
A Model and Methodology

the more general case in which the ini- insight and techniques that apply to 0th-
tial functional specification may consist er forms of hardwaresoftware codesign

for Hardware-Software

theoretical work aimed at identifying fac-
tors that influence design decisions with

IN HARDWARE-SOWARE code
sign, designers consider trade-offs
in the way hardware and software
components of a system work to
gether to exhibit a specified behav-
ior, given aset of performance goals
and an implementation technolo
gy. Because of a wide range of pos-
sible system structures and design
goals, the hardwaresoftware code-
sign problem takes on many forms.

One type of codesign seeks to accel-
erate application software by extmct-
ing portions for implementation in
hardware. Programmable hardware
may make this type of software acceler-
ation common even in geneml-
pulpose computing. In thls case, the
codesign problem entails charac-
terizing hardware and software
performance, identifying a hardware
software partition, transforming the
functional description intosuch a parti-
tion, and synthesizing the resulting
hardware and software.

The approach we describe in this
article addresses these problems in

DONALD E. THOMAS

JAY K. ADAMS

HERMAN SCHMIT

Carnegie Mellon University

starting point for addressing this type
of hardwaresoftware codesign.
Hardwaresoftware cosimulation is a
means of verifying the functionality
of mixed hardwaresoftware descrip
tions. High-level (or behavioral)
synthesis can produce hardware im-
plementations for functions d e
scribed in a high-level software
language such as C. Also, recent work
in high-level synthesis of multiple
prccesssystems' suggeststhat function-
ality can be moved from one thread of
conid to another.

What is needed is a means of a p
plying these techniques to generat-
ing hardwaresoftware partitioning
alternatives and a formalism that d e
scribes the available engineering
trade-offs. Toward this end, we have
developed a model for system-level
simulation and synthesis that pro
vides a detailed understanding of
system behavior and a transforma-
tion capability that allows genera-
tion of design alternatives. We are
also carrying out experimental and

6 0740-747519310900-0006$03.00 0 1993 IEEE IEEE DESION & TEST OF COMPUTERS

1

set of CAD tools, is the basis for the code
sign methodology diagrammed in Figure
1. Parts of the methodology are still in
development.

Our methodology focuses on two sys-
tem design tasks: cosimulation and co-
synthesis. An important issue in
cosimulation is how to tie behavioral
hardware simulation into a software run-
time environment. Cosynthesis involves
two interrelated design issues: choosing
the optimal hardwaresoftware partition
and choosing the appropriate level of
control concurrency. The hardware-
software partition is defined by the set of
application-level functions implement-
ed with application-specific hardware.
Finding a suitable hardwaresoftware
partition requires understanding how
best to use limited application-specific
hardware resources to meet system de-
sign goals. Asystem’s control concurren-
cy is defined by the functional behavior
and interaction of its processes. Finding
an appropriate level of control concur-
rency entails redrawing process bound-
aries by merging or splitting process
behaviors, or by moving functions from
one process to another, in response to
system performance goals.

As Figure 1 shows, our methodology
uses a cosimulation environment to
develop a mixed hardwaresoftware d e
scription, producing one that is function-
ally correct but may not meet some
design goals or may not be realizable
with the given implementation technolo
gy. Hardwaresoftware cosynthesis mod-
ifies the hardwaresoftware partition and
control concurrencyso that the target sys-
tem’s behavior will meet design goals.
Then, we compile the resultingspecifica-
tions into hardware and software for im-
plementation, using standard techniques
for software and behavioral synthesis
tools for custom hardware.2 Finally, we
use a testbed consisting of field-program-
mable hardware and interconnections
residing in the backplane of a general-
purpose computer system for experimen-
tal measurement.

SEPTEMBER 1993

,- -. ,-

/
I Hardware-software cosynthesis: I A Hardware-software partitioning

Control parallelism transformations

CPU Memory Application
I I hardware

Figure 1. Hardware-sohare codesign methodology.

