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Gordon Bell Prize 

Jim Browne, Jack Dongarfa, Alan Karp, Ken Kennedy, and Dave Kuck 

This year's winners 1 
tacklecia tolrgh 

problem - handling ~ 

static structures - 
yet were able 
to achieve an 

impressive speedup. 

h e  Gordon Bell Prim 1-ecognires 
outstaiding achievenicnt i n  the a p  T plication of supercomputers to sci- 

eiitific and engineering problems. In 
1988, two prizes were offered in three cat- 
egories: raw performance, priceipcrfbr- 
niance, arid compiler pruallelirations. 

Raw per-formancc incans that the proh 
lem could not be solved in less tinic on m y  
other computer usiitg any other method. 

The pricc/perforrriance category rec- 
ogn i / e s  the growing use of mini- 
su pe rc o in p 11 te r s an d. pa r al 1 el systems 
made up of hundreds or thousands of in- 
expensive pi-ocessors. The winning en- 
trant is expected to demonstrate that no 
one could have solved the same problem 
at less cost, proLidcd the computer meets 
a in in imuin pel-for niaiice standard. 

The compiler paralleli/ation categon is 
intended to encourage the developnlcnt 
of compilers smart enough to makc 
parallelization as easy (relatively speak- 
ing) as vectoriration. I n  all cases, the cn- 
trants had to pi-ove to the.judgcs that they 
indeed had the best rntrv. 

Thrce of this !,ear's four entries wet-e 
deemed to have met the rules for this 
year's pri7c. By coincidence, there was ex- 
actly one entry in each category. As h a  
beconie custoinruywith the Bell Prim, the 
judges do not let the rules staid in the way 
of giving prizes. Therefore, one winner 
an d two h o n o rab  I e ni c t i  t i  o n F l ye  rc 
awarded. 

Gordon Bell, vice president of engi- 
neering at Ardent Computer in Sunny- 
vale, Calif., offered in 1986 to sponsor two 



$l,oOO awards each year for 10 years to 
promote practical parallel-processing re- 
search. This marks the second annual 
award of the prize, which had been called 
the Gordon Bell Award last year. I E W  Soft- 
ware administered the awards and judg- 
ing. The winners were announced Feb. 28 
at the Computer Society’s Compcon con- 
ference in San Francisco. 

This year’s winner of the Bell Prize, 
from the raw-performance category, is a 
team made up of Phuong Vu of Cray Re- 
search, Horst Simon of the National Aero- 
nautics and Space Administration’s b e s  
Research Center, Cleve Ashcraft of Yale 
University, Roger Grimes and John Lewis 
of Boeing Computer Services, and Barry 
Peyton of Oak Ridge National Laboratory. 
They presented the solution of a static- 
structures problem that ran atjust over 1 
Gflop on an eight-processor Cray Y-MP. 

The judges felt that both remaining en- 
tries represented important work but 
failed to meet the requirements for a 
prize. 

The price/performance entry came 
from Richard Pelz, who used a 1,024-pre 
cessor N-Cube multicomputer to solve a 
fluid-flow problem using a spectral 
method with a speedup of about 800. Al- 
though this result was better than many 
would have predicted for a spectral meth- 
od, it did not beat the performance of last 
year’s winner, whose speedups ranged 
from 400 to more than 1 ,OOO when scaled 
(see “Cirst Gordon Bell Awards Winners 
Achieve Speedup of 400,” Soft News, I H 3  
Software, May 1988, pp. 108-1 12). 

Marina Chen, Young4 Choo, Jungke Li, 
and Janet Wu of Yale University and Eric 
DeBenedictus of Ansoft Corp. submitted 
an entry in which a Crystal Compiler auto- 
matically parallelized a financial model- 
ing application. This application sped up 
by about 350 times on a 1,024-processor 
N-Cube and more than 50 times on a 64- 
processor Intel iPSG2. While this parallel- 
ism was detected automatically by the 

compiler, the judges felt that the applica- 
tion was too nearly parallel in nature, mak- 
ing a high speedup all but certain. 

Firstplace 
The winning entry ran on an eight-pro- 

cessor Cray Y-MP with a 6.49 nanosecond 
cycle time. The reported speed of 1 Gflop 
is almost 40 percent of the machine’s the- 
oretical peak. In fact, if you consider only 
the computational part of the code, the 
winners achieved almost 65 percent of the 
peak speed. This high a ratio is not easy to 
achieve on a problem as hard as the one 
submitted. 

