
REQUI REMENTS ENCl N EERl NC:

JAWED SIDDIQ~, Sheffield Hallarn University, and M. CHANDRA SHEKARAN, Microsoft

he field traditionally
known as system analy-
sis was first applied to
information systems,

and so had an organizational and
application orientation. The field of
requirements engineering seeks to
incorporate an engineering orienta-
tion into systems analysis.

The most widely known, and per-
haps the most significant, products of
this engineering orientation are the
various development methods and
their associated automation support
tools. Unfortunately, many of these
prescriptive methods pay little or no
attention to how context influences
decoinposition and evolution. Prac-
titioners, who are used to focusing on
context, find these methods to be
inadequate. So the gap between prac-
tice and research is still very wide.

T h e conventional wisdom about
requirements engineering is rap1 dly
evolving, however, and the lal-est
research is taking context into
account.

Developments in requirements
engineering are following trend; in
system development: In the first wave
of system development, the focus was
on writing code. Small and large sys-
tem development alike were viewed
as a single activity, not an organized
process with several stages. The next
wave saw the introduction of the
development life cycle, of which
requirements analysis was the first
phase. Next came the adoption of
evolutionary development models
and the acknowledgment, a t least
from practitioners, that implementa-
tion may often proceed from incom-
plete requirements. The evolution of

I E E E S O F T W A R E 0 7 4 0 ~ 7 4 5 9 / 9 6 / 5 0 5 00 @ 1 9 9 6 I E E E

ARTICLE SUMMARIES: REQUIREMENTS EN G
Identzjjiug Quality-

Requirement Con$icts, pp.
2Y-35.

Bany Roehrn and Hob In
Despite well-specified

functional and interface
requirements, many soft-
ware projects have failed
became they had a poor set
of quality-attribute require-
ments. To find the right bal-
ance of quality-attribute
requirements, you must
identify the conflicts among
desired quality attributes
and work out a balance of
attribute satisfaction.

We have developed The
Oualiw Attribute k s k aiid

riences developing the
QARCC-1 prototype using
an early version of WinVCh,
and our integration of the
resulting improvements into
QARCC-2.

Technology to Manage
Multiple Requirements
Perspectives, pp. 37-48.

A. Jeu$eld, IifatthiasJai-ke,
Geoig i? Zemanek, and
Harald HubeP

productive in requirements
engineering. A requirements-
engineering project should
ensure that crucial require-
mens are captured from at
least two perspectives, prefer-
ably in a notation of the cus-
tomer’s choosing. Capturing,
monitoring, and resolving
multiple perspectives is diffi-
cult and time-consuming
when done by hand. Our
experience with ConceptBase,
a meta-data-management sys-
tem, shows that a simple but
customizable metamodeling

Hans W ivisen, Manfred

Stakeholder conflicts can be

approach, combmed wth an
advanced query fackty, pro-
duces hgher quahty require-

ments documents in less tune.
Our experience shows

that conceptual metamodel-
ing technology can be a
valuable complement to
informal teamwork methods
of business analysis and
requirements engineering.
In parucular, the use of rep-
resentations and cross-per-
spectlve analysis can help
identlfy a uide variety of
conflicts and, perhaps more
important, monitor them.

requirements engineering has benefit-
ed from both the information-systems
and software-engineering paradigms.
Today a variety of approaches judi-
ciously mix techniques borrowed from
both strands. Definitive claims about
the superiority of one paradigm over
the other are not only premature but
of little practical use. Such debates dis-
tract us from addressing important
fundamental questions that include:

4 What activities should be includ-
ed in requirements engineering?

4 What constitutes a requirement?
4 W h a t issues of practice need fur-

ther attention?

CTlVlTlES

Most software-engineering profes-
sionals believe that the requirements
phase has its own life cycle. The phases
of it have been given different labels.
In the ‘80s Herb Krasner identified
five phases: need identification and
problem analysis; requirements deter-
mination; requirements specification;

An Object-Oriented Tool
for Tracing Reqzirements,
pp. Y2-64.

Fmzcisco A.C. Pznhezro
andJoseph A. Goguen

Tracing requirements
helps verify system features
against the requirements
specification, identify error
sources, and - most impor-
tantly - manage change.
Vre describe a tool called
TOOR (Traceability of

requirements fulfillment; and require-
ments change management.’ lYIore
recently, Matthias Jarke and Klaus
Pohl proposed a three-phase cycle:
elicitation, expression, and validation.’

