

Property I If Gy is A- -monomorphic to G, then one of the A-cuts
of Gy is monomorphic (in the usual sense) to one of the A-cuts of Go.

Property 2: 1If G, is A1-monomorphic to Ga, then Gy is Ag-
monomorphic to G2 VA2 < A1

The proof of Properties 1 and 2 can be found in [13].

In most cases, we must finally make a (nonfuzzy) decision. Making
such decision will, in the authors’ opinion, bind some fuzzy variables
to some nonfuzzy values. For example, we may say that the radical

isa/ stroke on-top-of a | stroke. Here / , | and on-top-of are
fuzzy. Given a stroke, we cannot decide exactly what the stroke type
is. (As discussed earlier, fuzzy concepts has no exact boundary on
membership and nonmembership). However, by making decision that
the radical is a 1 , we have bind the fuzzy variables into nonfuzzy
values, i.e., the stroke type is / and | and the relation type is on-
top-of. This binding process comes from the decision process. The
advantage of using the current approach is to allow the fuzziness
to be retained during the decision process until final decision is
made. In fact, complex systems, where we make decision based on
continuous, exact variables such as temperature and length, will be
very complicated or even unsolvable. By introducing fuzzy concepts
based on these variables, such as hot, cold, long, short (a fuzzy
concept may be based on more than one variable), the system is
much simplified.

V. RADICAL COMBINATION

When we apply FAG to Chinese character recognition, the radical
templates we use contain no fuzziness. This is because the radical is
an ideal character or a definition. Hence no fuzziness should exist.
For example, when we define the radical 1, we have the following
definitions,

a horizontal stroke crosses with a vertical stroke that

forms a T-joint with another horizontal stroke. The

latter is below the first horizontal stroke and with a

longer length.
There should be no fuzziness involved in the definition. However,
any instance of the character will contain fuzziness. Hence the pattern
graph will be represented as a FAG while the radical template as a
hard FAG (HFAG), which is a special case of a FAG with membership
either 0 or 1 (which is slightly different from the attributed graph
defined). The matching is, therefore, between a fuzzy pattern and a
nonfuzzy description. Nevertheless, the discussion presented so far
still applies, since a HFAG is still a FAG.

The set of HFAG with the same underlying graph forms a complete
lattice with the order we define. We will try to represent two templates
with the same underlying graph (two different definitions of the same
radical with minor variations) by the least upper bound of the two
templates, and use the new HFAG for matching.

Definition 9: Given two extended attributed graphs, G; and G-
with the same underlying graph, G is said to be contained in G if
Vn € N, and Vz € Z, either

(z,L1) € o1(n) or
if (z,5) € o1(n) then (z,s) € g2(n)

where 0 and o, are the vertex interpreter of G and G, respectively,
and Ve € F, and Vf € F, either

(f,L) € bs(e) or
if (f,t) € 61(e) then (f,t) € 62(e)
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H,

o>

Fig. 1. The net formed from graphs H, and Hs.

H,

Fig. 2. The weighted edge subgraph of node 2,2).

where 61 and 6, are the arc interpreter of G and G2 respectively.

Definition 10: Let (7 and G2 be two HFAG’s having the same
underlying graph. We define Gy > Ga iff every l-cut of G is
contained in a 1-cut of Gi.

Theorem 1: Let ® be the set of all HFAG’s defined over a given
underlying graph G. Then (B, >) is a complete lattice.

The proof of theorem 1 can be found in [13].

Every 1-cut of a HFAG is a A-cut of it YA € [0, 1]. Property
1 of the previous section ensures that if the pattern graph G is -
monomorphic to the radical graph H, then there exists a A-cut of G
which is monomorphic to a A-cut of H, one of the attributed graph
defined by the radical definition. For example, L and ! can be
combined to one HFAG as well as H and ¥ instead of introducing
new radicals. During the graph matching procedure, only one template
will be required, as compared to using two different templates.

VI. FINDING MONOMORPHISM

After the discussion of some properties of FAG’s, we proceed to
describe the algorithm for matching of FAG’s. Graph monomorphism
is known to be NP-complete [14]. The following algorithm is based
on a tree-search algorithm proposed by Akinniyi, Wong, and Stacey
[15].