7he winning team’s 
runtime was reduced 

from almost 15 minutes 
to less than 30 seconds, 
turnirlga batch job into 

an interactive one. 

The winning team ran a static finite-ele- 
ment analysis. Such analysis has many im- 
portant applications. For example, a 
group at NASA Langley Research Center 
has been using a commercial finite-le- 
ment package to model the space shuttle 
on a Cray 2. The winning team was able to 
solve the same problem nine times faster 
on the Cray 2, 20 times faster on a single 
processor of aY-MP, and 32 times faster on 
an eight-processor Y-MP. The runtime was 
reduced from almost 15 minutes to less 
than 30 seconds, turning a batch job into 
an interactive one.  The judges com- 
mended the winning team for demon- 
strating the gains to be made from both 
hardware and algorithmic improvements. 

Finite-element methods work by divid- 

ing up the item being modeled into small 
pieces-line segments in one dimension, 
triangles or quadrilaterals in two dimen- 
sions, and cylinders or tetrahedra in three 
dimensions. The solution in each ele- 
ment is approximated bya lowarder poly- 
nomial; for example, a+6x+cy in two di- 
mensions. The unknown coefficients are 
found by forcing the solution to be con- 
tinuous where the elements intersect. 

In one dimension, the elements are line 
segments, and the simplest representa- 
tion for the solution is a set of piecewise 
linear functions. If you want to find the 
positions of masses connected by springs 
as illustrated in Figure 1, you equate the 
forces from both sides of the mass. An ex- 
ample is \(%-%) = k4(x4-%), where the 
k‘s are the spring constants and the x’s are 
the unknown positions of the masses. You 
get one such equation for each interval. 
There will be two fewer equations than 
unknowns, but you have two boundary 
conditions that you are free to specify. Be- 
cause each equation contains three un- 
knowns, you must solve a system of linear 
equations Ax = 6, which in this case is 
tridiagonal. 

You can do the same thing in two di- 
mensions, but the resulting linear system 
will be more complicated. As Figure 2 
shows, the equation giving the forces on 
mass Xdepends on the positions of A, B, 
C, and L). If you number the masses by 
rows, the matrix will have the structure 
shown in Figure 3. The nonzero elements 
are represented by an x, and zero entries 
are not shown. This banded matrix con- 
sists of tridiagonal matrixes and bands five 
elements off the diagonal. 

Although iterative methods are some- 
times used to solve such problems, finite- 
element codes normally use a direct 
method: I,U decomposition using Gauss 
elimination. If you solve this system of 
equations with Gauss elimination, most of 
the zeroes between the bandswill become 
nonzero and the work you must do will be 
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Figure 1. Aset of piecewise linear functions for masses connected by springs shows the 
simplest representation for the solution to the Bell Prize winners’ problem. 
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Figure 3. The matrix for Figure 2 when the masses are numbered by rows. 
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I Figure 4. The matrix for Figure 2 when the masses are numbered by columns 
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Figure 2. The equation giving the forces 
on mass X depends on the positions of A, 
B, C, and D. 

pi-oportiorial t o  r i m 2 ,  which in this c;~se is 
15*5’. If you  number h\ colunins, you get 
the matrix in Figure 3, which h a s  a 
batidwidth of o n l y  three, so the work is 
only 15*3? - about one third as much 
work. Cleai-ly, numbering the element.; 
pl-operly can make ;I big ciiffcrcnce in the 
algori t h In’s performance. 

Real structures are not so siniple. For 
example, the coefficient matrix 101- a t\vo- 
diniensional model of the bridge in Fig- 
ure 5 hill not have the simple structure o f  
the prc\ious examples, but i t  \vi11 still have 
mostly L C I - O ~ S .  

While  the nuinbering scheme caii 
greatly affect the aniouiit of‘ calculation 
that needs t o  1x7 done, there is another, 
often conflicting constraint: the coin- 
puter’s architecture. The Cr-ay Y-MP inins 
about 25 times fa te r  in vector mode than 
in scalar mode. There is often a trade-off 
betiveen operation counts and wctoiim 
tion. How should the elements be nwn- 
bered to optimize the solution? 

