
A Model and Methodology 

the more general case in which the ini- insight and techniques that apply to 0th- 
tial functional specification may consist er forms of hardwaresoftware codesign 

for Hardware-Software 

theoretical work aimed at identifying fac- 
tors that influence design decisions with 

IN HARDWARE-SOWARE code 
sign, designers consider trade-offs 
in the way hardware and software 
components of a system work to 
gether to exhibit a specified behav- 
ior, given aset of performance goals 
and an implementation technolo 
gy. Because of a wide range of pos- 
sible system structures and design 
goals, the hardwaresoftware code- 
sign problem takes on many forms. 

One type of codesign seeks to accel- 
erate application software by extmct- 
ing portions for implementation in 
hardware. Programmable hardware 
may make this type of software acceler- 
ation common even in geneml- 
pulpose computing. In thls case, the 
codesign problem entails charac- 
terizing hardware and software 
performance, identifying a hardware 
software partition, transforming the 
functional description intosuch a parti- 
tion, and synthesizing the resulting 
hardware and software. 

The approach we describe in this 
article addresses these problems in 
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starting point for addressing this type 
of hardwaresoftware codesign. 
Hardwaresoftware cosimulation is a 
means of verifying the functionality 
of mixed hardwaresoftware descrip 
tions. High-level (or behavioral) 
synthesis can produce hardware im- 
plementations for functions d e  
scribed in a high-level software 
language such as C. Also, recent work 
in high-level synthesis of multiple 
prccesssystems' suggeststhat function- 
ality can be moved from one thread of 
conid to another. 

What is needed is a means of a p  
plying these techniques to generat- 
ing hardwaresoftware partitioning 
alternatives and a formalism that d e  
scribes the available engineering 
trade-offs. Toward this end, we have 
developed a model for system-level 
simulation and synthesis that pro 
vides a detailed understanding of 
system behavior and a transforma- 
tion capability that allows genera- 
tion of design alternatives. We are 
also carrying out experimental and 
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set of CAD tools, is the basis for the code 
sign methodology diagrammed in Figure 
1. Parts of the methodology are still in 
development. 

Our methodology focuses on two sys- 
tem design tasks: cosimulation and co- 
synthesis. An important issue in 
cosimulation is how to tie behavioral 
hardware simulation into a software run- 
time environment. Cosynthesis involves 
two interrelated design issues: choosing 
the optimal hardwaresoftware partition 
and choosing the appropriate level of 
control concurrency. The hardware- 
software partition is defined by the set of 
application-level functions implement- 
ed with application-specific hardware. 
Finding a suitable hardwaresoftware 
partition requires understanding how 
best to use limited application-specific 
hardware resources to meet system de- 
sign goals. Asystem’s control concurren- 
cy is defined by the functional behavior 
and interaction of its processes. Finding 
an appropriate level of control concur- 
rency entails redrawing process bound- 
aries by merging or splitting process 
behaviors, or by moving functions from 
one process to another, in response to 
system performance goals. 

As Figure 1 shows, our methodology 
uses a cosimulation environment to 
develop a mixed hardwaresoftware d e  
scription, producing one that is function- 
ally correct but may not meet some 
design goals or may not be realizable 
with the given implementation technolo 
gy. Hardwaresoftware cosynthesis mod- 
ifies the hardwaresoftware partition and 
control concurrencyso that the target sys- 
tem’s behavior will meet design goals. 
Then, we compile the resultingspecifica- 
tions into hardware and software for im- 
plementation, using standard techniques 
for software and behavioral synthesis 
tools for custom hardware.2 Finally, we 
use a testbed consisting of field-program- 
mable hardware and interconnections 
residing in the backplane of a general- 
purpose computer system for experimen- 
tal measurement. 
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Figure 1. Hardware-sohare codesign methodology. 

