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Hector J. Sussmann and Jan C. Willems 

ptimal control was born in 1697-300 years ago-in Gron- 
ingen, a university town in the north of The Netherlands, 

when Johann Bernoulli, professor of mathematics at the local 
university from 1695 to 1705, published his solution of the bra- 
chysfochrone problem. The year before he had challenged his 
contemporaries to solve this problem. We will tell the story of 
some of the events of 1696 and 1697-when solutions were sub- 
mitted by Johann Bernoulli and such other giants as Newton, 
Leibniz, Tschirnhaus, l’Hopita1, and Johann’s brother, Jakob 
Bernoulli-and then sketch the evolution of this field until it 
reached maturity in our century. Since the birth of optimal con- 
trol, like all births, did not take place in a vacuum, the historical 
context will first be described, by outlining briefly some of the 
main ideas and discoveries on curve minimization problems 
from classical Greece up to Bernoulli’s time. We will then state 
the brachystochrone problem, present Bernoulli’s solution, and 
also provide a short nontechnical interlude, dealing with Ber- 
noulli’s personality and with his exceptionally gifted family. 
Subsequently we will follow the intricate path that has led to the 
modern versions of the necessary conditions for a minimum, 
from the Euler-Lagrange equations to the work of Legendre and 
Weierstrass and, eventually, the maximum principle of optimal 
control theory. Finally, we will “close the loop” by returning to 
the brachystochrone from the perspective of modern optimal 
control. 

Our thesis, that the brachystochrone marks the birth of opti- 
mal control, is undoubtedly somewhat controversial, and some 
readers-especially those who espouse views currently in vogue 
about the social construction of reality-might suspect that it is 
merely a reflection of the professional and nationalistic biases of 
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the authors. We gladly plead guilty to most of this charge-and 
state for the record that we are both control theorists, and one of 
us is a professor at Groningen-asking only that the word 
“merely” be stricken out. Our biases may of course explain how 

Fig. 1. Johann Bernoulli (1667-1748). 
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Fig. 2. The Brachystochrone Problem (Acta Eruditorum, June 1696, 
p. 269). 

we became interested in this issue, but are not at all relevant to the 
merit and validity of our conclusion. 

In this article, we will focus on point-to-point optimal control 
problems, where the objective is to transfer the state ofa dynami- 
cal system with minimum cost from one point to another. This 
means that we are leaving out the whole area of transversality 
conditions, which arise when one considers “set-to-set’’ prob- 
lems. Furthermore, we will not discuss at all the very important 
related question of sufficient conditions (and “Hamilton-Sacobi 
theory”), as well as the problem of finding optimal controllers, 
for example in the form of feedback laws, which is of course also 
a central concern of optimal control theory. 

Bernoulli’s Challenge 
In the June 1696 issue of Acta Eruditorum, Bernoulli posed 

Invitation to all mathematicians to solve a new problem. 
If in a vertical plane two points A and B are given, then it is re- 

quired to spec@ the orbit AMB of the movable point M, along 
which it, starting from A, and under the injluence of its own 
weight, arrives at B in the shortest possible time. So that those 
who are keen of such matters will be tempted to solve this prob- 
lem, is it good to know that it is not, as it may seem, purely specu- 
lative and without practical use. Rather it even appears, and this 
may be hard to believe, that it is very useful also for other 
branches of science than mechanics. In order to avoid a hasty 
conclusion, it should be remarked that the straight line is cer- 
tainly the line of shortest distance between A and B, but it is not 
the one which is traveled in the shortest time. Howevez the cuwe 
AMB-which I shall divulge ifby the end of this year nobody else 
has found it-is very well known among geometers. 

Later, at the suggestion of Leibniz, Bernoulli extended the 
deadline for the solution until Easter 1697, and on January 1,1697, 
he published the announcement reproduced below, addressed to 
The Sharpest Mathematical Minds of the Globe (see Fig. 3). 

the following challenge (see Fig. 2):  

Before 1696 
Similar optimization problems had been studied at least since 

the Greeks. The oldest of all is the one of determining the shortest 
path joining two points, whose solution-which must have been 
well known since very ancient times-is a straight-line segment. 

Next came the isoperimetricproblem, also known as Didosprob- 
lem, inspired by the mythical story told by Virgil (70-19 B.C.) in 
the Aeneid about the foundation of Carthage (c. 850 B.C.): the 
question is to find the plane cuwe of a given length that encloses 
the largestpossible area. The solution was known by the Greeks to 
be the circle, although it took until the 19th century for this to be 
proved in a way that meets our contemporary standards of rigor. 

Hero (or Heron) of Alexandria’ showed in his Catoptrics that 
when a light ray emitted by an object is reflected by a mirror, it 
follows a path from the object to the eye which is the shortest of 
all possible such paths. In Hero’s setting, which involved a single 
medium and therefore a constant speed of light, “shortest” was 
equivalent to “fastest.” This was no longer the case in the work of 
Fermat (1601- 1665), who formulated the general principle that 
light rays,follow the fastest-i.e., minimum time-paths. This ex- 
plained not only Hero’s observation about reflection, but also 
Snellius’ law of refraction. We shall see that Fermat’s principle 
played a crucial role in Bernoulli’s solution of the brachysto- 
chrone problem. 

While all this was happening in the physics front, some prog- 
ress was also made in the understanding of purely mathematical 
aspects of curve optimization problems. In particular, Newton 
had studied in 1685 the determination of the shape ofa body with 
minimal drag, which was a true “calculus of variations” problem. 
But this remained an isolated piece of work which did not attract 
much attention and had no interesting spinoffs. 

1696-1697: The Watershed 
The events of 1696 and 1697 were a clear turning point. Ber- 

noulli’s 1696 challenge to his colleagues was taken up by the best 
mathematical minds of the time. Six mathematicians submitted 
solutions to the brachystochrone problem, and not just any six! 
Besides Sohann’s own solution, there was one by Leibniz, who 
called the problem splendid and solved it in a letter to Johann 
dated June 16, 1696; another one by Johann’s elder brother 
Jakob; one by Tschirnhaus; one by l’Hopita1, and, finally, one by 
Newton. Newton’s solution was presented to the Royal Society 
on February 24, 1697, and published, anonymously and without 
proof, in the Philosophical Transactions. However, the identity 
of the author was clear to Bernoulli, since, as he noted, ex ungue 
leonem (you can tell the lion by its claws). Sohann’s solution was 
publirhed in the Acta Eruditorum of May 1697, almost exactly 
300 years before this magazine article, and the same issue also 
contained Sakob’s solution, reprinted Newton’s anonymous so- 
lution, and included the contributions by Tschirnhaus and 
l’Hopita1, as well as a short note by Leibniz, remarking that he 
would not reproduce his own solution, since it was similar to that 
of Bernoulli. He also noted who else, in his opinion, could solve 
the problem: l’Hopita1, Huygens, were he alive, Hudde, ifhe had 
not given up mathematics,2 and Newton, if he would take the 
trouble. 

The solutions of Bernoulli’s problem were as beautiful as 
could have been expected given the eminence of the personalities 
who took up his challenge and found the correct answer. Moreo- 
ver, this work was followed by a period of intense activity on 

‘Exact dates unknown. Believed by historians to have flourished about 1 OOBC., al- 
though some attribute his optics work to a “Hero the Younger,” who may have lived in 
the 7th or 8th century A.D. 

’Hudde became mayor of Amsterdam, and Huygens died in 1695. 
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problems of a similar kind, whose origin is directly traceable to 
the events of 1696-1697, and in many cases specifically to the 
Bernoullis, both intellectually and in terms of personal contacts. 
For example, Euler was a student of Bernoulli in Basel, and La- 
grange became interested in variational problems by reading 
Euler’s works. From this research, general techniques eventually 
emerged in the work of Euler and Lagrange. So there is no doubt 
that something important in the history of mathematics hap- 
penedin 1696-1697. For example, D.J. Struik, in [9], p. 392, says 
of the articles published in the May 1697 Acta Eruditorum that 
“these papers opened the history of a new field, the calculus of 
variations .” 

