
Early Neural Network 
Development History: 
The A g e  of Camelot 

he development history of neural net- 
works can be divided into four seg- T ments, or "Ages." We have arbitrarily 

set the beginning of the first Age to the 
time of William James, about a century 
ago. We call this the Age of Camelot, and 
it ends in 1969, with the publication of the 
book by Minsky and Papert on per- 
ceptrons [l]. This article reviews these 
early days of neural network research. 
Following the Age of Camelot is the Dark 
Age (or Depression Age) running from 
1969 until 1982, when Hopfield's 
landmark paper on neural networks and 
physical systems was published [2]. The 
third age, the Renaissance, begins with 
Hopfield's paper and ends with the publi- 
cation of Parallel Distributed Processing, 
Volumes 1 and 2, by Rumelhart and Mc- 
Clelland in 1986 [3,4]. The fourth age, 
named the Age of Neoconnectionism after 
the review article by 
Cowan and Sharp on 
neural nets and artifi- 
cial intelligence [SI, 
runs from 1987 until 
the present. Much of 
the material in this 
article is excerpted 
from a book edited 
by the authors [6]. 
Also presented in the 
book is further dis- 
cussion of the other 
three Ages of neural 
network develop- 
ment. 

The  his tory is  
reviewed here some- 
what differently than 
in most other articles 
on neural networks, 
in that the focus is on 
people rather than 
just  on theory or 
technology.  We 
review the contribu- 
tions of a number of 
individuals, and re- 
late them to how 
neural network tools 
are  b 
mentl 
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modeled after the massively parallel struc- 
ture of the human brain. This tool simu- 
lates a highly interconnected, parallel 
computational structure with many rela- 
tively simple individual processing ele- 
ments, or neurodes. 
The selection of individuals discussed in 

this article is somewhat arbitrary. The in- 
tent is to provide a broad sampling of 
people who contributed to current neural 
network technology, not an exhaustive 
list. Some well known neural networkers 
are mentioned only briefly, and others are 
omitted altogether. We discuss the 

selected people and their contributions 
roughly in a chronological order. 

The Age of Camelot 

William James 
We begin our look at neural network 
history in the Age of Camelot with per- 
haps the greatest American psychologist 
who ever lived, William James. James 
also taught, and thoroughly understood, 
physiology. It has been almost exactly a 
century since James published his "Prin- 
ciples of Psychology," and its condensed 
version, "Psychology (Briefer Course)" 
[7] .  James was the first to publish a num- 
ber of facts related to brain structure and 
function. He first stated, for example, 
some of the basic principles of correla- 
tional learning and associative memory. 
In stating what he called his Elementary 

Principle ,  James 
wrote: 

"Let us then as- 
sume as the basis of 
all our subsequent 
reasoning this law: 
When two elemen- 
tary brain processes 
have been active 
together or in imme- 
diate succession, 
one of t hem,  on 
reoccurring, tends 
to propagate its ex- 
citement into the 
other." 

This is closely re- 
lated to the concepts 
of associat ive 
memory and cor- 
relational learning. 
James seemed to 
foretell the notion of 
a neuron's activity 
being a function of 
the sum of its inputs, 
with past correlation 
history contributing 
to  the weight of 
interconnections, 
when he wrote: 
"The amount of ac- 
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tivity at any given point in the brain cortex 
is the sum of the tendencies of all other 
points to discharge into it, such tendencies 
being proportionate to the number of 
times the excitement of each other point 
may have accompanied that of the point in 
question; to the intensity of such excite- 
ments; and to the absence of any rival 
point functionally disconnected with the 
first point, into which the discharges 
might be diverted." 