The system model
To discuss our codesign methodolo-

gy, we assume a system architecture
such as that shown in Figure 2. It consists
of some application-specific hardware
on the system bus of either a general-
purpose or an embedded computersys-
tem running an appropriate operating
system. The application-specific hard-
ware is designed to cooperate with ap-
plication software running on the CPU.
The bus interface works with the operat-
ing system device driver to translate
reads and writes to and from the device
into the proper handshakes and data
transfers for the application-specific
hardware. We assume that the CPU is
running an operating system capable of

General-purpose Interrupt TI-

Custom device

specific
hardware

f
Bus interface

t 1 System bus i
I

Memory I/O device I/O device

Figure 2. System architecture.

to describe the behavior of the a p
plication-level software and appli-

communicating with the hardware de-
vice and performing intemptdriven I/O

cationspecific hardware explicitly
to hide the details of the operating

and that the hardware device includes
an appropriate bus interface. The sys-
tem may include memory and other I/O
devices, but we make no assumptions
as to their presence or location.

We developed the system behavioral
model for system simulation and synthe
sis with several goals in mind:

system and, as much as possible,
the hardware architecture
to be explicit about the level of con-
currency and the hardware
software partition
to facilitate transforming the con-
currency level and hardware-
software partition

7

M O D E L A N D

Software domain Transactions Hardware domain

Application
hardware

Operating (custom)
system

Register reads/writes [Z,,r ; n + ~ r f ~ ~ n im ,ivixtor

Iln hiir
Bus transactions A

I

Figure 3. Abstractions for hardware-sohare interaction.

We model the system behavior as a
set of independent, interacting, sequen-
tial pro~esses,~ each described behav-
iorally in a high-level description
language. The processes in the system
model correspond to the hardware prc-
cesses (independent state machines)
and software processes (as provided by
the operating system) that make up the
initial system description. The use of
communicating sequential processes
provides the ability to reason naturally
about the system’s concurrency level.
When each process is designated either
hardware or software, the communicat-
ing sequential process model also c a p
tures the hardware-software partition of
system functionality.

A key feature of the model is the ab-
straction level at which it represents
hardware-software interaction. Figure 3
illustrates several abstraction levels at
which we could model hardware
software interaction. At the lowest level,
we could model bus transactions issued
by the CPU, along with how the custom
hardware decodes, interprets, and r e
acts to those transactions. This would
necessitate modeling how the bus inter-
face decodes addresses and under what
circumstances it can interrupt the CPU.

At a higher level, we could model the
device driver as interacting with a bus
interface directly. At this level of abstrac-
tion, the model can hide address decod-
ing and interrupt behavior of the
hardware device, allowing us to consid-

8

er only data transfer between the driver
and the hardware device.

Instead, we model the application pro-
gram and application hardware interac-
tion at a high level, where the details of
the operating system and the device driv-
er, as well as those of the bus interface,
are hidden. We make some assumptions
about the capabilities of the operating
system, its device driver, and the bus in-
terface to gain the ability to formalize the
interaction of user-level software and a p
plicationspecific hardware at the com-
municating processes level.

A set of interprocess communication
primitives captures the abstract interac-
tion of application hardware and
software processes, classifying the syn-
chronization and data transfer associat-
ed with each interaction. In modeling
software, we represent an I/O system
call such as a read or write to the hard-
ware device by an appropriate interpro
cess communication primitive. In the
case of a process described in a hard-
ware description language, where data
transfer and synchronization are often
represented as explicit port operations$
a single interprocess communication
primitive represents the set of port oper-
ations that perfonn the data transfer and
associated synchronization.

The set of process communication
primitives covers the following types of
process interaction:

rn Synchronized data transfer. Syn-

chronized data transfer is data trans-
fer between two processes accom-
panied by a mechanism ensuring
that when the sending process
transmits the data, the receiving
process is in an appropriate state to
receive it. If the receiving process is
not in such a state when the sender
initiates the transaction, the sender
takes appropriate action, either
blocking until the receiver be-
comes ready or continuing with
unrelated processing.

8 Unsynchronized (unbuffered) data
transfer. When a data transfer is not
buffered or synchronized, a single
data value may be received more
than once or not at all. Such is often
the case with status information. A
process may send data to another
process regardless of whether that
data or any previous data values
have actually been received. Subse
quent data transmissions will over-
write earlier ones, making it
impossible for another process to
receive any but the most recent
data sent. A process may also r e
ceive data from another process r e
gardless of whether the data has
already been received or even
whether data has been sent.