Why Optimal Control? 
The conventional wisdom holds that optimal control the- 

ory was born about 40 years ago in the former Soviet Union, 
with the work on the “Pontryagin maximum principle” by L.S. 
Pontryagin and his group (cf. [8]). Some mathematicians he- 
lieve that this new theory was no more than a minor addition to 
the classical calculus of variations, essentially involving the 
incorporation of inequality constraints. The article by L. Mar- 
kus in [6] describes the unenthusiastic reaction at the 1958 In- 
ternational Congress of Mathematicians to the announcement 
of the maximum principle by the Soviet group. In addition, it 
is likely that other, nonmathematical, factors may also have 
contributed to the negative reaction. Among these, two rea- 
sons clearly stand out: first of all Pontryagin’s personality 
and, in particular, his notorious anti-Semitism, and second, 
the feeling that many held that the result was primarily in- 
tended for military applications. 

We believe that optimal control is significantly richer and 
broader than the calculus of variations, from which it differs in 
some fundamental ways, as we now explain. 

The calculus of variations deals main1 with optimization 
problems of the following “standard” form ?. . 

subject to q(a) = 4 and q(b) = , 

or, equivalently, of the form 

The distinctive feature of these problems is that the minimization 
of (1) takes place in the space of “all” curves, so nothing interest- 
ing happens on the level of the set of curves under consideration, 
and all the nontrivial features of the problem arise because of the 
Lagrangian L. 

31n what follows, we will discuss the work of several authors from the 17th to the 
19th centunes In the interests of clarity and consistency, we will always use our own no 
tations and mathematical terminology rather than those of the authors under discussion 
So, for example the letter L will always stand foi the “Lagrangian,” the state variables 
will usually-but not always-be called q, and the independent variable-often called n 
or y in early papers on the subject-will usually be t, and should be thought of as time 
We will use dots-and on a few occasions primes, and also dldt, when we want to differ 
entiate a long expression-to denote differentiation with respect to time (cf Equation 
(12) below for an example of the use of these notations) 

&&wp’yimdt &k&# L?Mmwtid 
E. e. 

J 0 H A N N E S B E R M 0 U L L I, M A T H .  P. P. 

Psoblema Mechanics-Geometricom 
de Linea Celerrimr rkicenstk 

Problem alrerum p ~ r e  Geomnricum, quo3 priori lube-  
€timu& bene Loco Erudinsprapo3imur 

Fig. 3. Johann Bernoulli’s announcement 

Optimal control problems, by contrast, involve a minimiza- 
tion over a set Cof curves which is itself determined by some dy- 
namical constraints. For example, Cmight be the set of all curves 
t - q(t) that satisfy a differential equation 

( 3 )  

for some choice of the “control function” t H u(t) .  Even 
more precisely, since it may happen that a member of C does 
not uniquely determine the control U that generates it, we 
should be talking about trajectory-controlpairs (q( ) , U ( . ) ) .  

S o  in an optimal control problem there are at least two ob- 
jects that give the situation interesting structure, namely, 
the dynamicsfand the functional Z to be minimized. In par- 
ticular, optimal control theory contains, at the opposite ex- 
treme from the calculus of variations, problems where the 
“Lagrangian” L i s  = 1, i.e. completely trivial, and therefore 
all the interesting action occurs because of the dynamicsf. 
Such problems, in  which it is desired to minimize 
time-i.e., the integrallof (2) with L = 1-among all curves 
t- q ( t )  that satisfy endpoint constraints as in (2) and are so- 
lutions of (3) for some control t ++ ~ ( t ) ,  are called minimum 
time problems. It is in these problems that the difference be- 
tween optimal control and the calculus of variations is most 
clearly seen, and it is no accident that these were the prob- 
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Fig. 4. The Brachystochrone cycloid (Acta Eruditorum, May 1697). 

lems that propelled the development of optimal control in the 
early 1960s, and that time-optimal control is prominently repre- 
sented in today’s research and in modern optimal control text- 
books. 

Within this framework, we can state the first of our reasons 
for claiming that the brachystochrone problem marks the birth 
of optimal control: Bernoulli’s problem, as posed in the Acta 
Eruditorum, is a true minimum time problem of the kind that is 
studied today in optimal control theory. Bernoulli called the 
fastest path the brachystochrone (from the Greek words 
p p a x ~ o z o ~ :  shortest, and xpovos: time). Moreover, the bra- 
chystochrone problem is the first one ever to deal with a dy- 
namical behavior and explicitly ask for the optimal selection of 
apath. In both the isoperimetric problem and Newton’s minimal 
drag problem the curves to be computed are not thought of as 
paths of a moving body or particle. Finally, and most impor- 
tantly, a large part of the subsequent history of the calculus of 
variations can be best understood as the search for the simplest 
and most general statement of the necessary conditions for op- 
timality, and this statement is provided by the maximumprinci- 
ple of optimal control theory. 

The above reasons are, in our view, compelling arguments in 
favor of our claim that 1696 deserves to be called the year of the 
birth of optimal control. 

Bernoulli’s Solution of the 
Brachystochrone Problem 

We start by describing Johann’s Bernoulli’s solution? 
Let us first formulate the brachystochrone problem in modem 

mathematical language. Choosex and y axes in the plane with the 
y axis pointing downwards. Use (0,O) and (a,b) to denote, respec- 
tively, the coordinates of the end pointsA and B. A pathf: [O,q-+  
R2, defined on an interval [O,Tl ,  and having componentsfl(t), 
f2(t), is said to be a feasible trajectory (or feasible path) if 

(i)AO) = (O,O) , f (T)  = (a,b), andfis Lipschitz continuous, 

Here g is the gravitational constant. Condition (i) states that the 
pathfmust start at A and end at B. Condition (ii) reflects conser- 
vation of energy: at each instant t ,  the kinetic energy of the body 
must equal the decrease of potential energy due to its loss of 
height. (The law that a body which has fallen from a height h has 

4J&ob’s solution was quite different from Johann’s, and at first sight seemed clum- 
sier, but in the long run it has turned out to be more akin to the mainstream ideas of the 
calculus of variations, Hamilton-Jacohi theory, and dynamic programming, and is there- 
fore widely considered to he of great historical importance in the development of opti- 
mal control. It will not, however, be discussed here, due to lack of space. Goldstine’s 
book [7] gives an excellent accouut. 

velocity proportional to & was due to Galileo, and was well 
known in Bernoulli’s time.) 

A feasible pa thp  : [O,T*] + R2 is said to be optimal if there 
exists no feasible path f :  [O,u -+ R2 for which T <  T*. A brachys- 
tochrone is a curve in R2 traversed by an optimal feasible path, 
i.e., a subset B of R2 of the form B = (x,y) E R2 : there exists tE 
[O,P], such that (x,y) =$(t)} where$ : [O,P] -+ R2 is an opti- 
mal feasible path. 

One obvious fact is that the solution cannot always be a 
straight line, a possibility that Bernoulli rightly warns against. 
For example, consider the extreme case when b = 0. It is easy to 
see that it takes finite time to roll from A to B on a half circle, 
since it will take finite time to roll from A to the bottom of the cir- 
cle, and the same time to climb back up to B. Since, however, the 
straight-line segment fromA to B is horizontal, the speed of mo- 
tion along it vanishes. So, the straight line segment cannot be an 
optimal path, because the motion along it takes infinite time. 