Let Hy be the underlying graph of G1 and H, be the underlying
graph of G2. We first construct a net from the graphs H, and H,.
A net is just a product graph of H, and H>, in which a node (z, )
has an edge incident into (i', j') if there is an arc incident from ¢ to
i' in H, and j to j' in Ho (Fig. 1).

Each node (i, ) in the net represents a matching of vertex i in Hy
and vertex j in H.. Before going further, let us look at the strong
necessary condition for graph monomorphism:

The number of neighbors of node (i, §) in the net that
are in distinct rows and columns of the net must equal
the number of neighbors of vertex ¢ in H;.

~
n n
@) ®
Fig. 3. Nullable strokes in radicals.
TABLE I
ATTRIBUTE VALUES OF THE NODES OF CHARACTER *
Stroke Length Stroke Type
Number Long Short — | ) \
1 1.00 0.00 0.00 0.01 0.00 0.89
2 1.00 0.00 0.00 1.00 0.00 0.00
3 1.00 0.00 1.00 0.00 0.97 0.00
4 1.00 0.00 0.37 0.00 0.00 0.00
5 1.00 0.00 1.00 0.00 0.00 0.00
6 1.00 0.00 1.00 0.00 0.00 0.00

The concept of weighted edge subgraph (WES) was introduced to
check the strong necessary condition, which is just a projection of the
net on H; and Ha, with the edge weighted by the number of arcs in
the net that project onto that edge. For example, consider the graph
in Fig. 1. The WES of node (2,2) is shown in Fig. 2.

If the number of neighbors with nonzero weighted edges connected
with vertex i in graph H is gcount and that with vertex j in graph H»
is hcount for the WES of node (4, j), then the number of neighbors
of node (i.j) in the net in distinct rows and columns is equal to the
minimum of gcount and hcount.

A node (i, ;) in the net is A-feasible if 1) it satisfies the strong
necessary condition, and 2) the feasibility a(i.j) > A. A node in the
net is A-infeasible if it is not A-feasible. From now on, infeasible in
the text will mean A-infeasible and feasible will mean A-feasible.

When an infeasible node is found, all edges coming out from that
node is deleted. We can apply the strong necessary condition again
to find further infeasible nodes. When no more such node is found,
we can start searching the net with depth-first search strategy.

During the search, we first select a feasible node in the first row
of the net. Then we mark all the nodes in that row and column as
infeasible and iterate to find more infeasible nodes until no more can
be found. If only one feasible node exists on each row in the net, then
a monomorphism is found, and we backtrack one level and continue
the search. Otherwise, we apply the same strategy to the next row
until all monomorphisms are found.

VII. APPLICATION TO CHINESE CHARACTER RECOGNITION

As discussed earlier, every Chinese character is represented as
a FAG. Every radical can be represented as a HFAG. By graph
monomorphism (subgraph matching), all the radicals existing in the
character can be found.
Before going further, we first discuss several points that must be
noted.
1) As discussed in Section V, the radical templates are not fuzzy.
This is because the radical is in fact an ideal character or
a definition. Therefore no fuzziness should exist. Also, two
HFAG’s representing the same character can be combined
together by finding their least upper bound in the lattice, if
they have the same underlying graph.
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ATTRIBUTE VALUES OF THE EDGES OF CHARACTER *