8 Synchronization without data trans-
fer. A process may synchronize with
another, even if no data transfer is
needed, by suspending itself until
the other process reaches a certain
state. A process may use this mech-
anism either to enable another pro-
cess to begin a task or to wait for
another process to complete a task.

Processes may also communicate by
sharing a common memory space. Our
model does not represent this situation
explicitly; instead, it models the shared
memory itself as a process that communi-
cates with other processes using the pro
cess communication primitives. In this
way, access to shared memory is made
explicit, as is the set of processes that ac-

IEEE DESIGN & TEST OF COMPUTERS

cess a given shared-memory region.
The behavior of a software process

may include calls to the operating sys-
tem that are unrelated to interprocess
communication. These calls are repre
sented explicitly in the descriptions of
software processes.

System input and output takes place
in two ways: hardware processes may
refer to external signals, implying some
sort of physical, external connection to
the application hardware; or input and
output may be handled by standard I/O
devices (a serial port, for instance),
managed by the operating system. In the
latter case, inputs and outputs are repre
sented by calls to the operating system
from within a software process.

By exposing the behavior of impor-
tant elements of the system while hiding
implementation details, this model facil-
itates both system simulation and a
number of synthesis tasks, such as hard-
ware-software partitioning and control
concurrency transformation. Moreover,
we believe it will be applicable to a wide
variety of systems because of the few as-
sumptions it makes about the underly-
ing hardware architecture.

System simulation
We have implemented a hardware-

software cosimulation environment ac-
cording to the system behavioral model
just described. We use the Verilog simu-
lator to perform behavioral simulation
of the system hardware processes. The
software processes run as separate Unix
processes and communicate with the
hardware simulator by means of the
BSD (Berkeley Software Distribution)
Unix socket facility. Becker, Singh, and
Tell have used a similar te~hnique.~ The
difference in our cosimulation environ-
ment is that many aspects of the system
are hidden by the abstraction used for
hardware-software interaction.

The designer must change the appli-
cation software slightly so that it opens
socket connections to the hardware sim-
ulator instead of I/O channels to the ac-

Application-specific
hardware

Figure 4. Cosimulation using the Verilog hardware simulator.

tual hardware device. We added rou-
tines to the Verilog simulator via the Ver-
ilog Programming Language Interface
(PLI) to translate socket I/O into simula-
tion events, allowing the hardware sim-
ulation models to communicate with
the software processes. Figure 4 shows a
diagram of the simulation environment.

Because of the similarity between d e
vice and socket I/O in Unix, using the
socket facility for communication with
the hardware simulator makes it possible
for the simulator to act largely as a drop
in replacement for the actual hardware
device. Also, because the BSD socket fa-
cility allows transparent operation over a
network, we can run distributed simula-
tions, with the hardware simulator run-
ning on one system and the various
software processes on others.

In the Verilog simulation environ-
ment, one or more modules comprise
the applicationspecific portion of the
hardware. Aseparate module acts as the
bus interface. The bus interface module
translates the socket activity into the a p
propriate simulation events. The rou-
tines that do this translation are

~ implemented primarily in C and linked

to the Verilog simulation environment
through the Verilog PLI.

A major issue in getting separate soft-
ware processes to communicate with
processes in the Verilog behavioral sim-
ulation environment is how to enable
the socket events (reads or writes pend-
ing on a socket) to create simulation
events. Ideally, the Verilog simulator
would react to socket events as shown
in Figure 5 (next page). At the end of
each time step, i f no future simulation
events existed, the simulator would sus-
pend operation pending activity on a
socket. If future simulation events did
exist, the simulator would check the
sockets for activity, create any socket-
related simulation events, and continue
running. In this way, the simulator
would stop running only when simula-
tion could not proceed without the oc-
currence of a socket event. Checking
the sockets for activity at the end of each
time step prevents a hardware process
from excluding software interaction by
looping indefinitely (as might be the
case for a clock or a free-running
counter).

For effective hardware-software CO-

SEPTEMBER 1993 9

M O D E L A N D M E T H O D O L O G Y
-~

t

if(

Figure 5. Ideal interaction of simulator and socket events.

simulation, i t is important to tie the hard-
waresimulation environment to the nat-
ural software runtime environment. Our
work on cosimulation illustrates one
way of achieving that tie. Unfortunately.
restrictions on the way the PLI interacts
with the simulation event scheduler in
Verilog prevent us from implementing
that technique directly. Instead, we im-
plemented two compromise solutions:
one that works efficiently with a restrict-
ed class of hardware descriptions and
one that works in all cases but is fairly
inefficient.