McCulloch and Pitts 
More than half a century later, McCulloch 
and Pitts [8] published one of the most 
famous "neural network" papers, in which 
they derived theorems related to models 
of neuronal systems based on what was 
known about biological structures in the 
early 1940s. In coming to their conclu- 
sions, they stated five physical assump- 
tions: The activity of the neuron is an 
'all-or-none' process; a certain fixed num- 
ber of synapses must be excited within the 
period of latent addition in order to excite 
a neuron at any time, and this number is 
independent of previous activity and posi- 
tion on the neuron; the only significant 
delay within the nervous system is synap- 
tic delay; the activity of any inhibitory 
synapse absolutely prevents excitation of 
the neuron at that time; the structure of the 
net does not change with time. 
The period of "latent addition" is the time 

during which the neuron is able to detect 
the values present on its inputs, the synap- 
ses. This time was described by Mc- 
Culloch and Pitts as typically less than 
0.25 ms. The "synaptic delay" is the time 
delay between sensing inputs and acting 
on them by transmitting an outgoing 
pulse, stated by McCulloch and Pitts to be 
on the order of 0.5 ms. The neuron 
described by these five assumptions is 
known as the "McCulloch-Pitts neuron." 
The theories they developed were impor- 
tant for a number of reasons, including the 
fact that any finite logical expression can 
be realized by networks of their neurons. 
They also appear to be the first authors 
since William James to describe a mas- 
sively parallel neural model. 

While the paper was very important, it 
was (and still is) very difficult to read. In 
particular, the theorem proofs presented 
by McCulloch and Pitts have stopped 
more than one engineer in their tracks! 
Furthermore, although the paper has 
proved to be an important milestone, not 
all of the concepts presented in it are being 
implemented in today's neural network 
tools. In this article, comparisons are not 
made betwem the theories and con- 
clusions of McCulloch and Pitts (or 
anyone else), and current theories of 
neural biology. The focus here is strictly 
on the implementation (or non-implemen- 
tation) of their ideas in neural network 
tools. 
One example of something not generally 
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1. Adaline, an adjustable neuron, consists of a single neurode with an arbitrary num- 
ber of input elements, each of which may assume a value of +1 or -1; and a bias 
element that is always at +l. 

being implemented is their all-or-none 
neuron. A binary, on or off, neurode is 
used in neural networks such as the Boltz- 
mann Machine, but it is not generally used 
in most neural networks today. Much 
more common is a neurode whose output 
value can vary continuously over some 
range, such as from 0 to I ,  or -1  to 1. 
Another example involves the signal re- 
quired to "excite" a neurode. First of all, 
since the output of a neurode generally 
varies continuously with the input, there 
is no "threshold" at which an output ap- 
pears. Some neural network tools use 
neurodes that activate at some threshold, 
but this is not commonly done. 
For neurodes with either continuous out- 

puts or thresholds, there is no "fixed num- 
ber of connections" (synapses) that must 
be excited. The net input to a neurode is 
generally a function of the outputs of the 
neurodes connected to it upstream 
(presynaptically), and the connection 
strengths to those presynaptic neurodes. 
A third example is that there is generally 

no delay associated with the connection 
(synapse) in a neural network tool. Typi- 
cally, the output stales (activation levels) 
of the neurodes are updated synchronous- 
ly, one slab (or layer) at a time. Some- 
times, as in Boltzmann Machines, they are 
updated asynchronously, with the update 
order determined stochastically. There is 
almost never, however, a delay built into 
a connection from one neurode to another. 
A fourth example is that the activation of 

a single inhibitory connection usually 
does not disable or deactivate the neuron 
to which it is connected. Any given in- 
hibitory connection (a connection with a 
negative weight) has the same absolute 
magnitude effect, albeit subtractive, as the 

additive effect of a positive connection 
with the same absolute weight. 

Referring to the fifth assumption of 
McCulloch and Pitts, it is true that the 
structure of a neural network tool usually 
does not change with time, with a couple 
of caveats. First, it is usual to "train" 
neural networks, such as backpropagation 
and self-organizing networks, prior to 
their use. During the training process, the 
structure doesn't usually change, but the 
interconnecting weights do. In addition, it 
is not uncommon, once training is com- 
plete, for neurodes that aren't contributing 
significantly to be removed. This certainly 
can be considered a change to the structure 
of the network. 
But wait a minute! What are we left with 

from McCulloch and Pitts' five as- 
sumptions? If truth be told, when referring 
to today's neural network tools, we are in 
most cases left with perhaps one: the fifth. 
Then why do we make so much of their 
1943 paper? First of all, because they 
proved that networks of their neurons 
could represent any finite logical expres- 
sion. Second, because of their use of a 
massively parallel architecture. And third, 
McCulloch and Pitts provided the step- 
ping stones for the development of net- 
work models and learning paradigms that 
followed. 