The system model 
To discuss our codesign methodolo- 

gy, we assume a system architecture 
such as that shown in Figure 2. It consists 
of some application-specific hardware 
on the system bus of either a general- 
purpose or an embedded computersys- 
tem running an appropriate operating 
system. The application-specific hard- 
ware is designed to cooperate with ap- 
plication software running on the CPU. 
The bus interface works with the operat- 
ing system device driver to translate 
reads and writes to and from the device 
into the proper handshakes and data 
transfers for the application-specific 
hardware. We assume that the CPU is 
running an operating system capable of 

General-purpose Interrupt TI-  

Custom device 

specific 
hardware 

f 
Bus interface 

t 1 System bus i 
I 

Memory I/O device I/O device 

Figure 2. System architecture. 

to describe the behavior of the a p  
plication-level software and appli- 

communicating with the hardware de- 
vice and performing intemptdriven I/O 

cationspecific hardware explicitly 
to hide the details of the operating 

and that the hardware device includes 
an appropriate bus interface. The sys- 
tem may include memory and other I/O 
devices, but we make no assumptions 
as to their presence or location. 

We developed the system behavioral 
model for system simulation and synthe 
sis with several goals in mind: 

system and, as much as possible, 
the hardware architecture 
to be explicit about the level of con- 
currency and the hardware 
software partition 
to facilitate transforming the con- 
currency level and hardware- 
software partition 

7 



M O D E L  A N D  

Software domain Transactions Hardware domain 

Application 
hardware 

Operating (custom) 
system 

Register reads/writes [Z,,r ; n + ~ r f ~ ~ n  im ,ivixtor 

Iln hiir 
Bus transactions A 

I 

Figure 3. Abstractions for hardware-sohare interaction. 

We model the system behavior as a 
set of independent, interacting, sequen- 
tial pro~esses,~ each described behav- 
iorally in a high-level description 
language. The processes in the system 
model correspond to the hardware prc- 
cesses (independent state machines) 
and software processes (as provided by 
the operating system) that make up the 
initial system description. The use of 
communicating sequential processes 
provides the ability to reason naturally 
about the system’s concurrency level. 
When each process is designated either 
hardware or software, the communicat- 
ing sequential process model also c a p  
tures the hardware-software partition of 
system functionality. 

A key feature of the model is the ab- 
straction level at which it represents 
hardware-software interaction. Figure 3 
illustrates several abstraction levels at 
which we could model hardware 
software interaction. At the lowest level, 
we could model bus transactions issued 
by the CPU, along with how the custom 
hardware decodes, interprets, and r e  
acts to those transactions. This would 
necessitate modeling how the bus inter- 
face decodes addresses and under what 
circumstances it can interrupt the CPU. 

At a higher level, we could model the 
device driver as interacting with a bus 
interface directly. At this level of abstrac- 
tion, the model can hide address decod- 
ing and interrupt behavior of the 
hardware device, allowing us to consid- 
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er only data transfer between the driver 
and the hardware device. 

Instead, we model the application pro- 
gram and application hardware interac- 
tion at a high level, where the details of 
the operating system and the device driv- 
er, as well as those of the bus interface, 
are hidden. We make some assumptions 
about the capabilities of the operating 
system, its device driver, and the bus in- 
terface to gain the ability to formalize the 
interaction of user-level software and a p  
plicationspecific hardware at the com- 
municating processes level. 

A set of interprocess communication 
primitives captures the abstract interac- 
tion of application hardware and 
software processes, classifying the syn- 
chronization and data transfer associat- 
ed with each interaction. In modeling 
software, we represent an I/O system 
call such as a read or write to the hard- 
ware device by an appropriate interpro 
cess communication primitive. In the 
case of a process described in a hard- 
ware description language, where data 
transfer and synchronization are often 
represented as explicit port operations$ 
a single interprocess communication 
primitive represents the set of port oper- 
ations that perfonn the data transfer and 
associated synchronization. 