System synthesis
The general cosynthesis problem ad-

dressed by our methodology is how to
meet a system performance goal, or im-
prove system performance, with a mini-
mum of hardware resources. Beginning
with a behavioral system description in
terms of interacting processes, we must
extract a set of hardware and software
processes that will comprise the
implementation.

10

Since the process boundaries in the
initial system description may not repre-
sent ideal hardware-software bound-
aries, we first decompose the processes
into nontrivial sequences of operations
called tasks. How operations should be
grouped into tasks is one consideration.
Once this grouping has been done, the
problem for cosynthesis is to find the
subset of tasks that should be imple-
mented in hardware and to determine
how tasks should be grouped into pro-
cesses. A key feature of our cosynthesis
methodology is that hardwaresoftware
partitioning takes place at the task level.
rather than at the operation level as in
Gupta arid De Micheli's approach."

Any cosynthesis decision is evaluated
according to how it affects the system's
performance and cost characteristics.
Cost and performance requirements de-
pend on the particular system. For ex-
ample, an embedded controller may
have real-time deadlines to meet. In that
case, design decisions that move toward
this performance requirement take pri-

ority over other decisions. Minimizing
the cost of such a system is also desir-
able, but secondary to meeting the per-
formance requirement. On the other
hand, a system consisting of a fixed set
of resources must meet cost constraints.
In this case, design decisions are evalu-
ated primarily on their ability to satisfy
the cost constraints.

Given some basis for evaluating sys-
tem performance, we can decide which
tasks should be implemented as hard-
ware and which as software. For some
tasks, the decision may be clear: If a task
interacts closely with the operating sys-
tem (for example, makes many OS calls
or relies on virtual memory), software
may be the only feasible implementa-
tion. Likewise, if a task interacts closely
with external signals, implementing it in
hardware may be the only feasible solu-
tion. For the remaining tasks, either im-
plementation is possible. We can
determine which to pursue according to
the following criteria:

1. Dynamic properties of the system: a
characterizationof how atasksexecu-
tion time impactssystem performance

2. Static properties of the task: the dif-
ference in execution times between
hardware and software implemen-
tations of the task

3. Hardware costs: the amount of cus-
tom hardware required to realize a
hardware implementation of the
task

The first consideration takes into ac-
count how much system performance
depends on the execution time of each
task, which in turn depends on the crite-
rion by which system performance is
measured. In a system for which maxi-
mum throughput is the design goal, we
may measure the dependence of system
performance on task performance sim-
ply by counting the average number of
times the task must execute for each
sample of input data. In a system with
hard real-time constraints, the measure

IEEE DESIGN & TEST OF COMPUTERS

of performance might be how well, if at
all, the software tasks can follow some
real-time scheduling discipline. How a
task’s execution time impacts system
performance in this case depends on
such factors as the priority of the task,
the periodicity of the task, and schedul-
ing overheads.

We must consider the second criteri-
on, static properties of task behaviors,
because some tasks are inherently
much better suited for hardware imple-
mentation than others. Tasks that exhib-
it a high degree of data parallelism or
that would benefit from a custom mem-
ory architecture, for instance, would be
better suited for custom hardware im-
plementation than serial tasks or tasks
that closely fit a general-purpose archi-
tecture. To quantify these differences,
we must identify properties of a task’s
behavior that indicate how software and
hardware implementations of the task
will perform. The properties we have
identified so far rely on unique capabili-
ties of custom hardware. These proper-
ties are the following:

rn The need for arbitrary arithmetic op
erations. Some operations are ex-
pensive or clumsy in software
because they are not common
enough to be included in the func-
tion of a general-purpose ALU (bit
reversal, for example). In a hard-

are possible in a software imple
mentation, but at high cost. If the
threads run on a single processor,
the operating system must perform
taskswitches, greatly impacting per-
formance. Using multiple CPUs to
implement concurrent software
threads adds costs to the system
even if the additional tasks are
small. In hardware, however, a sep
arate thread of control requires only
an additional state machine, mak-
ing fine-grained control parallelism
much more practical.
The need for customized memory
architectures. In a software imple
mentation, memory bandwidth is
limited to that supported by the
CPU and memory subsystem. A

Figure 6. Hidden Markov model for
phonemes.

determine itssuitability for hardware imple
mentation. The second shows how a sys-
tem’s dynamic properties, as well as
hardware costs, affect the hardware-
software partitioning trade-off for a
complete, though simple, system.

hardware implementation can Example 1: speech phoneme rec-
achieve high memory bandwidth at
low cost by employing a memory
architecture tailored to the applica-
tion. Independent static RAMS, for
instance, can be used to store a set
of arrays to be accessed in parallel.