However the phases may be sliced,
it has long been realized that require-
ments evolve through a series of itera-
tions. The Inquiry Cycle Model pro-
posed by Colin Potts and colleagues
takes this view.’ It integrates three
phases - documentation, discussion,
and evolution - and has stakeholders
use scenarios to identify and validate
requirements. The validation is accoin-
plished by stakeholders challenging
proposed requirements with the intent
of obtaining a clearer understanding of
the justifications for the requirements’
existence. On the basis of this valida-
tion, stakeholders can freeze or change
a requirement in the final phase.

The software-engineering commu-
nity had focused its efforts on the prob-
lem-analysis phase, which is what many
decomposition methods address. In
general terms, these methods are
designed to help the analyst define die

classes and subclasses of
objects and relatlonships
among objects.

ty is our primary topic, but
the scope of the tool
reflects our view that
requirements issues are per-
vasive and occur through-
out the life cycle.
Therefore, requirements
traceability should be avail-
able at all times, and trace-
ability of any desired artl-
facts should be supported.

Requirements traceabili-

range of all possible solutions. More
specifically, according to Alan Davis,
the problem-analysis phase encompass-
es learning about she problem, under-
standing the iieeds of the potential
users, discovering who the user really
is, and understanding all the constraints
on the solution.“ The outcome - the
requirements-specification document
- is assumed to be a complete descrip-
tion of the product’s external behavior.

Lately, the software-engineering
community has extended this decompo-
sition paradigm to propose that systems
can be built using a standard repertoire
of components. Jarke and Pohl have
suggested, for example, that one-shot
requirements-engineering projects may
be replaced by a “requirements-engi-
neering practice,” which puts together
standard components in innovative
fashions rather than continuing the
practice of reinventing the components
themselves.2

As we’ve said, the biggest drawback
of the reductionist view of partitioning
things into smaller parts is that context
will influence the decomposition.

M A R C H 1996

G U E S T E D I T O R S ’ I N T R O D U C T I O N

Indeed, for Jarke and Pohl the juxtapo-
sition of vision and context is a t the
heart of managing requirements. They
define requirements engineering as a
process of establishing visions in con-
text and proceed to define context in a
broader view than is typical for an
information-systems perspective. Jarke
and Pohl partition context into three
worlds: subject, usage, and system. The
subject represents a part of the outside
world in which the system - repre-
sented by some structured description
- exists to serve some individual or
organizational purpose or usage.

WHAT CONSTITUTES
A REQUIREMENT?

The oldest and perhaps most widely
shared piece of conventional wisdom is
that requirements constitute a com-
plete statement of what the system will
do without referring to how it will do
it. The resiliency of this view is indeed
surprising since researchers have long
argued against this simple distinction.’

Clearly, requirements and design are
interdependent, as practitioners surely
realize. Perhaps the continuing preva-
lence of the “what vs. how” distinction
is due to the well-meaning desire on the
part of requirements engineers to avoid
overconstraining implementers. Other
reasons for the persistence of this
debate are explored elsewhere.6

Another common distinction is the
separation of functional (or behavioral)
and nonfunctional requirements.
Again, practitioners have found that,
for many applications, this distinction
is not clear. Some requirements that
may appear to be nonfunctional at first
becotne, in due course, functional. In
the past, most researchers have focused
on functional requirements. The arti-
cle by Barry Boehm and Hoh In in this
issue reflects the more recent trend to
direct a t t e 11 ti o n to non function a 1
requirements issues. For some time
now, the software comrnunity has real-
ized the need to broaden its view of
requirements to consider the context

I E E E S O F T W A R E

within which the system will function.
Alex Borgida, Sol Greenspan, and John
Mylopoulos’ work on the use of con-
ceptual modeling as a basis for require-
ments engineering was a major sign-
post in directing researchers to this
perspective.’ T h e article by Hans
Nissen and his colleagues in this issue
reports on recent experiences in apply-
ing conceptual-modeling techniques.