TABLE II

Relation Vertical Relation Horizontal Relation Joint Type
Number Top Below Norel Left Right Norel T-f T-into H-T X /1
(1,2) 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(1,3) 0.38 0.00 0.62 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00
(1,4) 0.00 0.73 0.00 0.00 1.00 0.00 0.00 0.45 0.00 0.00 0.00
(1,5) 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00
(1,6) 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00
2,3) 1.00 0.00 0.00 0.00 0.35 0.65 0.00 1.00 0.00 0.00 0.00
24) 1.00 0.00 0.00 0.00 0.72 0.28 0.00 1.00 1.00 0.00 0.00
2,5) 1.00 0.00 0.00 0.00 0.12 0.88 0.00 1.00 0.00 0.00 0.00
(2,6) 0.00 0.03 0.97 0.00 0.15 0.85 0.01 0.19 0.00 1.00 0.00
(3.4 0.00 0.95 0.05 0.00 0.03 0.97 0.58 0.00 1.00 0.00 0.00
3.5) 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
4.5) 0.00 0.95 0.05 0.06 0.00 0.94 0.08 1.00 0.00 0.00 0.00
(4,6) 0.00 1.00 0.00 0.20 0.00 0.80 0.00 0.00 0.00 0.00 0.00
(5,6) 0.00 1.00 0.00 0.00 0.00 1.00 0.85 0.00 0.00 0.00 1.00
nullable strokes, we can add a flag to the radical graph to
indicate whether the stroke can be a null stroke. In order to
simplify computation, we also add null strokes to the pattern
\ graph. (A null stroke is just a stroke with a null flag set).
The number of null strokes in the pattern graph is the same
@ as the number of nullable strokes in the template graph. For
example, if there are two nullable strokes in the template graph,
2 say Sri, Sr2, we must add two null strokes to the pattern
6 graph, Sn1, Sn2. Each null stroke in the pattern can only match
s exactly one nullable stroke in the template and nothing else. In
" \ mathematical terms,
3 1 feasibility a(Sy1,Sn1) = 1.0:
®) and
3 a(Sr,821) =0.0VS, # S,
and also
—t—
a(Srg,Sng) = 1.0,
__J_. 3 and
© a(Sr, Sn2) = 0.0,VS, # Sra.
Fig. 4. The ch & inni inni
ig e character 25 (a) Before thinning. (b) After thinning. For compatibility,
(c) The template *.
B((Sr1,5r), (Sn1,Sp)) = 1.0 ¥V S, in the template graph,
TABLE Il .
ATTRIBUTE VALUES OF THE NODES OF TEMPLATE L. Spin the pattern graph.
Stroke LOLe‘-lgﬂSlh - Check Stroke Type Check This is because the null stroke does not actually exist, so is
No. ng o Flag — | / \ Flag the arc joining a null stroke with other strokes. Hence the
! 000 0.00 F 100 000 000 000 T matching always succeeds. For radicals with more than one
2 0.00 0.00 F 000 100 000 0.00 T llable strok flag BOTHNULL is k for th lati
3 0.00 000 F 100 000 100 000 T nullable stroke, a flag is kept for the relation
to indicate whether both nullable strokes can match with null
strokes. If BOTHNULL is set, then both nullable stroke can
2) Selective attribute matching: When checking radicals, not all match with null strokes. Otherwise, if both are null strokes,
attributes are useful. For example, when checking the radical 3 = 0.0.
2, for the relation between two horizontal strokes, the attribute 4) Incremental matching in Chinese characters: Many radicals
HORI_REL is not relevant at all. Hence for each attribute, we are part of another radical, for example, -'f-, E and H, H.
have a flag to indicate whether that particular attribute will be After matching a particular character with the radical £, the
checked for that stroke or relation. In the previous example, information can be used to perform matching for the radical
the flag for the attribute HORI_REL will be set to false. X since if the character does not match ., it will not match
3) Handling of null strokes: In many cases, the existence or E either. If a matching {(1,51), (2,s2), (3,s3)} exists for a

nonexistence of some strokes will not affect the radical. For
example, in Fig. 3, the strokes labeled n is nullable, where
its existence or nonexistence is not important. To handle such

particular character with radical -, then when matching with
radical E, we can delete all feasible nodes (i,s) Vs # s; in
the net.
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TABLE IV
ATTRIBUTE VALUES OF THE EDGES OF TEMPLATE *
Relation Vertical Relation Check Horizontal Relation Check Joint Type Check
Top Below Norel Flag Left Right Norel Flag T-f T-into H-T X // Flag
(1,2) 0.00 0.00 1.00 F 0.00 0.00 1.00 F 0.00 0.00 0.00 1.00 0.00 T
(1,3) 1.00 0.00 0.00 T 0.00 0.00 0.00 F 0.00 0.00 0.00 0.00 0.00 F
2,3) 1.00 0.00 0.00 T 0.00 0.00 1.00 F 0.00 1.00 0.00 0.00 0.00 T
VIII. AN ILLUSTRATIVE EXAMPLE

Fig. 4(a) shows the original character 2 and Fig. 4(b) is the thinned

version, with strokes found by our stroke segmentation algorithm. The

underlying graph of the character is then formed and shown in Fig.