One approach is to number the ele- 
ments to iiiove as many reroes as possihle 
outside the band. This method is called 
skyline ordering because the upper part 
o f  the matrix looks like a bigcity skyline, 
as Figure 6 shows. This method’s vector- 
ization is good because it has you operate 
o n  all elements from the furthest out in 
each row or column to the diagonal. LTn- 
fortunately, you do more arithmetic than 
needed because there are many Lerom in- 
side the skyline and they become nonxro  
d~ i r i~ ig  the reduction. Thus, skyline inctli- 
ods often achieve very high megaflop 
i-ates but run slowe~- than the alternative 
sparse-solver routines. 

Another approach is to number h e  ele- 
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ments to minimize the amount of fill-in 
(the number of zeroes that become non- 
zero during the Gauss elimination). The 
number of possible orderings is enor- 
mous, so as a practical matter you can 
never find the minimum fill-in ordering. 
Instead, you do the bestjob you can using 
heuristics. The method chosen by the win- 
ning team is a minimum-degree ordering. 
As the reduction proceeds, you choose 
the next column to eliminate to be the 
one that will produce the least fill-in. 

If you number the nodes according to 
this scheme, the matrix does not have any 
apparent structure; nonzeroes appear to 
be sprinkled around randomly. If you are 
to use the sparsity in the matrix, you must 
treat each individual nonzero indepen- 
dently. For example, if you want to elimi- 
nate element (ZJ), you form a linear com- 
bination of rows i and j .  If these rows are 
mainly zeroes, you should do the arithme- 
tic on only the nonzero elements. You 
keep track of these nonzeroes using an 
index vector for each row. Thus, for dense 
matrixes, this linear combination might 
be coded 

D O l O K = l , M  
10 A(I,K) =A(I,K) t X*AU,K) 

while for sparse matrixes you could write 

DO 20 K = 1 ,  M(I) 
20 A(I,INDX(K)) =A(I,INDX(K)) i 

X*AU,INDX(K)) 

The array In& contains an entry for 
each index that is nonzero in either row I 
or rowJ and M(I) is the number of non- 
zeroes in row I after the linear combina- 
tion has been formed. 

While this approach reduces the num- 
ber of arithmetic operations, it can be ex- 
tremely difficult to vectorize on comput- 
ers without indirect addressing (gather/ 
scatter) instructions. Even if gather/scat- 
ter is available, performance can be dra- 
matically lower than using simple index- 
ing. On a Cray X-MP, loop 10 (which 
addresses data contiguously) runs at al- 
most 200 Mflops, while loop 20 (which 
uses indirect addressing) runs at less than 

The method used by the winning team 
uses an idea called supernodes. In the 
bridge in Figure 5,  the left vertical support 
below the bridge is connected to the rest 