It turns out that the brachystochrone is a cycloid. It is the 
curve described by a point P in a circle that rolls without slipping 
on on the x axis, in such a way that P passes through A and then 
through B, without hitting the x axis in between. It is easy to see 
that this defines the cycloid uniquely (see Fig. 4). 

Bernoulli’s ingenious derivation of the brachystochrone has 
been the subject of numerous accounts, but since this event plays 
a crucial role in our own story, we will outline the proof again. 

Bemoulli based his derivation on Fermat’s minimum time 
principle. If we imagine for a moment that instead of dealing 
with the motion of a moving body we are dealing with a light ray, 
condition (ii) above gives us a formula for the “speed of light” c 
as a function of position: c = a. Let us rescale-or, if the 
reader so prefers, “change our choice of physical units”-so that 
2g = 1. Then our problem is exactly equivalent to that of deter- 
mining the light rays-i.e., the minimum-time paths-in a plane 
medium where the speed of light c varies continuously as a func- 
tion of position according to the formula c = f i .  

It is at least intuitively clear that, if we discretize our problem 
by dividing the half-plane into horizontal strips Sk = { (x ,y )  : y k  < y 
I yk+] } of height 6, fork = 0, 1, .. ., where yk = kd, and treating c in 
each strip Sk as a constant Ck (by, say, setting Ck = &), then the 

light rays for the discretized problem should approach those for 
the original problem as F 1 0. The light rays of the discretized 
problem can be studied using the law of refraction of light. 
Clearly, the paths will be straight-line segments within each indi- 
vidual strip, and all that needs to be done is to determine how 
these rays bend as they cross the boundary between two strips. 
The answer is provided by the laws of optics as developed by 
Snellius, Fermat, and Huygens. 

Snellius had observed that, if two media are separated by a 
straight line, and a light ray is refracted at the boundary between 
them, then the ratio of the sines of the incidence angles between 
the light rays and the normal to the boundary is constant. Fermat 
subsequently showed that this is precisely what happens when 
light is assumed to follow a minimum-time path. Applying this to 
the situation of the two media separated by a horizontal leads to 
the following optimization problem. Assume that we have two 
points, the first, P I ,  located above, and the second, Pz, lying be- 
low the boundary. Suppose a light ray travels with speed V I  in the 
medium above the horizontal line and with speed vz in the me- 
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dium below the line. Of course, when V I  = v2, this fastest path is 
the straight line from PI to P2. This implies that the fastestpath to 
travcl from Pi to P2, when V I  # v2 is a broken line consisting of a 
straight line from PI to some point P’ on the boundary, and an- 
other straight line from P’ to P2. The problem is thus reduced to 
finding the point P’. This, is, however, a simple calculus ques- 
tion, and it turns out that the point P’ is determined by the equa- 

tion ~ - - or, equivalently, ~ 

sine, - sine, -. - 
sine, - v, 

sine, v2 VI v2 

This law relating the incidence angles to the velocities of 
propagation is due to Huygens, and implies the law of Snellius. 

Bernoulli used Huygens’ law to conclude that the quantity 2 

will be a constant, since in each strip Sk the speed of our light ray 
is &,. Passing to the limit as 6 10 ,  we conclude that the sine of 

the angle 0 between the tangent to the brachystochrone and the 
ver t ical  axis  must  b e  proport ional  t o  fi. Since  

sin 0 

&l 

= Ky, where K is a sin8 = l/dx2tdyz, we find that ~ 

dx2 + dy2 
dx A2 

dx2+dy2 1 2 c  

A2 Ky Y 
constant. Then ~ = -, i.e., I+  y’(x) = -, where 

1 
K 

C = -. So the curve described by expressing the y-coordinate of 

the brachystochrone as a function of its x-coordinate will satisfy 
the differential equation 

(4) 

with C a constant. The curves given by the parametric equations 

” 
L x(cp) = xo + -(cp - sincp) , 
2 

satisfy (4). It is easily seen that these equations specify the cy- 
cloid generated by a point P on a circle of diameter C that rolls 
without slipping on the horizontal axis, in such a way that P is at 
(xo, 0) when cp = 0. 

The argument that we have presented is Bernoulli’s, and 
Equation (4) appears in his paper, followed by the statement 
“from which I conclude that the Brachystochrone is the ordinary - 
Cycloid.” (He actually wrote dy = dx , but he was using x 

for the vertical coordinate and y for the horizontal one. Cf. [9], p. 

In contemporary mathematics, the symbol & usually stands 
for the nonnegative square root of r, but it is obvious that Johann 
Bernoulli did not have this in mind. What he meant was, clearly, 
what we would write as 

394). 

y’(x) = *jy 

or, equivalently, 

y(x)(l + y’(x)’) = constant . (7) 

In particular, the solution curves should be allowed to have a 
negative slope. But y’ should stay continuous, so that a switching 
from a + to a - solution of (6) is not permitted. 

Even with the more accurate rewriting (7), the differential 
equation derived by Bernoulli also has spurious solutions, not 
given by (5)! Indeed, for any v > 0, the constant function 
y( x) = is a solution, corresponding to C = U. More generally, 
one can take an ordinary cycloid given by (3, follow it up to cp = 
n-so that dy/& = &then follow the constant solution y(x) = C 
for an arbitrary time T, and then continue with a cycloid given by 
(5). Such paths are, indeed, compatible with Huygens’ law of re- 
fraction. 

It is easily understood that the laws of Snellius and Huygens 
cannot explain why a light ray has to bend upward or downwards 
once it is horizontal. As such Bemoulli’s argument is certainly 
incomplete when the brachystochrone cycloid connecting A and 
B first bottoms out before climbing back up to the point B. There is 
no reason why it should not proceed horizontally once it has 
reached the lowest point. This shortcoming in Bernoulli’s 
argument seems to have escaped historians. We shall later see that 
the maximum principle does exclude these horizontal motions. 

The spurious solutions, and all the other problems, such as the 
apparent arbitrariness of the requirement that y’ be continuous, 
can be eliminated in a number of ways. For example, one can 
prove directly that the spurious trajectories are not optimal, or 
one can use, as an alternative to Bernoulli’s method, the calculus 
of variations approach, based on the Euler-Lagrange equation 
(10) below. 

It is easy to see that the brachystochrone problem can be put in 
the “standard” form (l), provided wepostulate5 that it suffices to 
consider curves in the x,y plane that are graphs of functions y = 
y(x) defined on [O,a]. Then the dynamical constraint (ii)-with 
2g = 1, as before-becomes dx2 + dy2 = y d?, which gives 

4dx2 + dy2 
dt = = L( y ,  j )&,  where 

L(y,u) = y-1‘2 (1 + (8) 

and we are using x rather than t for the time variable, and writingj 
for dyldx. So Bernoulli’s problem becomes that of minimizing 
theintegraljo‘L( y(x), j(x))dxsubjecttoy(O)=Oandy(a)= b. 

This gives the Euler-Lagrange equation 

1 + y’(x)’ + 2y(x)y”(x) = 0 , (9) 

which is stronger than (7), since (7) is equivalent to y’ + y’3 + 
2yy’y”=O, i.e., toy’(1 + Y ’ ~ +  2yy”) = 0, whose solutions are those 
of (9) plus the spurious solutions found earlier. It is easy to see 
that the solutions of the Euler-Lagrange equation (9) are exactly 
the curves given by (3, without any extra spurious solutions, 
showing that, for the brachystochrone problem, the Euler- 
Lagrange method gives better results than Bernoulli’s ap- 

5With optimal control, this “postulate” becomes apvovable conclus~on, cf. “Finale 
for Brachystochrone and Control” below. 
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proach. (We will see in a later section that optimal control is 
even better.) 