5(a). The attributes are determined by using the standard function

S, m [16] and P [13] for membership evaluation. For example, the

attribute value of vertical in STROKE_TY PE is calculated as (a) ®)

psTrok E_Ty PE(vertical) = P(é, 1.5,0.4,2)

where 6 € [0,8) is the slope of the stroke, in chain code convention.
Some attributes are combined from more primitive fuzzy sets. For
example, the membership of T-joint in attribute JOINT_TYPE is given
by the logical expression,

The intersection point is in the middle of stroke 1 and at one end
of stroke 2 where middle and at one end are more primitive fuzzy
sets where the membership is determined by the standard S, w,and P
functions. Further details on attribute evaluation can be found in [13].

Fig. 6 shows the block diagram of our system. The characters
were represented as 64 x 64 dot matrices. They were first thinned
and undergone stroke segmentation. Then the attributes for strokes
and relations were extracted. FAG matchings were performed to find
the radicals existing in the character. Finally, a decision logic is used
to perform the final classification. Undirected graph is used in the
implementation.

Table T shows the attribute values of the vertices (strokes) of the
character 2% while Table II shows the relational attribute values. Fig.
4(c) is the radical + and Fig. 5(b) is the underlying graph. Table
III and IV are the corresponding attribute values of the vertices and
relations. As discussed earlier, the template is not fuzzy and so the
membership value is either 1.0 or 0.0. This also illustrates how the
nonfuzzy version can be represented as a FAG.

When the character % is matched against the template t, we
obtain the monomorphism (1,6), (2,2), and (3,4) with

aq16) = 1.00, B1.2)(6.2) = 1.00,
a2,2) = 1.00, Ba1.,3)6,4) = 1.00,
az,4) = 0.97, B2,3)(2,4) = 1.00.

The degree of matching, v = 0.97 and the monomorphism (L,6),
(2,2), (3,5) with

a(1,6) = 1.00, B1.2)6.2) = 1.00,
a(2,2) = 1.00, B ,3)6.5) = 100,
o33 = 1.00, B(2,3)2.5) = 1.00,

The degree of matching, v = 1.00.

After FAG matching, we then find a set of disjoint radicals that
maximally covers the character. We first construct an undirected graph
G, each node representing a radical. A link exists between two nodes
if the two radicals concerned are disjoint with each other. Then a
disjoint radical set is just a subgraph of G that is complete. Hence
a maximal disjoint radical set is just a maximal complete subgraph
of G that is not contained in any other complete subgraph (cligue).
The algorithm by Bron and Kerbosch [17] is used for this purpose.
A list of possible candidates is determined from this result.

Fig. 5. Underlying graph of (a) character % (b) Template +.

Since one radical may be a subset of another radical, e.g., tisa
subset of E, not all cliques found should be considered. However,
we do not want to use subset relation of strokes as our mere criterion
to determine unsuitable cliques, since the stroke set of one clique
may be a subset of another, yet they may have totally different sets
of radicals. We would like to cater for this possibility. Hence we
introduce another criterion.

Definition 11: Consider two radical sets (Cliques) C1 and C». We
say that the radical set Cy covers the radical set (' if for every
radical r» in C2, we can find distinct radicals r; in C; such that the
stroke set of 7o C stroke set of 71, with at least one radical being
a proper subset.

However, performing the aforementioned checking for each pair
of cliques found will be rather inefficient as the number of cliques
found may be rather large. In order to reduce computation, we would
like to have an equivalent checking that is independent of number
of cliques found.

Let R be the set of all radicals found.

Theorem 2: A radical set C is covered by some other radical set iff
3 radical r, € R and r € C.r, D 7 such that vr' € Cand v’ # 7,

N =0

The proof can be found in [13] and is omitted here.

We can now only check the parents of each radical in the clique
(those radicals that are supersets of the radical) and see whether they
are disjoint with other members of the clique. The checking no longer
depends on the number of cliques found.