The set of process communication 
primitives covers the following types of 
process interaction: 

rn Synchronized data transfer. Syn- 

chronized data transfer is data trans- 
fer between two processes accom- 
panied by a mechanism ensuring 
that when the sending process 
transmits the data, the receiving 
process is in an appropriate state to 
receive it. If the receiving process is 
not in such a state when the sender 
initiates the transaction, the sender 
takes appropriate action, either 
blocking until the receiver be- 
comes ready or continuing with 
unrelated processing. 

8 Unsynchronized (unbuffered) data 
transfer. When a data transfer is not 
buffered or synchronized, a single 
data value may be received more 
than once or not at all. Such is often 
the case with status information. A 
process may send data to another 
process regardless of whether that 
data or any previous data values 
have actually been received. Subse 
quent data transmissions will over- 
write earlier ones, making it 
impossible for another process to 
receive any but the most recent 
data sent. A process may also r e  
ceive data from another process r e  
gardless of whether the data has 
already been received or even 
whether data has been sent. 

8 Synchronization without data trans- 
fer. A process may synchronize with 
another, even if no data transfer is 
needed, by suspending itself until 
the other process reaches a certain 
state. A process may use this mech- 
anism either to enable another pro- 
cess to begin a task or to wait for 
another process to complete a task. 

Processes may also communicate by 
sharing a common memory space. Our 
model does not represent this situation 
explicitly; instead, it models the shared 
memory itself as a process that communi- 
cates with other processes using the pro 
cess communication primitives. In this 
way, access to shared memory is made 
explicit, as is the set of processes that ac- 
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cess a given shared-memory region. 
The behavior of a software process 

may include calls to the operating sys- 
tem that are unrelated to interprocess 
communication. These calls are repre 
sented explicitly in the descriptions of 
software processes. 

System input and output takes place 
in two ways: hardware processes may 
refer to external signals, implying some 
sort of physical, external connection to 
the application hardware; or input and 
output may be handled by standard I/O 
devices (a serial port, for instance), 
managed by the operating system. In the 
latter case, inputs and outputs are repre 
sented by calls to the operating system 
from within a software process. 

By exposing the behavior of impor- 
tant elements of the system while hiding 
implementation details, this model facil- 
itates both system simulation and a 
number of synthesis tasks, such as hard- 
ware-software partitioning and control 
concurrency transformation. Moreover, 
we believe it will be applicable to a wide 
variety of systems because of the few as- 
sumptions it makes about the underly- 
ing hardware architecture. 

System simulation 
We have implemented a hardware- 

software cosimulation environment ac- 
cording to the system behavioral model 
just described. We use the Verilog simu- 
lator to perform behavioral simulation 
of the system hardware processes. The 
software processes run as separate Unix 
processes and communicate with the 
hardware simulator by means of the 
BSD (Berkeley Software Distribution) 
Unix socket facility. Becker, Singh, and 
Tell have used a similar te~hnique.~ The 
difference in our cosimulation environ- 
ment is that many aspects of the system 
are hidden by the abstraction used for 
hardware-software interaction. 

The designer must change the appli- 
cation software slightly so that it opens 
socket connections to the hardware sim- 
ulator instead of I/O channels to the ac- 

Application-specific 
hardware 

Figure 4. Cosimulation using the Verilog hardware simulator. 

tual hardware device. We added rou- 
tines to the Verilog simulator via the Ver- 
ilog Programming Language Interface 
(PLI) to translate socket I/O into simula- 
tion events, allowing the hardware sim- 
ulation models to communicate with 
the software processes. Figure 4 shows a 
diagram of the simulation environment. 

Because of the similarity between d e  
vice and socket I/O in Unix, using the 
socket facility for communication with 
the hardware simulator makes it possible 
for the simulator to act largely as a drop 
in replacement for the actual hardware 
device. Also, because the BSD socket fa- 
cility allows transparent operation over a 
network, we can run distributed simula- 
tions, with the hardware simulator run- 
ning on one system and the various 
software processes on others. 