Just because neural network tools don't 
currently always reflect their work doesn't 
imply in any way that their work was bad. 
Our neural network tools don't always 
reflect what we currently understand 
about biological neural networks, either. 
For instance, it appears that in many cases, 
a neuron acts somewhat like a voltage 
controlled oscillator (VCO), with the out- 
put frequency a function of the input level 
(input voltage). The higher the input, the 
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more pulses per second the neuron gener- 
ates. Neural network tools usually work 
with basically steady state values of the 
neurode from one update to the next. 

Donald Hebb 
The next personality along our journey 
through the Age of Camelot is Donald 0. 
Hebb. His 1949 book entitled "The 
Organization of Behavior" [9] was the 
first to define the method of updating 
synaptic weights that we now refer to as 
"Hebbian." He is also among the first to 
use the term "connectionism." 

Hebb presented his method as a "neuro- 
physiological postulate" in the chapter en- 
titled "The First Stage of Perception: 
Growth of the Assembly." It is stated as 
follows: 

"When an axon of cell A is near enough 
to excite a cell B and repeatedly or persis-' 
tently takes part in firing it, some growth 
process or metabolic change takes place 
in one or both cells such that A's efficien- 
cy as one of the cells firing B, is in- 
creased." 

Hebb made four primary contributions to 
neural network theory. First, he stated that 
in a neural network, information is stored 
in the weight of the synapses (connec- 
tions). Second, he postulated a connection 
weight learning rate that is proportional to 
the product of the activation values of the 
neurons. Note that his postulate assumed 
that the activation values are positive. 
Since he didn't provide for the weights to 
be decreased, they could theoretically go 
infinitely high. 
Others since Hebb have labeled learning 

that involves neurons with negative 
activation values as "Hebbian". This is not 
included in Hebb's original formulation, 
but is a logical extension of it. 
Third, he assumed that weights are sym- 

metric. That is, the weight of a connection 
from neuron A to neuron B is the same as 
that from B to A. While this may or may 
not be true in biological neural networks, 
it is generally applied to implementations 
in neural network tools for computers. 

Fourth, he postulated a "cell assembly 
theory" which states that as learning oc- 
curs, strengths and patterns of synapse 
connections (weights) change, and assem- 
blies of cells are created by these changes. 
Stated another way, if simultaneous 
activation of a group of weakly connected 
cells occurs repeatedly, these cells try to 
coalesce into a more strongly connected 
assembly. All four of Hebb's contribu- 
tions are generally implemented in 
today's neural network tools, at least to 
some degree. We often refer to learning 
schemes implemented in some networks 
as Hebbian. 

Frank Rosenblatt 
In 1958, a landmark paper by Frank Rose- 

nblatt [ IO] defined a neural network struc- 
ture called the perceptron. The perceptron 
was probably the first honest-to-goodness 
"neural network tool" because it was 
simulated in detail on an IBM 704 com- 
puter  at the Cornell Aeronautical 
Laboratory. The computer-oriented paper 
caught the imagination of engineers and 
physicists, despite the fact that its mathe- 
matical proofs, analyses and descriptions 
contained tortuous twists and turns. If you 
can wade through the variety of systems 
and modes of organization in the paper, 
you'll see that the perceptron is capable of 
learning to classify certain pattern sets as 
similar or distinct by modifying its con- 
nections. It can therefore be described as 
a "learning machine." 

Rosenblatt used biological vision as his 
network model. Input node groups 
consisted of random sets of cells in a 
region of the retina, each group being 
connected to a single Association Unit 
(AU) in the next higher layer. AU's were 
connected bidirectionally to Response 
Units (RU's) in the third (highest) layer. 
The perceptron's objective was to activate 
the correct RU for each particular input 
pattern class. Each RU typically had a 
large number of connections to AU's. 