Bernoulli was originally under the mistaken impression 
that the brachystochrone problem was new. However, Leib- 
niz knew better: in 1638 Galileo, in his book on the Tivo New 
Sciences, had formulated the brachystochrone problem and 
even suggested a solution: he seems to have thought it was a 
circle. Galileo had actually shown-correctly-that an arc 
of a circle always did better than a straight line-except, of 
course, when a = 0. 

Bernoulli considered the fact that Galileo had been mistaken 
on two counts, by thinking that the catenary was a parabola, and 
that the brachystochrone was a circle, as conclusive evidence of 
the superiority of differential calculus (or the Nova Methodus as 
they called it). 

He was thrilled by his discovery that the brachystochrone was 
a cycloid. This curve had been introduced by Galileo, who had 
given it its name: related to the circle. Huygens had discovered a 
remarkable property of the cycloid: it is the only curve such that a 
body falling under its own weight is guided by this curve so as to 
oscillate with a period that is independent of the initial point 
where the body is released. Contrary to what Galileo thought, the 
circle has this property only approximately: the period of oscilla- 
tion of apendulum is afunction of its amplitude. Therefore, Huy- 
gens called this curve, the cycloid, the tautochrone (from 
zav~os:  equal, and xpovos: time). Bernoulli was amazed and 
somewhat puzzled, it seems, by the coincidence that the cycloid 
turns out to be both the brachystochrone and the tautochrone, so 
that two rather different properties related to the time traveled on 
it by a body falling under its own weight led, in the end, to the 
same curve. He concluded that nature always arranges things in 
the simplest manner: as here, by giving the same curve two differ- 
ent properties. 

Johann Bernoulli and his Family 
We now sketch some of the historical context surrounding the 

life and work of Bernoulli. The Bernoullis were a Protestant fam- 
ily originally from Antwerp in Flanders. They fled Antwerp in 
1583 to escape the religious oppression of the Spanish rulers and, 
after spending some time in Frankfurt, finally settled in Basel, 
Switzerland, early in the 17th century. Among its members there 
were eight mathematicians in three consecutive generations. 
Most of them ended up as professors in Basel, but many spent ex- 
tensive periods in other universities in Europe. The most promi- 
nent of the Bernoullis were Jakob (16.54-1705), his younger 
brother Johann (1667-1 748), the protagonist of our story, and Jo- 
hann’s son, Daniel (1700-1782), born in Groningen while his fa- 
ther was a professor there. Jakob Bernoulli made important 
contributions, in particular, to probability theory. (Bernoulli dis- 
tributions are named after him.) Daniel is the discoverer of Ber- 
noulli’s law in hydrodynamics, one of the great laws in physics. 

At the time that Bernoulli came of age, mathematics was go- 
ing through a revolution. In 1684, Leibniz published his first arti- 
cle about differential calculus in the Acta Eruditorum. This 
article was entitled Novci methodus pro maximis et minimis, item- 
que tangentibus, quae nec fructus, nec irrationales quantitas 
moratul; & singulare pro illis calculi genus. He showed the 
power of the Nova Methodus by finding maxima and minima for 
a number of examples much more effectively than had been pos- 

sible before. Johann 
and Jakob Bernoulli 
were among the first to 
master Leibniz’ tech- 
nique, and, in 1691, 
Johann achieved his 
first success by using 
the differential calcu- 
lus to determine the 
catenary, the shape of a 
hanging chain. In his 
mere mid-20’s, Johann 
was hired by the Mar- 
quis de l’Hopita1, a 
French nobleman and 
one of the leading 
mathematicians of his 
time, to teach him the 
differential calculus. 
While he received a 
handsome payment for 
his services, he was 
bound by contract to let 
the Marquis take credit 
for the discoveries 
made by Johann during 

Fig. 5. Johann and Daniel Bernoulli. 

this teaching. Johann always claimed that he was the true discov- 

erer of 1’Hopital’s rule about the limit of -, which appeared in the 

Marquis’ book, Analyse des Iilfiniment Petits. His contempo- 
raries tended to ignore this claim, since Johann was not known 
to be particularly generous to others or objective about his 
own achievements. However, in 1922, the original notes of 
these lectures were discovered, which brvught positive evi- 
dence for Johann’s claim. 

Johann Bernoulli was not an easy person. He often quarreled 
openly with his colleagues, and complained about his salary, his 
health, his work. In 169.5, shortly after taking up the chair in 
Groningen that had been offered to him on the recommendation 
of Huygens, he vented his disenchantment in a letter to Leibniz, 
who had encouraged him to accept the offer: Zhave not met any of 
the practitioners of Algebra, which you consider present in Hol- 
land. To the contrary, I have not had the hoiior of meeting a single 
person who would even deserve to be called a “mediocre mathe- 
matician.” In the same letter he complained that his teaching 
took too much of his time, and that the moreprogress the students 
make, the less progress I make. Bernoulli expressed such politi- 
cally incorrect views not only in private letters, but also publicly. 
While in Groningen he got into serious difficulties with the local 
protestant theologians and clergy, who disapproved of the way 
new discoveries in the physical sciences cast doubt on the valid- 
ity of revealed truth. 

In his disputes with his mathematical colleagues he was unre- 
lenting. He was perhaps the most abrasive contender in the bitter 
controversy between the English, Newtonian, and the continen- 
tal, Leibnizian, schools, regarding the originality and rigor of the 
differential calculus. He “was a man of violent likes and dislikes: 
Leibniz and Euler were his gods; Newton he positively hated and 
greatly underestimated.” ([I], p. 135.) His rivalry with his 
brother Jakob became an embarrassment to the scientific com- 

0 
0 
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munity, and when in 1699 they were both elected to the Paris 
Academy, it was on the explicit condition that they promise to 
cease arguing, a promise that of course was not kept. Even more 
peculiar was Johann’s rivalry with his own son Daniel, whom he 
criticized-for being a Newtonian-and plagiarized-on the 
law of hydrodynamics-and of whose success he was allegedly 
very jealous. Johann once threw Daniel out of the house for hav- 
ing won a French Academy of Sciences prize for which Johann 
had also been a candidate, cf. [I], p. 134. Daniel, however, re- 
mained dutifully respectful towards his father, but frequently ex- 
pressed his misgivings to his friend Euler (a student of Johann in 
Basel and a colleague of Daniel in Saint Petersburg). 

Fig. 5 is a photograph of a stained glass window of the Acad- 
emy Building (the main venue of the university) in Groningen. It 
shows Daniel Bernoulli sweetly clutching his father’s robe, 
while Johann shows off his brachystochrone. 

At the occasion of the 300th anniversary of the appointment 
of Bernoulli and the discovery of the brachystochrone, the Uni- 
versity of Groningen erected the monument shown in Fig. 6. It 
consists of an artist’s rendering of the brachystochrone, with the 
circle that generates the cycloid. In the background, one can see 
the building of the mathematics department, where the second 
author of this article has his office. 

Euler, Lagrange, Legendre 
With the work of Johann and Jakob Bernoulli, Leibniz, 

Tschirnhaus, Newton, and 1’Hopital on the brachystochrone, op- 
timal control got off to a spectacular start. Let us now look at 
some critical events in its later evolution. 

The next chapter of our tale is the work of Euler (1707-1793) 
and Lagrange (1736-1813). Leonhard Euler entered the Univer- 
sity of Basel at the age of 13, and became a student of Bernoulli, 
who gave him private lessons once a week. In Basel, he worked 
on isoperimetric problems in 1732 and 1736. In 1744 he pub- 
lished his book The Method ofFinding Plane Cuwes that Show 
Some Property of Maximum or Minimum, where he gave a gen- 
eral procedure for writing down what became known as Euler’s 
equation. 