In the Verilog simulation environ- 
ment, one or more modules comprise 
the applicationspecific portion of the 
hardware. Aseparate module acts as the 
bus interface. The bus interface module 
translates the socket activity into the a p  
propriate simulation events. The rou- 
tines that do this translation are 

~ implemented primarily in C and linked 

to the Verilog simulation environment 
through the Verilog PLI. 

A major issue in getting separate soft- 
ware processes to communicate with 
processes in the Verilog behavioral sim- 
ulation environment is how to enable 
the socket events (reads or writes pend- 
ing on a socket) to create simulation 
events. Ideally, the Verilog simulator 
would react to socket events as shown 
in Figure 5 (next page). At the end of 
each time step, i f  no future simulation 
events existed, the simulator would sus- 
pend operation pending activity on a 
socket. If future simulation events did 
exist, the simulator would check the 
sockets for activity, create any socket- 
related simulation events, and continue 
running. In this way, the simulator 
would stop running only when simula- 
tion could not proceed without the oc- 
currence of a socket event. Checking 
the sockets for activity at the end of each 
time step prevents a hardware process 
from excluding software interaction by 
looping indefinitely (as might be the 
case for a clock or a free-running 
counter). 

For effective hardware-software CO- 
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Figure 5. Ideal interaction of simulator and socket events. 

simulation, i t  is important to tie the hard- 
waresimulation environment to the nat- 
ural software runtime environment. Our 
work on cosimulation illustrates one 
way of achieving that tie. Unfortunately. 
restrictions on the way the PLI interacts 
with the simulation event scheduler in 
Verilog prevent us from implementing 
that technique directly. Instead, we im- 
plemented two compromise solutions: 
one that works efficiently with a restrict- 
ed class of hardware descriptions and 
one that works in all cases but is fairly 
inefficient. 

System synthesis 
The general cosynthesis problem ad- 

dressed by our methodology is how to 
meet a system performance goal, or im- 
prove system performance, with a mini- 
mum of hardware resources. Beginning 
with a behavioral system description in  
terms of interacting processes, we must 
extract a set of hardware and software 
processes that will comprise the 
implementation. 
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Since the process boundaries in the 
initial system description may not repre- 
sent ideal hardware-software bound- 
aries, we first decompose the processes 
into nontrivial sequences of operations 
called tasks. How operations should be 
grouped into tasks is one consideration. 
Once this grouping has been done, the 
problem for cosynthesis is to find the 
subset of tasks that should be imple- 
mented in hardware and to determine 
how tasks should be grouped into pro- 
cesses. A key feature of our cosynthesis 
methodology is that hardwaresoftware 
partitioning takes place at the task level. 
rather than at the operation level as in 
Gupta arid De Micheli's approach." 

Any cosynthesis decision is evaluated 
according to how it affects the system's 
performance and cost characteristics. 
Cost and performance requirements de- 
pend on the particular system. For ex- 
ample, an embedded controller may 
have real-time deadlines to meet. In that 
case, design decisions that move toward 
this performance requirement take pri- 

ority over other decisions. Minimizing 
the cost of such a system is also desir- 
able, but secondary to meeting the per- 
formance requirement. On the other 
hand, a system consisting of a fixed set 
of resources must meet cost constraints. 
In this case, design decisions are evalu- 
ated primarily on their ability to satisfy 
the cost constraints. 