Finally, we must consider the amount
of custom hardware necessary to reduce
a task’s execution time. For some tasks,
custom hardware implementations
might perform well but be impractical
due to high gate counts or memory r e
quirements. For others, there may be a
range of achievable performance gains,

ware implementation, where func- depending on how much of the custom
tional units can be customized for
the application, such operations
can be included as primitive ALU
functions.

rn The ability to exploit a high degree
of data parallelism. Although VLlW
(very long instruction word) and
superscalar techniques are being
used to increase the data parallel-
ism of general-purpose processors,
arbitrarily high data parallelism can
be achieved only in a hardware
implementation.
The ability to use multiple threads OF
control. Multiple threads of control

hardware is devoted to the task. Further-
more, the hardware implementation cost
for a given set of tasks may vary accord-
ing to how the tasks are grouped into pre
cesses. Along with deciding which set of
tasks to implement in hardware, we must
also decide how the limited amount of
custom hardware should be allocated to
the various hardware tasks.

Examples
Two examples illustrate the cosynthesis

considerations discussed in the previous
section. The fitst example demonstmtes the
extent to which a tasks static properties

ognition. The Sphinx speech recogni-
tion system7 uses hidden Markov
models (HMMs) to represent three lev-
els of speech knowledge: phonemes,
words, and sentences. An HMM is a set
of transitions connecting a set of states.
The set of states includes an initial and
final state. There are two probability
functions for each transition: The transi-
tion probability function determines the
probability that a particular transition
will be taken. The outputprobability den-
sity function determines each alphabetic
output symbol’s conditional probability
of being emitted, given that the transi-
tion is taken. The system performs
speech recognition by determining the
HMM that best matches a given input at
the phoneme, word, and phrase level.
The HMMs for each phoneme share the
same topology, shown in Figure 6.

The Sphinx system’s front end con-
verts a continuous speech signal into a
stream of &bit vectors. The phoneme
recognizer receives one of these vectors
every 10 milliseconds and determines
which of the 48 phonemes modeled is
most likely to have emitted the past se-
quence of input vectors. The recognizer
makes this determination by using the
Forward algorithm, which computes, for

