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Correction to “Recovery of SHGCs From a 
Single Intensity View” 

In the February 1996 issue of this Transactions, in the above- 
titled article authored by Ari D. Gross and Terrance E. Boult, the 
correct versions of the figures were inadvertently omitted by the 
printer. The figures and relevant sections of text should read as 
follows: 
Abstract-Generalized Cylinders are a flexible, loosely-defined class 
of parametric shapes capable of modeling many real-world objects. 
Straight Homogeneous Generalized Cylinders are an important 
subclass of Generalized Cylinders, whose cross-sections are scaled 
versions of a reference curve. Although there has been considerable 
research into recovering the shape of SHGCs from their contour, this 
work has almost exclusively involved methods that couple contour and 
heuristic constraints. A rigorous approach to the problem of recovering 
solid parametric shape from a single intensity view should involve at 
least two stages: 1) deriving the contour constraints, and 2) 
determining if additional image constraints, e.g., intensity, can be used 
to uniquely determine the 3D object shape. In this paper, the authors 
follow the approach just described. This methodology is also important 
for the recovery of object classes like tubes, where contour and 
heuristic constraints are shown to be insufficient for shape recovery. 
First, we prove that SHGC contours generated under orthography have 
exactly two degrees of freedom. Next, we show that the remaining free 
parameters can be resolved using reflectance-based constraints, 
without knowledge of the number of light sources, their positions, 
intensities, the amount of ambient light, or the surface albedo. Finally, 
the reflectance-based recovery algorithm is demonstrated on both 
synthetic and real SHGC images. 

Index Terms-Computer vision, shape recovery, generalized 
cylinders, shape from shading, shape from contour. 

4 

Fig. 2b. A “banana” SHGC constructed by taking the axis outside the 
cross-section curve. 

5 REFLECTANCE-BASED CONSTRAINTS 
In this section, a method is developed that uses the SHGC inten- 
sity image to recover the parameters that are unconstrained by 
contour. In adding intensity-based methods to the recovery algo- 
rithm, we are at once concerned that the resulting algorithm not 
require detailed, a priori knowledge of the imaging model, such as 
the direction and strength of illuminant sources. Except for highly- 
controlled research environments, such information is generally 
unavailable. We have tried to avoid this pitfall by keeping our 
assumptions as general as possible. 

Since this section of the paper deals with shape from shading, a 
reflectance model is required. The reflectance model used in this 
paper assumes that there are three reflectance components, ambi- 
ent, Lambertian, and specular that, when added together, deter- 
mine the image intensities. If we use the Phong reflectance model 
[81, then the shading rule can be expressed as the ambient compo- 
nent plus the sum of the Lambertian and specular components 
from each light source. This expression can be written as 

where N is the surface normal, I, is the ambient intensity, k, the am- 

bient albedo, I,, L, , and R, are, respectively, the intensity, direction, 

and reflected direction of the jth light source, is the viewing di- 
rection, kd and k, are, respectively, the diffuse and specular surface 
albedo, and n is a constant proportional to the degree of specularity 
of the surface. The Phong model is used to generate the synthetic 
SHGC images in this paper and to develop the shape from shading 
invariants for recovering the slant and translation parameters. How- 
ever, since the recovery method is also demonstrated on real images 
in Section 6, similar shape from shading invariants are probably 
derivable (at least approximately) for a more physics-based reflec- 
tance model, e.g., the generalized Lambertian model presented in 
Oren and Nayar 1251. 

5.1 Solving for SHGC Rotation 
The parallel extrema of an SHGC (assuming they exist) can be de- 
termined directly from the ruled contour image since in [29] it is 
shown that contour distance extrema with respect to the SHGC im- 
age axis correspond to extrema of the sweeping rule function U, i.e., Y’ 
= 0. Let C be an extremal parallel curve on the SHGC surface, as 
shown in Fig. 7a. Consider an SHGC surface point P, lying on C. 
From (3) and the extremal constraint Y’ = 0, the surface normal at PI 
is given by 

- - 

If Np, intersects the i axis at some angle 4, then p‘ and 9’ can be 

written as 

p’=c,sinS,, q’=clcosS1 
Substituting these expressions for p’ and 9’ into (24) yields - - - 

N = c, cos6, i - c1 sin6, j 
pi 

Two quantities that are computable directly from the SHGC ruled 
contour are the image parallel and image meridian tangents. From 
(2) and (51, we derive an expression for the 3D parallel tangent at 
P,  with respect to the viewer-centered (C, e, W) coordinate system 
given by 

d OPl 
~ = - cos p ~p‘ i i  + sin p ~ p ’ f i  + Yq’C at 

Let Q, be the projection of P,  onto the (n, W) image plane and let 

Z, be the image parallel tangent vector at Q,. Since fi is the 

viewing direction, Z~ has the form 

+ 

+ 
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i 

z1 = - cos p rp’ii + rq’W . 