Rosenblatt devised two ways to imple- 
ment the feedback from RUs to AUs. In 
the first, activation of an RU would tend 
to excite the AUs that sent the RU excita- 
tion (positive feedback). In the second, 
inhibitory connections existed between 
the RU and the complement of the set of 
AUs that excited it (negative feedback), 
therefore inhibiting activity in AUs which 
did not transmit to it. Rosenblatt used the 
second option for most of his systems. In 
addition, for both options, he assumed that 
all RUs were interconnected with in- 
hibitory connections. 
Rosenblatt used his perceptron model to 

address two questions. First, in what form 
is information stored, or remembered? 
Second, how does stored information 
influence recognition and behavior? His 
answers were as follows: 

"...the information is contained in connec- 
tions or associations rather than topograph- 
ic representations ... since the stored 
information takes the form of new connec- 
tions, or transmission channels in the nerv- 
ous system (or the creation of conditions 
which are functionally equivalent to new 
connections), it follows that the new 
stimuli will make use of these new path- 
ways which have been created, automat- 
ically activating the appropriate response 
without requiring any separate process for 
their recognition or identification." 

The primary perceptron learning mecha- 
nism is "self organizing" or "self associa- 
tive" in that the response that happens to 
become dominant is initially random. But 

Rosenblatt also described systems where 
training, or "forced responses" occurred. 

This paper laid the groundwork for both 
supervised and unsupervised training 
algorithms as seen today in backpropaga- 
tion and Kohonen networks, respectively. 
The basic s t ructures  set  for th  by 
Rosenblatt are therefore alive and well. 

Widrow and Hoff 
Our last stop in the Age of Camelot is with 
Bernard Widrow and Marcian Hoff. In 
1960, they published a paper entitled 
"Adaptive Switching Circuits" that, par- 
ticularly from an engineering standpoint, 
has become one of the most important 
papers on neural network technology 11 11. 
The paper is important from several 
perspectives. We'll briefly mention afew, 
and go into more detail about a few more. 

Widrow and Hoff are the first engineers 
we've talked about in our article. Not only 
did they design neural network tools that 
they simulated on computers, they imple- 
mented their designs in hardware. And at 
least one of the lunchbox-sized machines 
they built "way back then" is still in work- 
ing order! Widrow and Hoff introduced a 
device called an "Adaline" (fig. 1). 
Adaline stands for Adaptive Linear. It 
consists of a single neurode with an ar- 
bitrary number of input elements that can 
take on values of plus or minus one, and a 
bias element that is always plus one. 
Before being summed by the neurode 
summer, each input, including the bias, is 
modified by a unique weight that Widrow 
and Hoff call a "gain". This reflects their 
engineering background, since the term 
gain refers to the amplification factor that 
an electronic signal undergoes when 
processed by an amplifier. The term 
"gain" may be more descriptive of the 
function performed than the commonly 
used term weight. 
At the output of the summer is a quantizer 

that is at +1 if the summer output, includ- 
ing the bias, is greater than zero. The 
quantizer's output is -1 for summer out- 
puts less than or equal to zero. 
The learning algorithm of the Adaline is 

particularly ingenious. One of the main 
problems with perceptrons was the length 
of time it took them to learn to classify 
patterns correctly. The Widrow-Hoff 
algorithm yields learning that is faster and 
more accurate. The algorithm is a form of 
supervised learning that adjusts the 
weights (gains) according to the size of the 
error on the output of the summer. 
Widrow and Hoff showed that the way 
they adjust the weights will minimize the 
sum squared error over all patterns in the 
training set. For that reason, the Widrow- 
Hoff method is also known as the Least 
Mean Squares (LMS) algorithm. The 
error is the difference between what the 
output of the Adaline should be and the 
output of the summer. The sum-squared 
error is obtained by measuring the error 
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for each pattern presented to Adaline, 
squaring each value, and then summing all 
of the squared values. Minimizing the sum 
squared error involves an error reduction 
method called gradient descent, or 
steepest descent. Mathematically, it in- 
volves the partial derivatives of the error 
with respect to the weights. 