SEPTEMBER 1993 11

M O D E L A N D M E T H O D O L O G Y
~~~~~~~~ ~ 

tions. The probability of a state is the 
sum of the probabilities of the transitions 
incident upon it. The use of logarithmic 

Table 1. Dataflow graph (DFG) depth for 
the Sphinx phoneme recognizer. 

terconnection matches the tasks 
requirements. Therefore, the custom 
hardware implementation has much 

I Behavior DFG depth 

Serial operations and 
serial memory accesses 149 

Parallel operations and 
serial memory accesses 87 

Parallel operations and 
parallel memory accesses 22 

transitions incident upon it. Therefore, all 
the state computations can be concur- 
rent. Five types of operations are used in 
computing the HMM: additions, subtrac- 
tions, comparisons, overflow checks, and 
array accesses. In total, there are 149 op  
erations in one iteration of the phoneme 
recognition task. The critical path 
through the task in terms of data depen- 
dencies, however, is only 22 operations. 
This level of concurrency allows an aver- 
age of seven simultaneous operations. 
Through the exploitation of data parallel- 

ory parallelism is an important component 
in the total parallelism of the task. Acustom 
hardware implementation can allocate a 
dedicated storage unit for each array, al- 
lowing concurrent memoty accesses and 
avoiding the inefficiencies and overheads 
of the general-pulpose memoty hierarchy, 
such as cache misses, cache coldstart, and 
coherency overhead. 

The phoneme recognizer exhibits 
three of the four task properties described 
earlier: reliance on arbitray arithmetic 
operations, a high degree of data parallel- 

larger and using this difference to ad- 
dress a lookup table containing a cor- 
rection factor, which is added to the 
larger logarithm. This method avoids all 
intermediate multiplications and loga- 
rithm conversions. 

The evaluation of the probability at 
each state depends only on the probabil- 
ity of its ancestors during the last compu- 
tation and the probability functions of the 

advantage of a relatively low communi- 
cation bandwidth with other procedures 
in the speech recognition system. In 10 
milliseconds, the phoneme recognizer 
receives a new &bit vector and returns48 
updated phoneme probabilities, for a to 
tal communication rate of 4,900 bytes per 
second. The cost of a hardware imple 
mentation of this task is also reasonable; 
initial estimates indicate that the pho 
neme recognizer will fit into the three 
FPGAs (field-programmable gate arrays) 
present on the Rasa board described lat- 
er in this article. 

Example 2: data compression/en- 
cryption. This example shows how the 
system synthesis considerations out- 
lined earlier might affect hardware 
software partitioning for the simple 
system diagrammed in Figure 7. For two 
of the tasks, reading data from the disk 
and transmitting it over the local area 
network, there are few implementation 
alternatives. Implementing these tasks in 
hardware would be difficult to justify, 
since they require a high degree of inter- 
action with the operating system. The 

forming nonmemory operations in parallel 
reduces the tasks critical path from 149 to 
87 operations. Performing memory opem- 
tions in parallel further reduces the critical 
path to 22 operations, indicating that mem- 

software and may be implemented as ei- 
ther. Assuming that the system design 
goal is to maximize throughput using a 
limited amount of custom hardware, the 
cosynthesis problem is to determine 

12 IEEE DESIGN & TEST OF COMPUTERS 



which subset of tasks should be imple- 
mented with custom hardware and 
which with software to achieve that 
goal. 

' 

Data 
compression 1,43 1 1 .OO 

Frame assembly 753 0.53 

First, consider how much a tasks ex- 
ecution time impacts system through- 
put. For the system shown in Figure 7, 
we determined the number of execu- 
tions per input byte for a sample data 
set. Table Zshows how often each task is 
performed for every byte of data read 
from the disk. The data compression 
task, for instance, is executed 10 times as 
frequently as the encryption task. 

Table 3 addresses the second consid- 
eration, how the execution time of a 
hardware implementation compares to 
that of a software implementation. The 
table lists the number of clock cycles per 
task invocation for software and hard- 
ware implementations (assuming asim- 
ple model of software execution in 
which each instruction takes one cy- 
cle). These results show that custom 
hardware can be up to six times as fast 
as software, depending on the task. 

By combining the information from 
Table 2 and Table 3, we calculate the 
normalized execution time (cycles of 
execution per byte of input) of each task 
for hardware and software implementa- 
tions gable 4). To group the tasks into 