More recently, Michael Jackson has
advanced another way to look at con-
text.8 Jackson faults current software-
development methods for focusing on
the characteristics and structure of the
solution rather than the problem.
Software, according to Jackson, is the
description of some desired machine,

and its development involves the con-
struction of that machine. Require-
ments are about purposes, and the pur-
pose of a machine is found outside the
machine itself, in the problem context.
H e has, therefore, argued for a shift
towards a problem-oriented approach
that seeks to distinguish different char-
acteristics and structures in the appli-
cation domain. Adopting this problem-
oriented approach means that the
requirements for a system can simply
be viewed as relationships among phe-
nomena in the domain and a specifica-
tion is a restricted kind of requirement;
i t is restricted because i t must be
expressed in terms of domain phenom-
ena that are shared with the machine
to be constructed.

This characterization of require-
ments and specification is indeed very
general. IHowever, Jackson animates it
into a method by devising a general

problem frame, analogous to those
proposed by the mathematician,
George Polya. In Polya’s terms, soft-
ware development is a three-part prob-
lem: the domain, the requirements,
and the machine. Jackson argues that
for any method to be powerful it must
exploit the specific features of the
problem and because problem feahlres
vary widely, we need a repertoire of
methods each suitable for a certain
class of problems. This view puts the
knowledge of both the domain expert
and the analyst at the heart of require-
ments engineering.

Joseph Goguen shares Jackson’s
broad view of requirements.” But,
while Jackson’s distinctive contribution
is primarily concerned with how
requirements are represented, Gogum’s
novel contribution centers on how
requirements should be produced.
Goguen argues that requirements are
information, and all information is situ-
ated and it is the situations that dei:er-
mine the meaning of requirements.
Taking context (or situations) into
account means paying attention to
both social and technical factors.
Focusing on technical factors alone
fails to uncover elements like tacit
knowledge, which cannot be articulat-
ed. Therefore, an effective strategy for
requirements engineering has to
attempt to reconcile both the technical,
context insensitive, and the social, con-
textually situated factors.

For Goguen, requirements are not
things “out there” flying about like but-
terflies. Nor is the job of the analyst to
find some suitable net to capture th’tm.
Requirements emerge from the social
interactions between the system users
and the analyst. This goes beyond 1:ak-
ing multiple viewpoints of the different
stakeholders and attempting to recon-
cile them because it does not attempt, a
priori, to construct some abstract repre-
sentation of the system. Current meth-
ods of eliciting tacit information, such
as questionnaires, interviews, introspec-
tion, and focus groups are inadequate,
as Goguen points out.

Instead, he advocates “ethnometho-
dology.” In this approach, the analyst
gathers information in naturally occur-
ring situations where the participants
are engaged in ordinary, everyday
activities. Furthermore, the analyst
does not impose so-called “objective,”
preconceived categories to explain what
is occurring. Instead, the analyst uses
the categories the participants thein-
selves implicitly use to communicate.

Descending from the lofty consid-
erations of the fundamental nature of
requirements, here we recommend
some practical issues that require
greater attention. A careful examina-
tion of these issues actually reveals a
considerable level of compatibility with
the perspective shifts urged by Jackson
and Goguen.

Most requirements-engineering
work to date has been driven by organi-
zations concerned with the procure-
ment of large, one-of-a kind systems. In
this context, requirements engineering
is often used as a contractual exercise in
which the customer and the developer
organizations work to reach agreement
on a precise, unambiguous statement of
what the developer would build.

Trends in the last decade ~ system
downsizing, shorter product cycles, the
inc r e as ing em p ha s i s o ii bui 1 ding
reusable components and software
architectural families, and the use of off-
the-shelf or outsourced software - have
significantly reduced the percentage of
systems that fit this profile. The require-
ments-as-contract model is irrelevant to

most software developers today.
Other issues are more important:
+ Szippoi-ti?zg mal-ket-dn’ven inven-

tors. The bulk of the software devel-
oped today is based on market-driven
criteria. The requirements of market-
driven software are typically not elicit-
ed from a customer but rather are cre-
ated hy observing probleins in specific
domains and inventing solutions. Here
requirements engineering is often done
after a basic solution has been outlined
and involves product planning and
market analysis. The paramount con-
siderations are issues such as available
market window, product sizing, feature
sets, toolkit versus vertical application,
and product fit with the development
organization’s overall product strategy.
Classical requirements engineering
offers very little support for these
problems. Only recently have
researchers begun to acknowledge
their existence.’”