Further improvement can be made by incorporating this checking
into the clique search algorithm.

Corollary: Let C be a radical set not covered by any other radical
set. Then Vr € C and Vs € R, if s D r then 37’ € C and v #7 st

snNr' £@

This is just the contrapositive form of Theorem 2.

From the corollary, we can see that there must exist a radical that
is not disjoint with the parent of some other radicals. Hence, during
the search, we can maintain a list of difference-set that is the stroke
set of the difference between the radicals selected and their parents,
which are not yet covered by any radical selected. (By cover we mean
nonempty intersection). Further selection of element will require that
it covers one of the difference-set in the list.

From the cliques found, a list of possible candidates can be
determined. The pattern then go through a final matching (using
the radical found as primtives) to determine which candidate is
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FAG
matching
Character - stroke extraction FAG decision
6ax6q | thinning and matching logic
FAG composition
FAG
matching

Fig. 6. Block diagram of the system.

the correct recognition. Information from preclassification can be
employed during this stage. A preclassification stage using modified
fuzzy isodata [18] was used. When the distance (fuzzy Mahalanobis
distance) between the sample and the class template is smaller than
three times the average of the distances of the training samples, that
template will be included as a candidate for the final matching.

The described method was applied to recognize the most frequently
used 240 Chinese characters. A total of 8980 samples were used
and 8086 samples were correctly recognized, which corresponds to
a recognition rate of 90.06%; 140 samples were wrongly recognized
corresponding to an error rate of 1.6%. The rest were considered
as rejection. When information from preclassification was used (as
described previously), the recognition rate was improved to 91.8%.
This suggests that the error pattern for preclassification and the final
recognition are quite different and a combination of the two approach
can give improvement in recognition rate.

IX. CONCLUSION

In this paper, we introduce the concept of fuzzy-attribute graph
by extending attributed graph to handle fuzzy attributes. We also
propose a measure on the degree of matching on fuzzy-attribute graph
monomorphism. The algorithm for subgraph matching is adapted
from [15] and modification have been made to handle the fuzzy
attributes.

We also present a system for Chinese character recognition using
approach different from the traditional ones. The authors believe that
human perception is based on the seeking of identifiable sub-patterns
in a complex scene and giving an interpretation of the scene from
those identified parts and their relations. The current approach reflects
this belief.

Subgraph matching is well known to be NP-complete. In the
worst case, exponential time will be required. However, the current
method matches a given character against template radicals that are
usually much smaller in size (i.e., number of vertices). The method is
readily applicable in parallel processing environment as all subgraph
matchings can be done in parallel. Another advantage of the current
approach is the use of incremental matching. For Chinese characters,
some radicals are in fact a part of other radicals, e.g., the radical
pairs L and E. After the former radical is found, we can use it as a
basis to perform subgraph matching on the latter. Templates of similar
shape having common basis can be assigned to the same processor.
Information from preclassification as well as simple parameters like
position and number of strokes can be used to eliminate obvious
infeasible radicals.

Finally, the concept of null stroke is introduced to handle missing
strokes during subgraph matching. Strokes in the radicals templates
can be classified into either nullable strokes or not. For every nullable
stroke in a radical, there is exactly one null stroke in the pattern graph
that can match this nullable stroke only and nothing else. From our

experience, we know that some null strokes are tolerable while others
are not. With this modification we can handle missing stroke with
minimal effort.

There are some limitations in our current system. Since we are
using radical matching rather than character matching, automatic
learning of radicals will be very difficult. During the learning phase,
the correct radicals must be extracted from different characters and
the process should be under the supervision of human being. No
attempt have been directed to automate this learning process in our
current study. Instead, the radicals are defined by the user based on
his knowledge in Chinese characters.

Improvement of the current system can be achieved by 1) improv-
ing the thinning algorithm, 2) improving the stroke segmentation
process or using a stroke segmentation without thinning and 3)
designing an optimal set of attributes. Most of the rejection or mis-
recognition, as observed, are caused by error in stroke extraction.
This is either due to the thinning process, which inevitably introduces
noise or due to the stroke extraction process itself. By improving the
stroke extraction stage, we can improve both the recognition rate and
the efficiency.
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