80 Mflops. 

~~~~~ ~ ~~~~~~~~~~ 

Figure 5. Two-dimensional model of a bridge. Such real-world models are more difficult 
to apply finite-element modeling techniques to. 
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F i r e  6. Vectorization of the skyline-ordering method, which seeks to number the ele- 
ments to move as many zeroes as possible outside the band. 

of the structure at a single point. Thus, 
you can number the elements to reflect 
the fact that you can almost solve for this 
support independently of the rest of the 
structure and plug it  in later. In other 
words, you take many finite elements 
(nodes) and group them into a super- 
node. 

This numbering may not produce as 
narrow a bandwidth as the optimal 
scheme. To keep the number of opera- 
tions small, you should number the nodes 
according to this heuristic. Fortunately, as 
the Gauss elimination proceeds, the loca- 
tions of the nonzero elements in all the 
columns corresponding to a supernode 
will be similar. This behavior lets you use 
one gather operation, operate on many 

columns of the matrix, and then do one 
scatter. Thus, almost all the work is done 
in a mode optimal for the hardware. 

The good vectorization achieved by the 
winning team is demonstrated by the high 
uniprocessor computation rate of more 
than 250 Mflops. The rate counting only 
the computational kernel was even 
higher: 280 Mflops. The team imple- 
mented parallelism with autotasking, a 
compiler option that automatically 
parallelizes loops in the program. The re- 
ported speed of 1 Gflop with eight proces 
sors indicates that about 85 percent of the 
time was spent doing parallel work. If you 
only look at the computational kernel, the 
rate is even higher - more than 1.5 
Gflops - and the code is almost 95-per- 
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cent parallel. 
Greatly speeding up programs does cre- 

ate a problem: Parts that used to be such a 
small part of the whole that they weren’t 
worth optimizing now take a significant 
amount of time. On the space-shuttle 
model mentioned earlier, the decomposi- 
tion step took most of the 800 seconds on 
the original Cray 2 version but only eight 
out of 26 seconds on the new parallel ver- 
sion. 

The winning team got bitten by this bug 
on its original submission. Although the 
decomposition ran at 1.5 Gflops, the over- 
all performance of the code was less than 
450 Mflops. The input phase that the team 
had never bothered to optimize was tak- 
ing 3 1 seconds out of a total run of 73 sec- 
onds. The judges felt that the only num- 
ber of interest was the speed of the code as 
a whole and that 450 M o p s  did not beat 
last year’s winner. Once we made the win- 

dium in which the flow is periodic in all 
three dimensions. This infinite fluid can 
be modeled as a cube with periodic 
boundary conditions (where the values at 
the left and right boundaries are forced to 
be the same, and similarly for the other 
edges). If the flow were in two dimensions, 
you could picture it  taking place on the 
surface of a torus. 

This model can be used to study the e v e  
lution of turbulence. Take a periodic- 
boundary cube, stir things up with an egg 
beater, and then watch the turbulent ed- 
dies decay. From this simulation, you 
learn how energy is transported from 
large-scale eddies to small-scale eddies, 
how small eddies return energy to larger 
eddies, and what the additional energy 
losses caused by turbulence are - the so- 
called eddy viscosity. 

These results are used in practical appli- 

eight quadrants of the periodic-boundary 
cube should behave identically over time. 
If the numerical method is accurate, you 
can use the deviation from symmetry as a 
measure of the accuracy. Of course, you 
can choose the numerical method to en- 
force the symmetries, but that would 
defeat the use of this problem to test the 
numerical method. 

In the ABC initial conditions, the flow is 
such that the nonlinear term in the Nav- 
ier-Stokes equations vanishes. If an 
amount of energy is added through the 
forcing term to exactly balance the energy 
lost to viscosity, the solution with ABC ini- 
tial conditions should be a steady flow 
with one wave of fixed size. Any numerical 
errors will show up as other waves in the 
solution. You can use the amplitude of 
these aliased solutions to check the nu- 
merical method’s accuracy. 

Because the methods used by last year’s 
ning team aware of our concern, it opti- 
mized the input and reduced the runtime 

winners do  not work well for these p rob  
lems, Pelz tried using apseudospectral im- 

to only two seconds. plicit method. Finitedifference methods 

pe/z - k / d a  HUjMow 
problem similar to - 
one that lastyear’s 

approximate the derivatives by differ- 
ences between closely spaced grid points; 
finite elements approximate the solution 
on each small element bv a known func- 

Honorable mentions 
The judges awarded two honorable 

mentions: one to Rutgers Universitv’s Pelz ” 
and one to the Yale/Ansoft team of Chen, 
Choo, I i ,  Wu, and DeBenedictus. 