Given some basis for evaluating sys- 
tem performance, we can decide which 
tasks should be implemented as hard- 
ware and which as software. For some 
tasks, the decision may be clear: If a task 
interacts closely with the operating sys- 
tem (for example, makes many OS calls 
or relies on virtual memory), software 
may be the only feasible implementa- 
tion. Likewise, if a task interacts closely 
with external signals, implementing it in 
hardware may be the only feasible solu- 
tion. For the remaining tasks, either im- 
plementation is possible. We can 
determine which to pursue according to 
the following criteria: 

1. Dynamic properties of the system: a 
characterizationof how atasksexecu- 
tion time impactssystem performance 

2. Static properties of the task: the dif- 
ference in execution times between 
hardware and software implemen- 
tations of the task 

3. Hardware costs: the amount of cus- 
tom hardware required to realize a 
hardware implementation of the 
task 

The first consideration takes into ac- 
count how much system performance 
depends on the execution time of each 
task, which in turn depends on the crite- 
rion by which system performance is 
measured. In a system for which maxi- 
mum throughput is the design goal, we 
may measure the dependence of system 
performance on task performance sim- 
ply by counting the average number of 
times the task must execute for each 
sample of input data. In a system with 
hard real-time constraints, the measure 
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of performance might be how well, if at 
all, the software tasks can follow some 
real-time scheduling discipline. How a 
task’s execution time impacts system 
performance in this case depends on 
such factors as the priority of the task, 
the periodicity of the task, and schedul- 
ing overheads. 

We must consider the second criteri- 
on, static properties of task behaviors, 
because some tasks are inherently 
much better suited for hardware imple- 
mentation than others. Tasks that exhib- 
it a high degree of data parallelism or 
that would benefit from a custom mem- 
ory architecture, for instance, would be 
better suited for custom hardware im- 
plementation than serial tasks or tasks 
that closely fit a general-purpose archi- 
tecture. To quantify these differences, 
we must identify properties of a task’s 
behavior that indicate how software and 
hardware implementations of the task 
will perform. The properties we have 
identified so far rely on unique capabili- 
ties of custom hardware. These proper- 
ties are the following: 

rn The need for arbitrary arithmetic op 
erations. Some operations are ex- 
pensive or clumsy in software 
because they are not common 
enough to be included in the func- 
tion of a general-purpose ALU (bit 
reversal, for example). In a hard- 

are possible in a software imple  
mentation, but at high cost. If the 
threads run on a single processor, 
the operating system must perform 
taskswitches, greatly impacting per- 
formance. Using multiple CPUs to 
implement concurrent software 
threads adds costs to the system 
even if the additional tasks are 
small. In hardware, however, a sep 
arate thread of control requires only 
an additional state machine, mak- 
ing fine-grained control parallelism 
much more practical. 
The need for customized memory 
architectures. In a software imple 
mentation, memory bandwidth is 
limited to that supported by the 
CPU and memory subsystem. A 

Figure 6. Hidden Markov model for 
phonemes. 

determine itssuitability for hardware imple 
mentation. The second shows how a sys- 
tem’s dynamic properties, as well as 
hardware costs, affect the hardware- 
software partitioning trade-off for a 
complete, though simple, system. 

hardware implementation can Example 1: speech phoneme rec- 
achieve high memory bandwidth at 
low cost by employing a memory 
architecture tailored to the applica- 
tion. Independent static RAMS, for 
instance, can be used to store a set 
of arrays to be accessed in parallel. 

Finally, we must consider the amount 
of custom hardware necessary to reduce 
a task’s execution time. For some tasks, 
custom hardware implementations 
might perform well but be impractical 
due to high gate counts or memory r e  
quirements. For others, there may be a 
range of achievable performance gains, 

ware implementation, where func- depending on how much of the custom 
tional units can be customized for 
the application, such operations 
can be included as primitive ALU 
functions. 

rn The ability to exploit a high degree 
of data parallelism. Although VLlW 
(very long instruction word) and 
superscalar techniques are being 
used to increase the data parallel- 
ism of general-purpose processors, 
arbitrarily high data parallelism can 
be achieved only in a hardware 
implementation. 
The ability to use multiple threads OF 
control. Multiple threads of control 

hardware is devoted to the task. Further- 
more, the hardware implementation cost 
for a given set of tasks may vary accord- 
ing to how the tasks are grouped into pre 
cesses. Along with deciding which set of 
tasks to implement in hardware, we must 
also decide how the limited amount of 
custom hardware should be allocated to 
the various hardware tasks. 