two independent processes, we should 
partition them so that the sums of the 
normalized execution times of the tasks 
are roughly equal for both processes. 

Finally, we must consider the amount 
of hardware required to achieve the de- 
sired performance gain. The execution 
time listed for the encryption task in Ta- 
ble 3 represents only one possible hard- 
ware implementation, one using eight 
independent memories. Table 5 shows 
how the number of independent mem- 
ories in a hardware implementation of 
the encryption task affects execution 
time. By incorporating this information 
into an analysis like that shown in Table 
4, we can make a decision about the 
necessary amount of hardware resourc- 
es, as well as hardwaresoftware process 

SEPTEMBER 1993 

Figure 7. Data compression/encryption system 

partitioning. 
On the basis of this sort of analysis, we 

might decide to implement the com- 
pression task with a single software p r o  
cess and to combine the frame 
assembly and encryption tasks into a 
single hardware process. Since the com- 
pression process is the throughput bot- 
tleneck in this case, a single-memory 
implementation of the encryption task 

Table 3. Task execution time for sohare and hardware implementations. 

i 
~ Task (cycles) (cycles) Ratio 

~~ ~- ~~ -~ 

Software Hardware 

Data compression 39 
i Frame assembly 
I Encryption 

29 
576 
~- 

21.5 
7.2 

94.0 
~~ 

1.81 1 
6.15 

Table 4. Normalized execution time for sohare and hardware implementations, 

~~- - ~~ 

Software Hardware I ~ ~ ~ _ _ _ _ _ ~  

Task (cycles per input byte) (cycles per input byte) 

Data compression 39.0 21.5 
Frame assembly 15.4 3.8 

57.6 9.4 Encryption 
- ~~ 

Table 5. Execution time for hardware implementations of encryption task. 
I .  

, , 
Number of Task runtime Normalized execution time 

1 independent memories (cycles) (cycles per input byte) 1 

8 
4 
2 
1 

94 
110 
142 
206 

9.4 
1 1 .o 
14.2 
20.6 I 

13 



M O D E L  A N D  M E T H O D O L O G Y  
~~ ~ ~~ ~~ ~ ~ 

Figure 8. The Rasa Board. 

consuming implemented as software 
but simple and efficient implemented in 

onto a fixed interconnection scheme. 
This fact simplifies partitioning and im- 
proves the results of FPGA placement, 
because I/O pins can be placed accord- 
ing to internal placement considerations 
rather than external interconnection 
requirements. 

To create hardware designs for this 
board from a behavioral specification, 
we have coupled a behavioral synthesis 
tool, the System Architect’s Workbench, 
to a set of logic synthesis and partition- 
ing tools. Figure 9 shows the design flow 
The system output is a set of FPGA spec- 
ifications and a netlist for the FPCB. Us- 
ing Xilinx and Aptix tools, we convert 
these specifications to the configuration 
bit streams for the FPGAs and the FPCB. 

hardware, where arbitrary sets of opera- 
~ tions can be incorporated in a function- 

a1 unit The encryption task can also 

Figure 9. Hardware compilation design 
flow for the Rasa Board. 

would suffice. The result would be a sys- 
tem with two processes: a software pro- 
cess with a normalized cycle time of 39, 
and a hardware process with a normal- 
ized cycle time of 3.8 for frame assembly 
and 20.6 for encryption, totaling 24.4. 

The encryption task of this example is 

benefit from the use of multiple, inde- 
pendent memories to store arrays. Such 
considerations, along with the tasks role 
in the system, help us draw process 
boundaries and select a suitable hard- 
waresoftware partition. 

A protoiype system 
To test and validate our codesign 

methodology and tools, we have de- 
signed a prototype hardware-software 
system. It consists of an Intel-486-based 
PC and the Rasa Board (from tabula 
rasa, meaning blank tablet, referring to 
the human mind in its initial state, be- 
fore receiving impressions from the ex- 
ternal world). The Rasa Board, shown in 
Figure 8, is a field-programmable plat- 
form for applicationspecific hardware. 
Like the Splash board8 and the Any- 
Board,9 the Rasa Board consists of Xilinx 
FPGAs, memories, and a microcomput- 
er interface. Unlike the other boards, the 
Rasa Board’s components interconnect 
via two Aptix field-programmable inter- 
connect chips (FPICs) on a field- 
programmable circuit board (FPCB). 
Because the interconnection network is 

The Rasa Board is presently under con- 
struction in our research group. When 
the board is complete, we will use it to 
implement hardware processes in the 
prototype hardwaresoftware system. On 
the basis of our initial estimates, we b e  
lieve the Rasa Board has sufficient hard- 
ware resources to build implementations 
of the phoneme recognizer and the en- 
cryption tasks that will outperform soft- 
ware implementations on the Intel 486. 