winners addressed. tion with unknown coefficients. Spectral 
methods try to approximate the solution he U& an imp/ich 

m e w  that can be U& 
other mdws hil, 

everywhere by a single known function 
with unknown coefficients. For example, Pelz. Pelz parallelized a fluid-flow appli- 

cation on a 1,024-processor N-Cube you could use 
hypercube parallel processor, which is the 
same problem last year’s winners from 
Sandia National Laboratories submitted 
and for which they achieved near-perfect 
speedup. But while the Sandia team used 
an explicit method, Pelz achieved his 
speedup with an implicit one. 

The Sandia team used explicit finite dif- 
ferences, which consist of dividing the d e  
main up into small pieces, approximating 
the space derivatives by differences, and 
computing the unknowns at the new time 
step using only values at the old time step. 
Although such explicit methods work for 
some problems, the step size needed to 
achieve a good level of accuracy can be so 
short that i t  makes them impractical. Pelz 
used an implicit spectral method that can 
be used when other methods fail. The 
question his research asked was “How well 
do spectral methods parallelize?” 

The application models an infinite me- 

cations. Someone simulating an airplane 
in flight cannot have a grid fine enough to 
resolve all the turbulence. To accurately 
model such things as lift and drag, the tur- 
bulence occurring at scales smaller than 
the grid is parameterized using data from 
calculations like those described above. 

Once you have chosen the model equa- 
tions, the incompressible Navier-Stokes 
equation, and the boundary conditions 
-periodic in three dimensions- the en- 
tire behavior of the model is determined 
by the initial conditions. Pelz chose to use 
the Taylor-Green vortex and the Arnold, 
Beltrami, Childress initial conditions to 
test his code. 

The Taylor-Green vortex is useful be- 
cause it maintains certain symmetry p rop  
erties over time. For example, each of the 

N-1 k 
f(x,t) = Sum a (t) x 

k=O k 

for a onedimensional problem. If you 
plug this approximation into your differ- 
ential equation, you can do all the space 
derivatives immediately, but now you have 
only one equation for N unknowns: the 
a’s. 

You can generate more equations by 
multiplying your differential equation, 
with your representation substituted for 
the unknowns, by powers of x and inte- 
grating over the domain. Each moment of 
the equation gives an independent equa- 
tion, so taking N moments lets you find 
the coefficients. But there are two p rob  
lems with using powers of x as your a p  
proximating function. First, the system of 
linear equations is numerically unstable; 
the system is illconditioned. Second, the 
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coefficient matrix is dense, which means 
the solution takes a time proportional to 
N’. 

One class of functions avoids both these 
problems: the orthogonal functions. The 
most familiar set are sine and cosine. For 
example, if you integrate sin(ax) times 
sin(6x) from --x to 71, the result will be 
identically zero unless a equals 6. There- 
fore, if you use sin(kx) to represent the 
solution, the coefficient matrix will be di- 
agonal when you take the moments of the 
equation by multiplying by sin ( m x )  . 

There is another advantage to using 
sines and cosines to represent the solu- 
tion. Some functions, like the forcing 
terms, must be multiplied by the appro- 
priate function and integrated over the 
domain. Because it is unlikely that these 
integrals can be done analytically, you 
must devise a numerical quadrature 
scheme for these terms. However, if you 
use sines and cosines, these terms are just 
the Fourier transforms of the functions 
and you can use the efficient fast-Fourier- 
transform algorithm to evaluate them. 
This is the approach that Pelz took. 

The model problems assume a noncom- 
pressible fluid. The only unknown is the 
velocity vector U that has three compo- 
nents for the threedimensional problems 
solved. The Fourier transform of U is also a 
three-element vector U. The velocity vec- 
tor U is in physical space and the three-ele- 
ment vector U is in spectral space. (The 
word “spectral” comes from the use of 
Fourier transforms to convert a time series 
into a frequency spectrum.) 

Some terms, such as the space deriva- 
tives, are easily computed in spectral 
space. In fact, because you have the deriv- 
ative as an analytic function, you can eval- 
uate it at each point independently of all 
the other functions. You say that the deriv- 
ative is a point operation in spectral space. 
Other terms, such as the computation of 
rotation, are the product of two functions 
-they are point operations - in physical 
space. Thus, all operations can be made 
local in either physical or spectral space. 
The advantage of point operations is that 
you can do them in parallel with no com- 
munications overhead; the speedup is 
perfectly linear to the number of proces 

Of course, this simplicity is not achieved 
SOTS. 