Examples 
Two examples illustrate the cosynthesis 

considerations discussed in the previous 
section. The fitst example demonstmtes the 
extent to which a tasks static properties 

ognition. The Sphinx speech recogni- 
tion system7 uses hidden Markov 
models (HMMs) to represent three lev- 
els of speech knowledge: phonemes, 
words, and sentences. An HMM is a set 
of transitions connecting a set of states. 
The set of states includes an initial and 
final state. There are two probability 
functions for each transition: The transi- 
tion probability function determines the 
probability that a particular transition 
will be taken. The outputprobability den- 
sity function determines each alphabetic 
output symbol’s conditional probability 
of being emitted, given that the transi- 
tion is taken. The system performs 
speech recognition by determining the 
HMM that best matches a given input at 
the phoneme, word, and phrase level. 
The HMMs for each phoneme share the 
same topology, shown in Figure 6. 

The Sphinx system’s front end con- 
verts a continuous speech signal into a 
stream of &bit vectors. The phoneme 
recognizer receives one of these vectors 
every 10 milliseconds and determines 
which of the 48 phonemes modeled is 
most likely to have emitted the past se- 
quence of input vectors. The recognizer 
makes this determination by using the 
Forward algorithm, which computes, for 
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tions. The probability of a state is the 
sum of the probabilities of the transitions 
incident upon it. The use of logarithmic 

Table 1. Dataflow graph (DFG) depth for 
the Sphinx phoneme recognizer. 

terconnection matches the tasks 
requirements. Therefore, the custom 
hardware implementation has much 

I Behavior DFG depth 

Serial operations and 
serial memory accesses 149 

Parallel operations and 
serial memory accesses 87 

Parallel operations and 
parallel memory accesses 22 

transitions incident upon it. Therefore, all 
the state computations can be concur- 
rent. Five types of operations are used in 
computing the HMM: additions, subtrac- 
tions, comparisons, overflow checks, and 
array accesses. In total, there are 149 op  
erations in one iteration of the phoneme 
recognition task. The critical path 
through the task in terms of data depen- 
dencies, however, is only 22 operations. 
This level of concurrency allows an aver- 
age of seven simultaneous operations. 
Through the exploitation of data parallel- 

ory parallelism is an important component 
in the total parallelism of the task. Acustom 
hardware implementation can allocate a 
dedicated storage unit for each array, al- 
lowing concurrent memoty accesses and 
avoiding the inefficiencies and overheads 
of the general-pulpose memoty hierarchy, 
such as cache misses, cache coldstart, and 
coherency overhead. 

The phoneme recognizer exhibits 
three of the four task properties described 
earlier: reliance on arbitray arithmetic 
operations, a high degree of data parallel- 

larger and using this difference to ad- 
dress a lookup table containing a cor- 
rection factor, which is added to the 
larger logarithm. This method avoids all 
intermediate multiplications and loga- 
rithm conversions. 

The evaluation of the probability at 
each state depends only on the probabil- 
ity of its ancestors during the last compu- 
tation and the probability functions of the 

advantage of a relatively low communi- 
cation bandwidth with other procedures 
in the speech recognition system. In 10 
milliseconds, the phoneme recognizer 
receives a new &bit vector and returns48 
updated phoneme probabilities, for a to 
tal communication rate of 4,900 bytes per 
second. The cost of a hardware imple 
mentation of this task is also reasonable; 
initial estimates indicate that the pho 
neme recognizer will fit into the three 
FPGAs (field-programmable gate arrays) 
present on the Rasa board described lat- 
er in this article. 