And then Lagrange entered the stage. In H. Goldstine’s words 
([7], p. 110.): 

On 12 August 1755 a 19-year-old Ludovico de la Grange 
Tournier of Turin, wrote Euler a brief letter to which >vas at- 
tached an appendix containing mathematical details of a very 
beautifin1 and revolutionary idea. He saw how to eliniinate from 
Euler ’s methods the tedium and needfor geometrical insight and 
to reduce the entire process to a quite analytic machine or appa- 
ratus, which could turn out the necessary condition of Euler and 
more, almost nu fornaticallv. This basic idea of Lagrange ushered 
in a new epoch in the calculus ofvariations. Indeed, after seeing 
Lagrange‘s work, Euler dropped his own method, espoused that 
oflagrange, arid renamed the subject the calculus of variations. 

In the summary to his first paper using variations, Euler says 
“Even though the author of this [Euler] had meditated a long 
time and had revealed to friends his desire yet the gloiy of$rst 
discovery was resewed to the very penetrating geometer of Turin 
LA GRANGE, who having used analysis alone, has clearly at- 
tained the same solution which the author had deduced by geo- 
metrical considerations.” 

known today as the “Euler-Lagrange equation.” (This was not his 
notation. The symbol a for partial derivative was first used by 
Legendre in 1786.) 

Equation (10) makes perfect sense and is a necessary condi- 
tion for optimality for a vector-valued variable q as well as for a 
scalar one. It can be written as a system: 

(11) 

Alternatively, we can regard Equation (IO) as a vector identity, in 

which q = (ql, ..., q”) is an n-dimensional vector, and -, - aL aL 
a4 39 

stand for the n-tuples [ $, ..., SI). a 4 n  (” a$ ’ ”” ”1. a q n  A modern 

mathematician might be troubled by the use of q both as an “inde- 
pendent variable” and as a function of time evaluated along a tra- 
jectory, and might prefer to write (10) as 

where the Lagrangian L(q. 1.1. t )  is a function on [W2”+l. i.e. afunc- 
tion of q E R”, u E R”, t E R. This makes it clear that to compute 

the left-hand side of (10) one first evaluates - “treating q as an 

independent variable,” then plugs in q(t) and q( t ) for q, q, and fi- 
nally differentiates with respect to t. 

The Euler-Lagrange system (10)-or (12)-only gave condi- 
tions for stationarity, i.e., for the first variation of I to  be zero. The 
next natural step was to look at the second variation, and this was 
done by Legendre (1752-18331, who found an additional neces- 
sary condition for a minimum. His condition, derived for the sca- 
lar case, is 

aL 
24 

-. .. . . . . . . . .- ... - 

Lagrange derived the necessary condition Fig. 6. The Brachystochrone Monument. 
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With an appropriate reinterpretation, Legendre’s condition 
(13) is also necessary in the vector case: all we have to do is 
read  (13)  as  asser t ing that the Hessian matr ix  

{&(q( t ) ,  q( t ) ,  t ) }  

The system of equations (16), (17), (18), usually written more 
concisely as 

= 0 ,  aH d p -  aH aH A-- - - 

dt dp ’ dt dq ’ au (19) has to be nonnegative definite. 
lSZ,JS” 

The First Fork in the Road: Hamilton 
At this point, we are close to the first and most critical fork in 

the road, involving the work of W.R. Hamilton (1 805-1865). In a 
sense, the issue at stake will seem rather trivial, just a matter of 
rewriting the Euler-Lagrange system in a different formalism. 
However, sometimes formalisms can make a tremendous differ- 
ence. To understand what happened and what could have hap- 
pened but did not, let us try to make sense of the two necessary 
conditions for a minimum that have been presented so far. We 
have the Euler-Lagrange equation (10) and the Legendre condi- 
tion (13). The Legendre condition is clearly the second-order 
necessary condition for a minimum of a function, namely, L(q(t), 
U, t )  as a function of U, but (10) does not look at all like the first- 
order condition for a minimum of that same function. It is natural 
to ask whether there might be a way to relate the two conditions. 
Is it possible that both can be expressed as necessary conditions 
for a minimum of one and the same function? The answer is yes, 
and understanding how this is done leads straight to optimal con- 
trol theory, the maximum principle, and far-reaching generaliza- 
tions of the classical theory. But before we get there, let us tell the 
story of how Hamilton almost got there himself, but missed, and 
Weierstrass got even closer, but missed as well. 

Let us look at another way of writing (10). Suppose a curve t 
H q(t) is a solution of (10). Define a function H(q ,  u,p,  t )  of three 
vector variables q, U, p in Rn, and of t E R, by letting 

Then define 

dH It is then clear that - = U, so along our curve q(t): 
aP 

aH aL Also, - = --, so (12), with p( t )  defined by (15), says that 
a4 34 

aH aL 
au au Finally, - = p - -, so (15) says: 

is exactly equivalent to (lo), provided that H is defined as in (14). 
We will call the function H the “control Hamiltonian,” and re- 

fer to (19) as the control Hamiltonian form of the Euler-Lagrange 
equations. In our view, Formula (14) is the definition that Hamil- 
ton should have given for the Hamiltonian, and Equations (19) 
are “Hamilton’s equations as he should have written them.” 

What Hamilton actually wrote was (in our notation, not his) 

A - a H  dP- aH 

dt a p  ’ dt aq ’ (20) 
-- - 

where Nq,p ,  t )  is a function ofp,q and t alone, defined by the for- 
mula X(q,p, t)  = ( p ,  4) - L( q ,  q ,  t ) ,  which resembles (14), but is 
not at all the same. The difference is that in Hamilton’s defini- 
tion, 4 is supposed to be treated not as an independent variable, 
but as a function of q, p ,  t ,  defined implicitly by the equation 

It is easy to see that, ifthe map ( q ,  q ,  t )  -+ ( 4 ,  p ,  t )  defined by 
(21) can be inverted, i.e., if we can “solve (21) for 4 as a function 
of q, p ,  t,” then (20) is equivalent to (19). Indeed, it is clear that 
Nq, p ,  t )  = H(q, u(q, p ,  t),  t ) ,  where U = u(q, p ,  t )  satisfies 

aH &V aH 
Since -( q ,  U ,  t )  = 0 for U = u(q, p ,  t) ,  we see that - = - 

au 34 34 
along solutions of (19), and then the first equation of (20) holds 
as well. Similarly, the second equation of (20) also holds. The 
converse is also easily proved. 

It should be clear from the above discussion that the Hamilto- 
nian reformulation of the Euler-Lagrange equations in terms of 
the “control Hamiltonian” is at least as natural as the classical 
one, and perhaps even simpler. Moreover, the control formula- 
tion has at least one obvious advantage, namely, 

(Al) the control version of the Hamilton equations is equiva- 
lent to the Euler-Lagrange system under completely general con- 
ditions, whereas the classical version only makes sense when the 
transformation (21) can be inverted, at least locally, to solve for q 
as a function of q, p ,  t. 
We now show that (Al) is not the only advantage of the control 
view over the classical one. To see this, we must take another look 
at Legendre’s condition (13). Since H(q, u,p, t )  is equal to -L(q, U, 
t )  plus a linear function of U, (13) is completely equivalent to 
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Now let us write (23) side by side with the third equation of (19): 

a2H 
-- a H - O  and - < O  

d U  au2 - 

and let us stare at the result for a few seconds. 
These equations unmistakably suggest something! Clearly, 

what has to be going on here is that H must have a maximum as a 
function of U .  So we state this as a conjecture. 