But Widrow and Hoff showed that you 
don't have to apply the derivatives. They 
are proportional to the error (and its sign), 
and to the sign of the input. They further 
showed that, for n inputs, reducing the 
measured error of the summer by l/n for 
each input will do a good job of imple- 
menting gradient descent. You adjust each 
weight until the error is reduced by l/n of 
the total error you had to start with. For 
example, if there are 12 input nodes, each 
weight is adjusted to remove 1/12 of the 
total error. This method provides for 
weight adjustment (learning) even when 
the output of the classifier is correct. Con- 
sider the case where the output of the 
summer is 0.5, and the classifier output is 
1 .O. If the correct output is 1 .0, there is still 
an error signal of 0.5 that is used to further 
train the weights. This is a significant 
improvement over the perceptron, which 
only adjusts weights when the classifier 
output is incorrect, and is one reason the 
learning is faster and more accurate. 
Widrow and Hoff's paper was prophetic, 
too. They suggested several practical im- 
plementations of their Adaline, stating: "If 
a computer were built of adaptive 
neurons, details of structure could be im- 
parted by the designer by training (show- 
ing it examples of what he would like to 
do) rather than by direct designing." 
An extension of the Widrow-Hoff learn- 

ing algori thm is used today in 
backpropagation networks, and their work 
in hardware implementation of neural net- 
work tools heralded today's cutting edge 
work in VLSI by people including Carver 
Mead and his colleagues at Cal Tech [ 121. 
Dr. Widrow is the earliest significant 
contributor to neural network hardware 
system development still working in the 
area of neural networks. He and his stu- 
dents also did the earliest work known to 
the authors in biomedical applications of 
neural network tools. One of his Ph.D. 
students, Donald F. Specht, used an exten- 
sion of the Adaline, called an Adaptive 
Polynomial Threshold Element, to imple- 
ment a vectorcardiographic diagnostic 
tool that used the polynomial discriminant 
method [13,14]. Widrow and his col- 
leagues later did pioneering work using 
the LMS adaptive algorithm for analyzing 
adult and fetal electrocardiogram signals 
[W. 
The Fall of Camelot 
As the 1960s drew to a close, optimism 
was the order of the day. Many people 
were working in Artificial Intelligence 
(AI), both in the area exemplified by ex- 

pert systems, and in neural networks. AI- 
though many areas remained to be ex- 
plored,  and many problems were 
unsolved. the general feeling was that the 
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sky was the I h .  Little dTd most folks 
know that, for neural networks, the sky 
was about to fall. In 1969, Marvin Minsky 
and Seymour Papert dropped a bombshell 
on the neural network community in the 
form of the aforementioned book called 
"Perceptrons." The book, which contained 
an otherwise generally accurate analysis 
of simple perceptrons, concluded that 
"...our intuitive judgement [is] that the 
extension [to multilayer perceptrons with 
hidden layers] is sterile." At the least, this 
statement has proven to be a serious mis- 
take. Nevertheless, nearly all funding for 
neural networks dried up after the book 
was published. It was the beginning of the 
Dark Age. 

Conclusion 
Since 1987 we have been experiencing the 
Age of Neoconnectionism, so named by 
Cowan and Sharp. The field of neural 
networks and the development of neural 
network tools for personal computers 
have expanded almost unbelievably in the 
past several years. It is no longer feasible 
to assemble "all there is to know" about 
the current state of neural networks in one 
volume, or one set of volumes, as the PDP 
Research Group attempted to do in 1986- 
-1988 [3,4]. The list of applications has 
grown from one highlighting biological 
and psychological uses to ones as diverse 
as biomedical waveform classification, 
music composition, and prediction of the 
commodity futures market. And another 
shift is occurring that is even more impor- 
tant. That is the shift to personal com- 
puters  for  neural network tool 
implementation. Not that this is the only 
important trend in neural network re- 
search and development today. Sig- 
nificant work is also occurring in areas 
ranging from the prediction of protein 
folding using supercomputers to formula- 
tion of new network learning algorithms 
and neurode transfer functions. This ar- 
ticle has provided a summary of how it all 
started. As we stated at the outset, the 
work of only a few of the neural network 
researchers and developers was described. 
Many who contributed significantly to the 
field were omitted. The intent was to give 
you a flavor of how the basis for current 

neural network tools 
evolved. 
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