Example 2: data compression/en- 
cryption. This example shows how the 
system synthesis considerations out- 
lined earlier might affect hardware 
software partitioning for the simple 
system diagrammed in Figure 7. For two 
of the tasks, reading data from the disk 
and transmitting it over the local area 
network, there are few implementation 
alternatives. Implementing these tasks in 
hardware would be difficult to justify, 
since they require a high degree of inter- 
action with the operating system. The 

forming nonmemory operations in parallel 
reduces the tasks critical path from 149 to 
87 operations. Performing memory opem- 
tions in parallel further reduces the critical 
path to 22 operations, indicating that mem- 

software and may be implemented as ei- 
ther. Assuming that the system design 
goal is to maximize throughput using a 
limited amount of custom hardware, the 
cosynthesis problem is to determine 
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which subset of tasks should be imple- 
mented with custom hardware and 
which with software to achieve that 
goal. 

' 

Data 
compression 1,43 1 1 .OO 

Frame assembly 753 0.53 

First, consider how much a tasks ex- 
ecution time impacts system through- 
put. For the system shown in Figure 7, 
we determined the number of execu- 
tions per input byte for a sample data 
set. Table Zshows how often each task is 
performed for every byte of data read 
from the disk. The data compression 
task, for instance, is executed 10 times as 
frequently as the encryption task. 

Table 3 addresses the second consid- 
eration, how the execution time of a 
hardware implementation compares to 
that of a software implementation. The 
table lists the number of clock cycles per 
task invocation for software and hard- 
ware implementations (assuming asim- 
ple model of software execution in 
which each instruction takes one cy- 
cle). These results show that custom 
hardware can be up to six times as fast 
as software, depending on the task. 

By combining the information from 
Table 2 and Table 3, we calculate the 
normalized execution time (cycles of 
execution per byte of input) of each task 
for hardware and software implementa- 
tions gable 4). To group the tasks into 
two independent processes, we should 
partition them so that the sums of the 
normalized execution times of the tasks 
are roughly equal for both processes. 

Finally, we must consider the amount 
of hardware required to achieve the de- 
sired performance gain. The execution 
time listed for the encryption task in Ta- 
ble 3 represents only one possible hard- 
ware implementation, one using eight 
independent memories. Table 5 shows 
how the number of independent mem- 
ories in a hardware implementation of 
the encryption task affects execution 
time. By incorporating this information 
into an analysis like that shown in Table 
4, we can make a decision about the 
necessary amount of hardware resourc- 
es, as well as hardwaresoftware process 
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Figure 7. Data compression/encryption system 

partitioning. 
On the basis of this sort of analysis, we 

might decide to implement the com- 
pression task with a single software p r o  
cess and to combine the frame 
assembly and encryption tasks into a 
single hardware process. Since the com- 
pression process is the throughput bot- 
tleneck in this case, a single-memory 
implementation of the encryption task 

Table 3. Task execution time for sohare and hardware implementations. 

i 
~ Task (cycles) (cycles) Ratio 

~~ ~- ~~ -~ 

Software Hardware 

Data compression 39 
i Frame assembly 
I Encryption 

29 
576 
~- 

21.5 
7.2 

94.0 
~~ 

1.81 1 
6.15 

Table 4. Normalized execution time for sohare and hardware implementations, 

~~- - ~~ 

Software Hardware I ~ ~ ~ _ _ _ _ _ ~  

Task (cycles per input byte) (cycles per input byte) 

Data compression 39.0 21.5 
Frame assembly 15.4 3.8 

57.6 9.4 Encryption 
- ~~ 

Table 5. Execution time for hardware implementations of encryption task. 
I .  

, , 
Number of Task runtime Normalized execution time 

1 independent memories (cycles) (cycles per input byte) 1 

8 
4 
2 
1 

94 
110 
142 
206 

9.4 
1 1 .o 
14.2 
20.6 I 
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Figure 8. The Rasa Board. 

consuming implemented as software 
but simple and efficient implemented in 

onto a fixed interconnection scheme. 
This fact simplifies partitioning and im- 
proves the results of FPGA placement, 
because I/O pins can be placed accord- 
ing to internal placement considerations 
rather than external interconnection 
requirements. 