without some cost: You must do multi- 
dimensional Fourier transforms. In three 
dimensions, you can compute a variable’s 
Fourier transform by computing the fast 
Fourier transform first in the x direction, 
then in the y direction, and finally in the z 
direction. Although the spectral method 
used involves continuous functions, you 
must discretize it to use the fast Fourier 
transform. The trick is to divide the do- 
main so each processor of the hypercube 
does as much computing and as little com- 
municating as possible. 

Consider first an N x  N x  N grid and a 
machine with N processors. If you divide 
the grid so that each processor has exactly 
one N x N layer of the threedimensional 
space, you can do the x and y fast Fourier 
transforms completely independently 
with no communication. Only when you 
go to do the fast Fourier transform in the z 

two dimensions. He could do only the x 
transforms with perfect speedup; the y 
and z transforms both had to be done with 
the distributed fast Fourier transform. 
Thus, the speedups he reported would 
have been even higher had he been able 
to hold an entire plane in the memory of 
each processor. 

The speedup of his largest problem on 
the NCube is an impressive 800, which 
translates to about 65 Mflops. Pelz also 
achieved a very good price/performance 
ratio. The NGube/ 10 he used costs about 
$1 million. His application ran in 25 sec- 
onds of elapsed time compared to 16 sec- 
onds of CPU time on a Cray X-MP and 25 
seconds of CPU time on a Cyber 205. Each 
of these processors costs at least $5 mil- 
lion. And these times underestimate the 
relative performance of Pelz’s code, since 
both the Cray and Cyber codes are highly 
optimized to use special hardware fea- 
tures of the machines while the NCube 
code is pure Fortran. In addition, the 
elapsed times on the Cray and Cyber 
would be substantially greater than the 
CPU times even if there were no other 

Pelzadrieveda very 

ratio. W l e  not quite as gwHa/~*ma- users on them. 

fast as a cmy XAW or 
CYlSer2OS. the 

Yale/Ansoft team. The  Yale/Ansoft 
team parallelized a financial application 

Mub;lohe ,;- 
only a fifth a 

.. 

for two distributed-memory machines, a 
5 12-processor N-Cube and a Wprocessor 
iPSG2. Each machine is made up of inde- w much. 

direction do  the processors need to share 
data. 

There are two approaches you can take. 
First, you can transpose the data to bring 
all the z values for a given x and y into a 
single processor. This step is pure commu- 
nication, but it lets the fast Fourier trans 
form on z proceed at full speed. Second, 
you can compute the fast Fourier trans 
form, exchanging data among processors 
as needed. This approach was the one that 
Pelz submitted. 

There is a further complication that 
Pelz had to deal with: The largest array 
that could fit in the memory of one p r e  
cessor of his N-Cube is 64 x 64, while the 
1,024-processor machine can hold a 128 x 
128 x 128 problem. To solve this large a 
problem, Pelz had to distribute the data in 

pendent computers interconnected in a 
hypercube. They differ primarily in the 
ratio of computation speed to communi- 
cation speed and available memory. 

The  application parallelized helps 
banks determine the price to charge for 
packages of mortgages they sell on the sec- 
ondary market. When you buy a house, 
you normally get a loan from a bank. 
These days, the banks do not hold mort- 
gages for the full term. Instead, they bun- 
dle them into packages and sell them to 
investors. The problem run by the Yale/ 
Ansoft team tries to determine a fair price 
for such a package of mortgages. 

Consider a mortgage with a face value of 
$lOO,OOO amortized over 20 years at an in- 
terest rate of 12 percent. The first month’s 
payment will be $1,OOO for interest plus 
about $100 to reduce the principal. The 
next month, the $1,100 payment will be 
divided up into $999 for interest and $101 
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for amortization. It is a simple matter to 
determine the income generated by such 
a mortgage and a fair price on the second- 
ary market if the mortgage is not paid off 
early. Unfortunately for the banks (or for- 
tunately for the mathematicians they 
hire), most mortgages are paid off early. 
Because the early payments are nearly all 
interest and the late payments are nearly 
all principal, the fair price for the mort- 
gage will depend on when it is paid off. 

Clearly, no one can accurately predict at 
the time a mortgage isgranted how soon it 
will be paid off. However, if you lump a 
thousand such mortgages together, you 
should be able to do a pretty good job of 
guessing the average behavior of the 
mortgage holders. There is a complica- 
tion, though: If interest rates plunge from 
12 percent to 6 percent, most of the mort- 
gage holders will refinance. In other 
words, outside economic conditions in 
the future can affect the fair price of the 
mortgage today. 

The situation in the real world is worse. 
Many mortgages issued these days do not 
have a fixed interest rate; the rate varies 