THE CODESIGN METHODOLOGY present- 
ed here defines a mixed hardware- 
software system model that facilitates 
cosimulation and cosynthesis. The ab- 
stract level of the communicating se- 
quential process model allows the 
designer and the design tools to reason 
about system functions at a level appro- 
priate for codesign. Partitioning and 
transformation merge and/or split pro- 
cesses to meet performance require- 
ments or to fit physical constraints. 
Further, the methodology ties into the 
detailed hardware design process 
through behavioral synthesis, allowing 
functions originally conceived as soft- 

much better suited to hardware than to 1 programmable, the task of partitioning 
software. Further examination of the the design into separate physical com- 
tasks behavior reveals the main reason: ponents is not further complicated by a 
The task uses operations that are time- requirement to map the interchip nets 

ware to be implemented as hardware 
when performance constraints dictate. 

The design examples we presented il- 
lustrate how certaincharacteristicsofsy5 

14 IEEE DESIGN & TEST OF COMPUTERS 



tem behavior and constraints suggest 
hardware or software implementation. 
As the development of the partitioning 
tool proceeds, these characteristics will 
play an important role in the decision- 
making process. Finally, the Rasa Board 
project will enable us to measure and 
characterize the effects of the cosynthesis 
tools in actual implementations. 

search Center, Institute for Defense 
Analyses, Bowie, Md., 1990. 

9. D.E Van den Bout et al., “AnyBoard: An 
FPGA-Based, Reconfigurable System,” 
IEEE Design & Test of Computers, Vol. 9, 
No. 3, Sept. 1992, pp. 21-30. Acknowledgments 

We acknowledge the Semiconductor Re- 
search Corporation, the National Science 
Foundation (under contract MlP-9112930), 
General Motors Research, the Xilinx Corpc- 
ration, and the Aptix Corporation for the 
funding of the projects described here. 

ment of Carnegie Mellon University. His 
research interests include high-level synthe 
sis and hardwaresoftware codesign. Previ- 
ously, he was a member of the technical staff 

~ at Hewlett-Packard’s Engineering Systems 
Laboratory. He received a BS degree from 
MIT and an MS degree from Carnegie Mel- 
Ion. He is a member of the IEEE, the IEEE 

References 
1. J.W. Hagerman and D.E. Thomas, Prc- 

cess Transformation for System-Leuel 
Synthesis, Tech. Report CMUCAD93-98, 
Camegie Mellon Univ., Pittsburgh, 1993. 

2. D.E. Thomas et al., Algorithmic and Reg- 
ister-Transfer LeuelSynthesis: The System 
Architect’s Workbench, Kluwer, Boston, 
1990. 

3. C.A.R. Hoare, Communicating Sequen- 
tial Processes, PrenticeHall, Englewood 
Cliffs, N.J., 1985. 
L.F. Arnstein, Describing Systems for 
High-Level Synthesis in the Verilog Lon- 
guage, Tech. Report CMUCAD-90-51, 
Carnegie Mellon Univ., 1990. 
D. Becker, R.K. Singh, and S.G. Tell, “An 
Engineering Environment for Hard- 
wareboftware CO-Simulation,” Proc. 
29th Design Automation Conf, IEEE 
Computer Society Press, Los Alamitos, 
Calif., 1992, pp. 129-134. 
R.K. Gupta and G. De Micheli, “System 
Level Synthesis Using Reprogrammable 
Components,” Proc. Third European 
Conf Design Automation, IEEE CS Press 

SEPTEMBER 1993 

1992, pp. 2-7. 
7. K.F. Lee and H.W. Hon, “LargeVocabu- 

lary Speaker-Independent Continuous 
Speech Recognition,” Int’l Conf Acous- 
tics, Speech, and Signal Processing (Vol. 
I), IEEE, New York, 1988, pp. 123-126. 

8. M. Gokhale et al., SPL4SH:A Reconfigu- 
rable Linear Logic Array, Tech. Report Jay K. Adams is a PhD student in the Elec- 

~ 

, Donald E. Thomas is a professor of electri- ~ Herman Schmit is a PhD student in the 
cal and computer engineering at Carnegie 
Mellon University, where he works on auto- 
matic design of digital systems and 
hardwaresoftware codesign. In 1985-86 he 
was a visiting scientist at the IBM T.J. Watson 
Research Center. Thomas was elected a fel- 
low of the IEEE for his contributions to autc- 
matic design of integrated circuits and 
systems and to computer engineering edu- 
cation. He was the 1989 Design Automation 
Conference chair and served on the IEEE 
Computer Society Board of Governors in 
1989 and 1990. He received his PhD from 
Carnegie Mellon University. 

Electrical and Computer Engineering De- 
partment of Camegie Mellon University, per- 
forming research on the high-level synthesis 
of memory architecture. Earlier, he worked 
in Data General Corporation’s High-End Sys- 
tems Development Department. He re- 
ceived a BSE degree from the University of 
Pennsylvania and an MSEE degree from Car- 
negie Mellon. 

Send correspondence about this article 
to Donald E. Thomas, ECE Dept., Carnegie 
Mellon University, Pittsburgh, PA 15213; 
thomas@ece.cmu.edu. 

15 

mailto:thomas@ece.cmu.edu