CONJECTURE M: besides (19) (or the equivalent form (IO)) ,  
an additional necessary condition for optimality is that H(q(t), U ,  

p(t), t), as a function of U ,  have a maximum at q( t )  for each t. 
Notice that Conjecture M is a natural consequence of rewrit- 

ing Hamilton’s equations “as Hamilton should have done it,” and 
it is reasonable to guess that, if Hamilton had actually done it, 
then he himself, or some other 19th century mathematician, 
would have written (24) and be led by it to the conjecture. On the 
other hand, it is only by using the Hamiltonian of (14), as op- 
posed to Hamilton’s own form of the Hamiltonian, that one can 
see that the Legendre condition has to do with the sign of the sec- 
ond u-derivative of ajimction of u whosejirst u-derivative has to 
vanish. This function cannot be L itself, because the first order 

conditions do not say that - = 0. Nor can it be Hamilton’s Ha- 

miltonian which isn’t even a function of U .  Only the use of the 
“control” Hamiltonian leads naturally to Conjecture M .  

It turns out that Conjecture M is true, and that once its trnth is 
known then vast generalizations are possible. But before we get 
there, we must move to the next chapter in our tale, and discuss 
the work of Weierstrass, who essentially discovered and proved 
Conjecture M, but did it using a language that obscured the sim- 
plicity of the result, and for that reason missed some profound 
implications of his discovery. 

aL 
au 

The Second Fork in the Road: Weierstrass 
Weierstrass (1 8 15-1 897) considered the problem of minimiz- 

ing an integral I of the form1 = J’k( q( s), q( s))dsfor Lagrangi- 

ans L such that L( q ,  q )  is positively homogeneous with respect to 
the velocity 4 (that is, L( q ,  aq) = aL( q ,  q) for  all q, 4 and all a 
2 0) and does not depend on time. (As will become clear soon, we 
have a good reason for using s rather than t as the “time” variable 
in the expression for I .)  

In a sense, one can always make this assumption on L “with- 
out loss of generality,” by defining a new function A(q, t,  U ,  %) = 7 

L(q, ulz, t) ,  and think o f t  as a new q variable, say qo, and of z as 

g, where s is a new time variable, or “pseudotime,” not to be 

confused with the true time variable t. However, “without loss of 
generality” is a dangerous phrase, and does not at all entail “with- 
out loss of insight.” We shall argue below that this restriction, in 
conjunction with the dominant view that Hamilton’s equations 
had to be written in the form (20), may have served to conceal 

a 

ds 

from Weierstrass the true meaning and the far-reaching implica- 
tions of the new condition he discovered. 

Weierstrass introduced the “excess function” 

depending on three sets of independent variables q, U ,  and U. He 
then proved his side condition: Fora curve SH q*(s) to be a solu- 
tion of the minimization problem, the function E has to be 2 0 
when evaluated for  q = q*(s), U = q*( s), and a completely arbi- 
trary U. 

Weierstrass derived this side condition by comparing the ref- 
erence curve q* with other curves q(.) that are “small perturba- 
tions” of q*, in the sense that q(s) is close to q*(s) for all s but q( s) 
need not be close to q*( s). Since Weierstrass’ condition involves 
comparing L(q*(s), U) for u close to &( s), withL(q*(s), U )  near an 
arbitrary value U of U ,  possibly very far from q.( s), it is obvious 
that variations q with “large” values of q are needed. 

Notice that, for Lagrangians with the homogeneity property 

of Weierstrass, L( 4, U )  = -( q ,  U ) .  U ,  so Weierstrass could 

equally well have written his excess function as 

aL 
au 

aL 
au Using p = -( q ,  U )  as in (15), we see that 

which the reader will immediately recognize as 

where His  our “control Hamiltonian.” So Weierstrass’ condition, 
expressed in terms of  the control Hamiltonian, simply says that 
(MAX) along an optimal cuwe t H q*(t), if we define p(t) via 
(15), thenfor every t, the value U = q*( t )  must maximize the (con- 
trol) Hamiltonian H(q*(t), U ,  p(t) ,  t )  as a function of U. 
In Weierstrass’ formulation, the condition was stated in terms of 
the excess function, for the special Lagrangians satisfying his ho- 
mogeneity assumption. In that case the resulting His independent 
of time, as in our equation (28). But, if one rewrites Weierstrass’s 
condition as we have done, in terms of H, then one can take a gen- 
eral Lagrangian, transform the minimization problem into one in 
Weierstrass’s form, write the Weierstrass condition in the form 
(MAX) (so in particular His independent of time) and then undo 
the transformation and go back to the original problem. The result 
is (MAX), as written, with the control Hamiltonian of  the original 
problem. So the Weierstrass condition, if reformulated as in 
(MAX), is valid for all problems, with exactly the same statement. 

Moreover, (MAX) can be simplified considerably. Indeed, 
the requirement thatp(t) be defined via (15) is now redundant: if 
H(q(t), U ,  p( t ) ,  t) ,  regarded as a function of U ,  has a maximum at 
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aH 
U = q( t ) ,  then -( y( t ) ,  q( t ) ,  p( t ) ,  t )  has to vanish, so p(t)  au 
has to be given by (15). Moreover, the vanishing of 
dH -( q( t ), q( t ), p(  t ) ,  t)is also one of the conditions of ( 1  9). So 

we can state (19) and (MAX) together: 
(NCO) Ifa curve t ++ y(t) is a solution of the minimization prob- 
lem (l),  then there has to exist a function t - p(t) such that the 
following three conditions hold f o r  all t: 

au 

As a version of the necessary conditions for optimality, (NCO) 
encapsulates in one single statement the combined power of the 
Euler-Lagrange necessary conditions and the Weierstrass side 
condition as well, of course, as the Legendre condition, which 
obviously follows from (MAX). Notice the elegance and econ- 
omy of language achieved by this unified statement: there is no 
need to bring in an extra entity called the “excess function.” Nor 
does one need to include a formula specifying how p ( t )  is de- 
fined, since (30) does this automatically. So the addition of the 
new Weierstrass condition to the three equations of( 19) results in 
a new set of three, rather than four, conditions, a set much “sim- 
pler than the sum of its parts.” Notice moreover that (MAX)-or, 
more precisely, the Weierstrass side condition part of 
(MAX)-is exactly Conjecture M. So we can surmise at this 
point that (MAX), as stated, probably could have been discov- 
ered soon after the work of Hamilton, since it is strongly sug- 
gested by (24), and almost certainly by Weierstrass, if only 
Hamilton’s equations had been written in the form (14), (19). 

So, we can now add two new items to our list of advantages of 
the “control formulation” of Hamilton’s equations over the clas- 
sical one: 

(A2) Using the control Hamiltonian, it would have been an 
obvious next step to write Legendre’s condition in “Hamiltonian 
form,” as in (24), and this would have led immediately to the for- 
mulation of Conjecture M, a proof of which would then have been 
found soon after: 

(A3) With the control Hamiltonian, Weierstrass ’s side condi- 
tion becomes much simplel; does not require the introduction of 
an “excess function,” and can be combined with the Hamilton 
equations into an elegant unified formulation (NCO) of the nec- 
essary conditions for optimality. 

But this is by no means the end of our story. There is much 
more to the new formulation (NCO) than just elegance and sim- 
plicity. If you compare (NCO) with all the other necessary con- 
ditions that we had written earlier, a remarkable new fact 
becomes apparent. Quite amazingly, the derivatives with re- 
spect to the u variable are gone. All the earlier equations in- 
volved u-derivatives of L or of H ,  and even if we use the 
classical version (20) of Hamilton’s equations, which involves 
no functions of U and therefore no u-derivatives, the fact re- 

mains that in order to get to (20), we first have to solve (21), 
which does involve a u-derivative 

Now, if our necessary conditions for optimality can be stated 
without any references to u-derivatives, we can apply the well- 
known Principle of Mathematical Guessing6, which in the case 
at hand suggests that the existence of the u-derivative of L is not 
needed. Then there is no longer any reason to insist that the range 
of values of u be the whole space: any subset of [w” would do, 
since the minimization that occurs in (30) makes sense over any 
set. This leads us to 
CONJECTURE M2: (NCO) should still be a necessary condition 
for optimality even for problems where 4 is restricted to belong to 
some subset U of Rn, and L(q, U, t )  is not required to be differenti- 
able with respect to U.  