with some index, often the cost of US 
Treasury notes. If interest rates go up, the 
mortgage payments increase, and the 
value of the mortgage to its holder in- 
creases. If rates fall, the mortgage is worth 
less. 

To take all these factors into account, 
financial experts simulate the perfor- 
mance of many mortgages. Some factors, 
such as rates of household formation and 
deaths, can be reliably forecast using the 
historical record. Other factors, such as 
the rate of job transfers, cannot because 
they depend heavily on economic condi- 
tions. Even worse is the job of predicting 
interest rates 20 or more years into the fu- 
ture. While no one could have predicted 
the Arab oil embargoes of the 1970s or the 
stock-market crash of October 1987, each 
expert believes that he knows how interest 
rates will vary. 

The fair price for a package of mort- 
gages isdetermined by simulating the pay- 
ments on the mortgages for a given inter- 
est-rate scenario using a Monte Carlo 
method. Monte Carlo methods use ran- 
dom numbers to simulate the range of be- 
haviors expected. For example, if interest 
rates remain constant, some mortgages 

will be paid off each month. Clearly, rela- 
tively few people pay off the mortgage in 
its first month, but a big winner in the lot- 
tery might. If, on the other hand, interest 
rates drop precipitously, many people will 
refinance in a short period of time. The 
distribution of random numbers is c h e  
sen to reflect this kind of behavior. The 
average of many random runs, called 
trials, returns the fair price for a given in- 
terest rate scenario. 

This independence of runs is the reason 
the Yale/Ansoft entry was disqualified 
from winning a prize. The judges consider 
a job to be embarrassingly parallel if it 
could be run on several independent 
computers that communicate only at the 
very start and very end of the job. The 
mortgage-pricing algorithm submitted 
can be written to be embarrassingly paral- 
lel. 

77m Yale/AnSaft team’s 
entry was disqualified 
fora firstprizebecause 
itsproblem wasnearly 

emhrassiwy parallel. 
But the Crystal compiler 
usedgoes a long way in 

proviwthe utility of 
functioral IangUiqges. 

But there are two reasons the Yale/An- 
soft team won an honorable mention de- 
spite the obvious parallelism. First, they 
simply wrote down the equations in their 
Crystal language and let the compiler find 
the parallelism. Second, they wrote their 
code to collect the results of each run in a 
single, global array. Each processor ran 
many trials. Instead of collecting the statis 
tics in each processor and sending the re- 
sults at the end - an approach that would 
have been disqualified as embarrassingly 
parallel - the Yale/Ansoft code sent the 
results to one node for averaging at the 
end of each trial. 

The Yale/Ansoft entry presented the 
judges with another problem. When this 
year’s rules were published, we were look- 

ing for compilers working on conven- 
tional languages. We were not prepared to 
deal with an entirely new language. The 
Yale/Ansoft team coded the application 
in the functional language Crystal. It is 
clear that a Fortran or C programdoes not 
explicitly describe the parallelism inher- 
ent in the application. But what about 
Crystal? Has the programmer already 
done the work of finding the parallelism 
simply by coding in Crystal? 

Functional languages are very different 
from conventional languages. In a con- 
ventional language, you describe both 
what you want to do and how you are 
going to do it, including the order in 
which things will be done. For example, if 
you want to find out whether an integer, 
say 1,001, is a prime using C, you could 
code p = isprime( 1001) with 

isprirne (n)  

{ 
int n; 

f ( !n%2 ) return 0; 
for ( k = 3; k <= sqrt(n)tl; k +=2 ) 

return 1; 
if ( !n%k ) return 0 

I 

In a functional language, everything is 
represented as a function. In this exam- 
ple, you would say in a functional lan- 
guage 

p = isprirne ( 1001) 

isprirne(n) = andof(rern(n)) 
where 

where 

rern(i) =Oifn%index(sqrt(n)+I) = O  
I otherwise 

where 
index(n) = 2 , 3  ... nby2 

The Andof function ands all instances of 
its arguments while Rem returns a 0 or 1 
for all instances of its arguments. It  isn’t 
until you get down to index that you find 
out what the instances of the arguments 
are: 2 and all the odd integers up to n. 

This simple example shows two signifi- 
cant differences between functional and 
conventional languages. First, you have 
not really said in what order to compute 
the entries in the functions, only that you 
want them computed. This indepen- 
dence of sequence is one reason func- 
tional languages are attractive for parallel 
processing. It  should be easy for a com- 
piler to see that Andof needs the results of 
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Rem, which needs the results of Index. In 
a more complicated example, you could 
have several different functions being 
evaluated at the same time. Because the 
code submitted by the Yale/Ansoft team 