+ P?-ioritizing requirements. Compe-
titive forces have reduced time to mar-
ket, causing development organizations
to speed development by deliberately
limiting the scope of each release. This
forces developers to distinguish
between desirable and necessary (and
indeed, between levels of needed) fea-
tures of an envisioned system. Further,
modifying certain noncritical require-
ments may enable an envisioned system
to be realized using one or more off-
the-shelf components. Yet there has
been little progress to date on mecha-
nisms for prioritizing requirements and
making choices on which of those
among a set of optional requirements
will be satisfied by a given system
release. + Coping with incompleteness. One
impetus for the switch in the ’80s to
the evolutionary development model
was the recoignition that it was virtually
impossible to make all the correct
requirements and implementation
decisions the first time around. Yet
most requirements research agendas
continue to emphasize the importance
of ensuring completeness (in the sense

of having no missing parts) in require-
ments specifications. However, incom-
pleteness in requirements specifica-
tions is a simple reality for many prac-
titioners. Some may even claim that
completeness in real-world require-
ments specifications is a utopian state
about as achievable as getting it right
the first time! Goguen echoes this view
in his criticism of current methods for
their prescriptiveness and their insis-
tence on the existence of a complete
specification.9 T h e real challenge is
how to decide what kinds and levels of
incompleteness the developer can live
with. T o this end we need techniques
and tools to help determine appropri-
ate stopping conditions in the pursuit
of complete requirements specifica-
tions - enabling such clarification to
be postponed to a later development
stage (or a later “spiral” in the system’s
evolution). + Integrnting design artifacts.
Developers need faster ways to conve-
niently express the problem to be
solved and the known constraints on
the solution. Often, getting to this fast
outweighs the risk of overconstraining
design. As Shekaran and others have
observed e 1 se wh e r e, require in en ts
engineering becomes more of a design
and integration exercise in this
context.” W e need “wide-spectrum”
requirements techniques that can cap-
ture and manipulate design-level arti-
facts, such as off-the-shelf Components.
To date, there have been very few con-
crete results in providing support for
the task of evaluating alternative strate-
gies for satisfying requirements (a
“design-like’’ task). However, the bur-
geoning interest and activity in
requirements tracing may offer some
solutions in the near future. In this
issue, Pinheiro and Goguen offer an
early look at tool support that can be
provided for tracing requirements.

0 Malzi?zg requirements methods and
tools mop-e accessible. Today, many prac-
titioners use general tools like word
processors, hypertext links, and spread-
sheets for many requirements engi-

M A R C H 1 9 9 6

neering tasks. Given the wide variety of contexts in which
requirements are determined and systems are built,
researchers may be well-advised to focus on specific
requirements subproblems (for example, tracking and man-
aging software priorities) and consider building automation
support in the form of add-ons to existing general-purpose
tools. Less accessible to practitioners are methods that pre-
scribe a major overhaul of an organization’s requirements
process and the use of large, monolithic tools.

e believe the key mission for the requireinents-
engineering community is to continually narrow

U U

the ever-growing gap between research and practice. T o
that end, we close with some apt advice from the poet
Stevie Smith, cited by Peter Checkland:‘*

It is v e y nice to have f ee t on the ground $you afre a j&t-
on-the-ground person. I have nothing againstfeet-on-tbe-
ground people. And its v e ~ &e to have f e e t off the ground
ifyo. nw Q feet-off~the-gr.oundperson. I have nothing
against feet-off-the-ground people. They a n all aspects of
truth or motes in the colomvd 7rays that come from coloured
glass and stains the white rays of eternity.

Chandra Shekaran is program manager at Microsol?
Corp. of a telecommunications group whose chartcr is the
creation of shrink-wrapped telephony software products.
He has been the prinicipal member of various software-
engineering groups at Gl‘E Laboratories, where he led a
variety of research and development efforts in require-
ments engineering for legacy system migration, the use of
knowledge representation techniques for requirements
tools, and domain-specific languages for developing exe-
cutable mecifications of reactive svstems.