Now that we have liberated ourselves from the constraint that 
L be differentiable with respect to U, it ought to be possible for 
u-i.e., q-to be anything, and (NCO) will still work. Once this 
is understood, the next natural step is to apply the Principle of 
Mathematical Guessing once again and allow q to be even “more 
arbitrary,” for example a general function of some other variable 
U ,  and of y and t. So, instead of letting 4 be U, we can write q =Ay, 
U, t )  for a general functionf(q, U, t).  In that case, the expression 
<p, u>-i.e. <p, q> -that occurs in (14) should of course be re- 
placed by <p,f(y, U, t)>. This leads us to 
CONJECTURE M3: (NCO) should still be a necessary condition 
for optimality even for problems where q is restricted to satisfy a 
differential equation q = f(q, U ,  t), with the “controlfunction” t* 
u(t) taking values in some set U and allowed to be a “completely 
arbitrary” U-valued function of t ,  and the Hamiltonian H now 
being dejined by 

Those readers who are familiar with optimal control theory 
will, of course, have recognized Conjecture M3 as being essen- 
tially the same thing as the celebrated “Pontryagin maximum 
principle.” 

And we hope to have convinced all readers, even those who 
are not control theorists, that (NCO) is a very natural conclusion. 
It should be clear from our discussion that (NCO) could have 
been guessed almost immediately from “Hamilton’s equations 
as Hamilton should have written them,” together with the Legen- 
dre condition, and would have been an almost obvious conjec- 
ture to make once the Weierstrass side condition is known, ifonly 
the “correct” Hamiltonian formalism, as in (14) and (19), had 
been used all along. 

The Maximum Principle 
So far, we have shown that Conjecture M3 is almost forced on 

us if one looks at the classical condition from the right perspec- 
tive and with the right formalism, but we have not yet said 
whether it is actually true, nor have we given any indication as to 
how one might go about proving it. 

It turns out, however, that Conjecture M3, as stated, is not 
true, as can be seen from simple examples, but only a minor 
modification is needed to make it true. All we have to do is intro- 

‘If a statement is proved under some specific restrictions but turns out not to involve 
there restrictions at all, chances are that the restrictions are not needed and the statement 
is valid even without them. 
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duce a new p-variable po-the “abnormal m~ltiplier”~-and 
write the Hamiltonian as 

Everything we have done until now corresponded to taking po = 
1. We now impose, instead, the weaker requirement that p ,  = 0 
(i.e., po is a constant) andpo 2 0. We then observe that, if we use 
this new H rather than the old one, then the three conditions of 
(NCO) are always satisfied if we make the trivial choice 
p( t )  = 0,po = 0. So, our new conditions will give nothing inter- 
esting unless we impose a further nontriviality condition, stating 
that this possibility is excluded. 

With Conjecture M3 adjusted with the introduction of the ab- 
normal multiplier po, we have finally reached the justly cele- 
brated Maximum Principle: 
(MP) For the problem of minimizing a func t iona l  
I = jok(q( t ) ,  U(  t ) ,  t)dt  subject to a dynamical constraint (3), 

and endpoint constraints q( a )  = q, q( b )  = <, with the parame- 
ter U belonging to a set U,  the variable q taking values in Rn-or 
in a open subset Q of Rn-and the time interval [a,b]fixed, a nec- 
essary condition for a function t - u*(t) on [a, b]  and a corre- 
sponding solution t q*(t) of (3) to solve the minimization 
problem is that there exist a function t - p*(t) E W” and a con- 
stant po 2 0 such that 

( M C ) H ( Z ( t ) )  = max,,,H(q*(t), U, p*( t ) ,  p o ,  t ) f o r t e  [ ~ b l ,  
where we have written E*( t )  = (q.( t ) ,  %( t ) ,  p.( t ) ,  p,, f), and 

the Hamiltonian H(q, U, p ,  PO, t)  is given by (32). 
Conditions (NT), (HS), and (MC) are known, respectively, as the 
nontriviality condition, the Hamiltonian system, and the minimi- 
zation condition. Notice that (HS) is just a restatement of (29), 
with the new H, and (MC) is a restatement of (30). The second 
equation of (HS) is called the adjoint equation. A trajectory- 
control pair ( p ,  U*) for which there exist p* ,  po with the proper- 
ties of (MP) is called an extremal. 

Finally, we remark that for classical calculus of variations 
problems (MP) yields exactly the same conclusion as (NCO). In- 
deed, in this case it IS possible to exclude the possibility thatpo = 
0, and (MP) reduces to (NCO). So (MP), as stated, is a true gener- 
alization of the necessary conditions (NCO), which covers many 
cases that cannot be handled by means of the classical calculus of 
variations. 

We conclude by presenting the analogue of (MP) for prob- 
lems with a variable time interval: 

(MP’) For a minimization problem of the kind discussed in 
(MP), but with the time interval [a, b] not fixed in advance, as- 
suming that f and L do not depend on t, the necessary conditions 
are exactly the same as those of (MP), plus the extra requirement 
that H(q*(t),u*(t),p*(t),po) = 0. 
Statement (MP’) applies in particular to minimum timeproblems, 
i.e., problems where L = 1. 

7The need for the abnormal multiplier had already been noticed by Bolza in 
1913, cf [ 3 ]  

From Principle to Theorem 
Our discussion so far has dealt only with the formal aspect of 

the necessary conditions for optimality. In order to get real 
mathematical theorems, we have to be accurate as to the techni- 
cal assumptions on L, and U, the exact statement of the prob- 
lem, and the precise meaning of the conclusions. 

The results of the previous sections, from the Euler-Lagrange 
equation to the maximum principle, should be regarded as prin- 
ciples rather than theorems. For us, aprinciple is a generator of 
theorems, a not yet completely precise statement that can be 
made into a theorem by filling in the technical details and making 
all the definitions and conditions completely precise. The result- 
ing theorems are versions of the principle. Usually, the choice of 
technical conditions can be made in more than one way, so a 
“principle” has more than one version. 

In some cases, a “principle” becomes identified in the minds 
of mathematicians with itsprst published rigorous version. This 
has happened to some extent in the case of the maximum princi- 
ple, because the book [8], where the result was first presented, al- 
ready contains a rigorous version. We contend, however, that this 
version does not exhaust the full power of the principle, and the 
work of stating and proving stronger and more general versions 
is still very much in progress. 

Regarding the necessary conditions for optimality, while the 
discovery of new and more general formal conditions pro- 
gressed, rigorous versions of the formal results were derived at 
various stages of the process, using in each case the mathemati- 
cal tools available at the time. 

The first rigorous version of the maximum principle appears 
in the book [ 8 ] .  This “classical” version was then improved by 
other authors. We choose to quote a version appearing in L.D. 
Berkovitz’s 1974 book [2].  

“Let f ’, ..., f be the components off, and writef’ for L. It is 
assumed that thefi, for i = 0, ..., m, are defined on Q x U0 x [a, b] ,  
where Q, Uo are open subsets of R”, R”, respectively. Moreover, 
each function q - f i (q ,  U, t )  is required to be of class C’ with re- 
spect to q for each (U, t )  E U0 x [a, 61, and each map (U, t)  - f i (q ,  
U, t )  has to be Bore1 measurable for each fixed q E Q. The set Uis 
a subset of Uo. An admissible control is a map [a, b] - u(t) E U 
such that for every compact subset K of Q there is an integrable 
funct ion t e q,y(t) such that  t he  bound 

Ip”+Au(t), t)11+ - (q ,u ( t ) ,  t )  Icp,(t)holdsforall(q,t)E 11;: ll 
K x [a, b] and all i = 0, ..., m. For a general class ‘U of U-valued 
functions on [a, b] ,  and 4, < E Q, let us use c( ‘U, 4, 4) to denote 
the set of all pairs (q( . ) ,  U(.)) such that U ( . )  E ‘U, q( . )  is a solu- 

tion of (3) (i.e., q( .) is an absolutely continuous curve [a, b] H Q 
such that (3) holds for almost every t) ,  q( a )  = ij, and q( b )  = i. 
Use a%d, to denote the class of all admissible controls. Then the 
optimization problem is that of minimizing the integral 
I = jabL( q( t ) ,  U( t ) ,  t)dt  in the class C( auadm, q, <). The conclu- 

sion of the theorem is that of (MP), with p* absolutely continu- 
ous, and the adjoint equation and the maximization condition 
holding almost everywhere.” 