To create hardware designs for this 
board from a behavioral specification, 
we have coupled a behavioral synthesis 
tool, the System Architect’s Workbench, 
to a set of logic synthesis and partition- 
ing tools. Figure 9 shows the design flow 
The system output is a set of FPGA spec- 
ifications and a netlist for the FPCB. Us- 
ing Xilinx and Aptix tools, we convert 
these specifications to the configuration 
bit streams for the FPGAs and the FPCB. 

hardware, where arbitrary sets of opera- 
~ tions can be incorporated in a function- 

a1 unit The encryption task can also 

Figure 9. Hardware compilation design 
flow for the Rasa Board. 

would suffice. The result would be a sys- 
tem with two processes: a software pro- 
cess with a normalized cycle time of 39, 
and a hardware process with a normal- 
ized cycle time of 3.8 for frame assembly 
and 20.6 for encryption, totaling 24.4. 

The encryption task of this example is 

benefit from the use of multiple, inde- 
pendent memories to store arrays. Such 
considerations, along with the tasks role 
in the system, help us draw process 
boundaries and select a suitable hard- 
waresoftware partition. 

A protoiype system 
To test and validate our codesign 

methodology and tools, we have de- 
signed a prototype hardware-software 
system. It consists of an Intel-486-based 
PC and the Rasa Board (from tabula 
rasa, meaning blank tablet, referring to 
the human mind in its initial state, be- 
fore receiving impressions from the ex- 
ternal world). The Rasa Board, shown in 
Figure 8, is a field-programmable plat- 
form for applicationspecific hardware. 
Like the Splash board8 and the Any- 
Board,9 the Rasa Board consists of Xilinx 
FPGAs, memories, and a microcomput- 
er interface. Unlike the other boards, the 
Rasa Board’s components interconnect 
via two Aptix field-programmable inter- 
connect chips (FPICs) on a field- 
programmable circuit board (FPCB). 
Because the interconnection network is 

The Rasa Board is presently under con- 
struction in our research group. When 
the board is complete, we will use it to 
implement hardware processes in the 
prototype hardwaresoftware system. On 
the basis of our initial estimates, we b e  
lieve the Rasa Board has sufficient hard- 
ware resources to build implementations 
of the phoneme recognizer and the en- 
cryption tasks that will outperform soft- 
ware implementations on the Intel 486. 

THE CODESIGN METHODOLOGY present- 
ed here defines a mixed hardware- 
software system model that facilitates 
cosimulation and cosynthesis. The ab- 
stract level of the communicating se- 
quential process model allows the 
designer and the design tools to reason 
about system functions at a level appro- 
priate for codesign. Partitioning and 
transformation merge and/or split pro- 
cesses to meet performance require- 
ments or to fit physical constraints. 
Further, the methodology ties into the 
detailed hardware design process 
through behavioral synthesis, allowing 
functions originally conceived as soft- 

much better suited to hardware than to 1 programmable, the task of partitioning 
software. Further examination of the the design into separate physical com- 
tasks behavior reveals the main reason: ponents is not further complicated by a 
The task uses operations that are time- requirement to map the interchip nets 

ware to be implemented as hardware 
when performance constraints dictate. 

The design examples we presented il- 
lustrate how certaincharacteristicsofsy5 

14 IEEE DESIGN & TEST OF COMPUTERS 



tem behavior and constraints suggest 
hardware or software implementation. 
As the development of the partitioning 
tool proceeds, these characteristics will 
play an important role in the decision- 
making process. Finally, the Rasa Board 
project will enable us to measure and 
characterize the effects of the cosynthesis 
tools in actual implementations. 
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