simply contained the equations to be 
solved and said nothing about parallelism, 
the judges decided that the compiler, not 
the programmer, had found the parallel- 
ism. 

The second major difference between 
functional and conventional languages is 
illustrated by the variable kin the C code. 
Its value changes on each pass through 
the loop. When analyzing for potential 
parallelism, this is called the multiple- 
assignment problem; the same storage 
location is used to hold different numbers 
at different times. Although efficient for 
storage, multiple assignment makes it 
hard to determine if one value depends 
on another. In the simple example case 
above, you know that you can't compute 
the third valueassigned to kuntil you have 
computed the second. 

Functional languages explicitly forbid 
multiple assignment. While this rule com- 
pletely eliminates the necessity of doing 
dependence analysis, it comes at a high 
price: If you can never reuse a storage l e  
cation, you must make a copy of avariable 
each time you change a value. While this 
copying is a nuisance for scalar variables, it 
is a very severe problem for arrays. 

Look at the simple Fortran example of 
multiplying a matrix times a vector: 

DO 10 I = 1, N 
X(1) =o.o 
DO l O J =  l , M  

10 X(1) = X ( I )  +A(I,J)*B(J) 

If you need to do something like this in a 
functional language, you have two 
choices. You can make a copy of the array 
Xeach time you update one of its ele- 
ments. In this case, you will end up with 
MN+N copies of the entire array, all but 
one of which you will never use. Or you 
can copy only the element being changed, 
but then you must maintain a data struc- 

ture pointing to the last instance of each 
element of X. In either case, the perfor- 
mance of the code will be substantially re- 
duced. 

Crystal is really a preprocessor that gen- 
erates a C program as its output. The orig- 
inal submission by the Yale/Ansoft team 
simply measured the speedup of the Cry* 
tal-generated C program as the number of 
processors varied. What if the functional 
code was a thousand times slower than a 
conventional version? The judges asked 
for a comparison with a sequential version 
that happened to exist in Fortran. The 
Fortran code ran 2.5 times faster than the 
Crystal code on one node. Of this 2.5- 
times difference in speed, 1.4 times was 
due to the fact that the Yale/Ansoft team's 
C compiler is not optimized as well as its 
Fortran compiler. But even if you reduce 
the reported speedups by 1.8 (the 2.5 For- 
tran factor divided by the 1.4 C factor), i t  is 
clear that the Crystal compiler has gone a 
long way toward proving the practicality of 
functional languages. .:. 

When it comes to choosing compilers, 
Metaware is the right choice! 

Developing the next generation of software products is serious 
business. You need the best tools to produce the best code. You 
need Metaware. 

Superior Compilers 
A compiler that handles large programs with ease, while pro- 

ducing the expected results, is the key to developing the highest 
quality applications. Many of Metaware's customers say that 
High C TM and Professional Pascal TM are the highest quality 
compilers in the industry. They are reliable, and well documen- 
ted, and their superior diagnostic messages help to produce better 
products more quickly. There are no surprises with MetaWare 
compilers. 

Compiler Features 
ANSI Standard with extensions Generates small, fast exe- 

cutables Suppon of 80x87, Weitek 1167/3167, 68881, and 
Am29027 math co-processors Global common subexpression 
elimination Live / dead code analysis Constant propagation, 
copy propagation Tail merging (cross jumping) And many 

Supported Platforms (re: Dhrystones) 
Sun-3 
Sun 3861 
Sun-4 
PC: DOS, OS/2- 3-l0% > Microsoft C; 30%>MS Pascal, 

- >50% > resident compiler. 
- >50% > resident compiler. 
- >25% > resident compiler. 

Lattice C. 
386 32-bit DOS- No real competition. 
286,386 UNIX- 66% > than pcc on 386. 

*VAXVMS 

VAX Ultrix 

- -  - DEC's excellent C and Pascal; Host for 
cross compilers and TWS, not Native. 

- 19% > pcc on Dhrystone; 
much > Berkeley Pascal. 

RT PC - 93% > 4.3bsd pori of ~ C C .  - AIX/370 
AMD 29K - Intel 860 

- Much better than any 370 C and VS Pascal. 
- >40,000 Dhrystones. 
- >70,000 Dhrystones at 33 MHz. 

So when it  comes to selecting a compiler company, you need 
the best! 

Can you really afford anything less? 
more' 

Metaware'" @ Multiple Platform Support 
MetaWare uses its own Translator Writing System to create 

all of its compiler products Common components and library INCORPORATED 
functions are shared across the product line Improvements to 
compilers are quickly realized on all platforms The Compiler Products for 

Professional Software Developers 
Metdwdre High C and Profewonal Pa\cal dre trademark\ of MetaWare Incorporated 
UNIX I\ d trddemdrk ofAT&T Other product\ mentioned are trademark\ of the re 
\peclwe compdnie* lndicdted 

2 16 I Delaware Avenue Santa Cruz, CA 95060-5706 
Phone (408) 429-6382 FAX (408) 429-9273 

~~ 

Reader Service Number 12 