\hekaran received a RTech in electronics engineering from the Indian
Insutute of Technology in ,Madras and an MS in computer science from the
University of Tennessee a t Knoxville

Jawed Siddiqi is director of the Coinputing Research
Centre and professor of Software Engineering at
Shcffield IJallam Univerwy He is a founding member of

International Confcrcnce on Kequirement~
P nginicring and a permanent member of its steering
wmrnittee At Sheffield Hallam, he is the lead researchcr
on scicral projccts, including the devdopment uf
req~iirements-cngineerin~ toolr, tht animation of formal
sp~cifications, tlie asscsrnient of quality-manageinent aiid
proccs\-iinprovcment method\, and the einpirical and
analytical evaluation of progranming paradigins and

human computcr interfaces
\iddiqi receivcd a RSc in mathematics f r ~ i i i the University of London and dii

VI% aiid PhD in computer wcnce from the University of Aston in
Birmingham I IC is a Chartered Fngnieer and a inemher of the IEbE Coinputer
SIILlCty

AddrL\s questiiins about this irsiie tu \hekaran a t Microsoft Corporation, One
Microsoft Wv , Kednimd, WA 98052, or hy c- nail to cither Shckardn ‘it
shekaraii@microsi)ft coni or Siddiqi at J 1 S~ddiq~@\hu ac uk

I E E E S O F T W A R E

REFERENCES
1. H. Krasncr, “Requii-cinents Dyndinics in Large Software Projects, i\ Perspective 3n

lucw Directiuns in the Software F.nginecring Process,” Proc IFIP, Elsevier, New
York, pp. 2 1 1-2 16.

2. AV. Jarkc aiid T<. Pohl, “Requircments Engineering in 2001: (L?rtudlly) Managing a
Changing Reality,” SoJkuaw Engineering, Nov. 1994, pp. 257-266.

tts, K. Takahashi, and A. Anton, “InquiryBased Rcquireinents Analysis,”
.So&tire,AMar. 1994, pp. 21-32.

4. A D:ivis, ,Sofr.nm Reqirrm;;entr, Ana&.s~s rind Spec@cution, Prcnuce-Hall, Englewood
C:liffs, N.J., 1990.

5, W. Swartout and R. Balzcr, “On the lncvitable Intertwining of Specificauon and
Ucsi-p,” CummAC.VI, July 1982, pp. t38-440.

6. J. Siddiqi, “Challenging Uiiiversal ’L‘ruths in Kequireineiits Engineering,” IEEE
,Sofiai-e, Mar. 1994. pp. 18-19,

7. A. Borgida, S. Grroispan, at id J. M,.lopoulos, “Knowledge Reprcsentation 3s tlie
Basis for Reqnireiiicnts Specifications,” Computrr, Apr. 1985, pp. 82-9 I .

8. XI. Jdckson, Sofmure Reguwemcizn niid Spec$catio?zs, .kidison-Miesley, hading,
Mass., 1995.

9. J. Gogucn, “Formality and Informality in Requirements Engincering,” PYOC IEEl4
blt’l Conf Regiiii-emem Eng.. IEEE CS Press, Los Alamitos, Calif., 1996.

IO. C. Potts, “Invented Requirements a d Imagined Customers: Rcqmreinenn
Engineering for Off-the-Shelf Software,” Pmc. bt’l Symp. Requn-ementr Engi77eering,
IEEEPress, Ken York, 1995, pp. 128-130.

Requirementi Definition: A Knowledgc-Based Approach,” Pror Int’l Cop$ S)stStl-nrs
Iiztegi-ution, IEEI: CS Press, I n > Alamitos, Calif., 1992, pp. 229-239.

11. M.C. Shekaran and J.F. ’l‘remlctt, “Keaaoning about Integration Issucs During

12. P. Checkland, ,Synems Tbznking, S y s t e m Pmctzce, John Wiley, Chichester, UK, 1990.

1. Misunderstanding key
user problems and needs

2. Discovering missing or wrong
requirements late in development

3. Not communicating requirement
priorities and status to the team

4. Underestimating the cost of
changing requirements

hese mistakes cause schedule delays, T missed expectations and even project can-
cellations. You owe it to your team to learn
about Requisite, the leading groupware tool
for requirements management. Requisite
makes your projects easier to build, easier to
test, and easier to manage. And because it
integrates with Microsoft” Word, it won’t
change the way you work.

‘%Effective requirements management
is where we can ojten achieve the
greatest leverage in application
development, and Requisite does
an excellentjob.”
ED YOURDON,
SOFTWARE AUTHOR A N D CONSULTANT
REQUISITE INC BOARD MEMBER

REOUlSlTEl
The Leader in Requirements Management

Reader Service Number 9