The proof of this first version of the maximum principle is 
rather long, and we will not even sketch it here. Since then, 
stronger versions have been obtained by weakening the hy- 
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pothesis of the first version, or strengthening the conclusions, or 
both. 

One important improvement of the classical version resulted 
from the use of nonsmooth analysis (cf. Clarke [4,5]). While these 
“nonsmooth” generalizations were being developed, other authors 
pursued a different direction, for very smooth systems. They ob- 
served that one could get stronger results by allowing a class of 
variations richer than that used in the classical proof. One can then 
obtain “high-order necessary conditions for optimality.” In addi- 
tion, a third direction developed in which (MP) is formulated not 
for controlled differential equations q = f (  q ,  U ,  t ) ,  but for differ- 
ential inclusions q E F(  q ,  t ) ,  where F is a set-valued map (cf. for 
example [5]). The results referred to are proved by different meth- 
ods and cannot be combined into a single theorem. We will not at- 
tempt to explain why this is so, because to do it we would have to 
discuss in detail the proofs of these theorems, showing that in each 
case one uses a different construction, and these constructions 
cannot be combined into a single one valid on the whole interval. 
But it is a fact that, due to this incompatibility of the various 
proofs, a single theorem covering all cases and combining 
them-that is, applying to “hybrid” problems as above-ap- 
peared, until a few years ago, to be beyond reach. Recently, how- 
ever, one of us (Sussmann [ 10-121) has obtained a general version 
of (MP) that contains all the above results, applies to some new 
cases as well, and actually covers the “hybrid” case. 

Finale for Brachystochrone and Control 
We conclude by returning to the brachystochrone problem, 

We can formulate Bernoulli’s question as an optimal control 
this time from the perspective of optimal control theory. 

problem in the x,y plane, whose dynamics are given by 

where the control is a 2-dimensional vector (u,v) taking values in 
the set U = ( U ,  v )  : u2 + v2 = 1.  

The Hamiltonian H(x, y,  U, v, p ,  q, po, t )  is then given (using a 
= sgn y )  by the formulaH = ( p , ~  + p2v)& - po, and the appli- 

cation of (NCO) gives the conditions 

where Ipl= d n ,  as well as the differential equations 

(34) 

Notice thatlp( t)l # 0. Indeed, (MP’) tells us thatH= 0. So Ipl = 0 

would imply po = 0, contradicting (NT).) 
If the constantpl vanishes, thenx = 0, so we get a vertical line. 

Otherwise, xis continuous and always # 0, showing that we can 
use x to  parametr i ze  our  solut ion.  Since  

Pz IpI2 y ’ ( x )  = 2 = U = - = -, we have 1+ $(x) = and d .  

d x x u p ,  PI 

But (33) and (34) imply thati  = fi, and then Equations (35) 
IpI 

and (36) yield f (x)  = -4. So 2 f l =  - 
2YP, 

and then 1 + y’2 + 2yy” = 0, which is exactly Equation (9). As we 
explained before, this leads to the cycloids, with no “spurious so- 
lutions.” Notice that this argument does not involve any discreti- 
zation or any use of refraction of light across boundaries. 

Notice also that in our control argument we have not postu- 
lated that the solution curves could be represented as graphs of 
functions y(x). We have proved it! (In the calculus of variations 
case this was an extra assumption, cf. “Bernoulli’s Solution of 
the Brachystochrone Problem” above.) 

This is one example showing that, for the brachystochrone 
problem, the optimal control method gives better results than the 
classical calculus of variations. 

All the above considerations apply to the computation of opti- 
mal trajectories that are entirely above the x axis, as in Bernoul- 
l i’s  brachystochrone problem. However, the natural  
mathematical setting for the minimum time control problem cor- 
responding to (33) is the whole plane, which is why we wrote@ 

rather that f i  in (33). It is natural, therefore, to try to solve this 
more general problem, i.e., to try to find the light rays when the 
medium is the whole plane, and the speed of light is fi. Notice 

that this problem is “completely controllable,” in the sense that 
any two points A, B of R2, even if they lie on opposite sides of the 
x axis, can be joined by a feasible path. The right-hand side of 
(33) vanishes along thex axis, but this does not prevent the exis- 
tence of feasible paths crossing the x-axis, because the function 
f i  is not Lipschitz near the x axis. (If the function was Lip- 

schitz, then by the usual uniqueness theorem of ordinary 
differential equations, every solution going through a point on 
the x axis would have to be a constant curve.) However the same 
non-Lipschitz feature that makes the system controllable also 
renders the maximum principle inapplicable, in its classical and 
nonsmooth versions, including the Lojasiewicz version, since all 
these require a Lipschitz reference vector field. 

Suppose, for example, that we want to find an optimal trajec- 
tory from A to B, where A lies in the upper half-plane and B is in the 
lower half-plane. Then one can show, first of all, that an optimal 
trajectory 5 exists, using Ascoli’s theorem. Next, using the usual 
necessary conditions for optimality, e.g., the Euler-Lagrange 
equation or the classical version of the maximum principle, one 
shows that any portion of an optimal curve which is entirely con- 
tained in the closed upper half plane or in the closed lower half 
plane is a cycloid given by (5 ) ,  or a reflection of such a cycloid 
with respect to thex axis. Next, one sees that 5 cannot traverse thex 
axis more than once. (This requires an elementary qualitative 
lemma that we leave as exercise.) So we know that 4 consists of a 
cycloid going from A to a point X in the x axis, followed by a re- 
flected cycloid going from X to B. It remains to find x. 

It turns out that the version of [I21 applies, since this result 
does not require Lipschitz continuity-or even continuity-of 
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the right-hand side, and works as long as the reference trajectory 
arises from a semidifferentiable flow. We refer the reader to [ 121 
for the details. 

We conclude with one more example showing the superiority 
of the optinzal control method for the bmchystrochrorie problem, 
by discussing the question of the rigorous proof of the optimality 
of Bernoulli's cycloids. Clearly, no argument based only on nec- 
essary conditions for optimality will ever prove that a trajectory 
is optimal. If we really want to prove the optimality of Bernoul- 
li's cycloids, an extra step is needed. For example, it would suf- 
fice to prove e-xisterzce of an optimal trajectory joining A and B. 
(Once this is established, it follows that the optimal trajectory is 
Bernoulli's cycloid, because this curve is the unique path joining 
A and B that satisfies the necessary conditions. The complete 
proof is a bit more complicated, because one needs an extra argu- 
ment to exclude the possibility of cycloids that touch the x axis 
more than once before reaching B.) From the perspective of the 
classical calculus of variations, this is a hard problem,8 because 
the Lagrangian given by (8) has a singularity at y = 0. In optimal 
control, however, the existence problem is trivial, since it suf- 
fices to apply Ascoli's theorem to the system (33) to obtain the 
desired result. 

Would Bernoulli have liked this way of looking at his prob- 
lem? Would he have appreciated the elegance with which opti- 
mal control can handle it? Would he have liked this approach 
better than the calculus of variations method? We let the reader 
be the judge. 
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