After substituting for p‘ and q’, we obtain 
i 

zi = -cos p rc, sin 6, ii + rc, cos 6, G . 

The slope of zl, computable directly from the ruled contour im- 

age, is given by 

m, = -cosptan6,. 

Thus, if we knew how to compute the value of S, from the mage, 
the desired slant angle ,B could also be determined from image- 
computable m,. We now proceed to show that the value of 6, is 
also image-computable using the SHGC intensity image. 
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Fig. 7. Recovering the SHGC rotation: an image parallel (top) and the 
computed histogram (bottom) 

First, we need to find an image point Q; that we refer to as the 

complement of Q, since it satisfies the property 

mi = -ml. 
It is clear that a point’s complement can be determmed directly from 
the image. If P{ is the surface point that projects to Q;, then we will 

also refer to Pi as the complement of P,. Since Q; is a visible image 

point, the surface normal Np; must satisfy 
- 

From the normal (7) and the extrema1 constraint that Y’ = 0, we 
have 

sinpq’ 2 0 .  (25) 

Since mi = cos p tan 6, and (25) needs to be be satisfied, Np; 
must have the form 

- 

- - - 
N , = c, cosb, i + c2 sin 6, j . 

PI 

Thus, If we can fmd a pair of complementary image points Q1 and 
Qi, then we h o w  that these points correspond to complementary 

surface points whose normal vectors intersect the z axis at oppo- 
site equal angles 

- 

Let be a urut point light source vector given by 

i = 1,; + 1,; + i 3 i ,  

where IL is the mtensity of the light source and k,  is the diffuse 

surface albedo Using Lambert’s Law, the diffuse reflectance at P, 
and P; , respectwely, are given by 

Ip, = ILkd(I, cos 6 ,  - I ,  sin a,), 
lP; = I , ~ ~ ( I ,  cos 6, + I, sin 6,) 

We define a function A(z, 1) that, given two image points, computes 
their intensity dlfference. Assuming a strictly Lambertian reflec- 
tance model, the intensity difference between QI and Qi can be 
expressed as 

A(Q,,Q;) = -2 sin 6,1,1,kd 

If we stdl assume a strictly Lambertian reflectance model, but al- 
low for mulhple hght sources with varying illuminant strength 
and position, then we obtam 

A(Q,Q;) = E-2 sin . 6,12,1,,kd , 
1 - 

where ILL and lZL are, respectively, the intensity and J directional 
component of the zth unit light source vector Assuming that the 
specular reflection at points- Q, and Q; is negligible, then we have 
the approxmation 

A(Q1, Qi) C -2 sin 61121T,,kd 

Next, consider a second pair of complementary image points Q2 
and Q; that are the projections of the corresponding complementary 

surface points P2 and Pi such that 

where 6, is the angle cf intersection between their respective sur- 
face normals and the i axis. The intensity difference is appyoxi- 
mated by 

1 

Taking the image-computable ratio of these two intensity differ- 
ences, we obtain 

A(Q1 I a;) sin 6, 
A(Q,,Q;) s i n 4  ’ 

a =  
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Let T, be the image parallel tangent vector at Q, and m, its slope. 

Then the image-computable value of m2 can be expressed as 

m2 = - cos ,B tan 6,. 
A second image-computable ratio, obtained by dividing m, by m,, 
is given by 

m tan6, 
m2 tan6, ' 

b = L = -  

After some simple algebraic manipulation, we can derive a S, ap- 
proximation of the form 

Since a and b are both image-computable, an approximation for S, 
is computable directly from the intensity image. But now that es- 
timates for m2 and 4 have been computed, the value of p can be 
computed using 

This method can be used to compute an approximation for the value 
of pfrom two sets of complementary extremal image points without 
knowledge of the number of light sources, their respective strength 
and direction, the diffuse or ambient surface albedo, or the intensity 
of the ambient light. 

The algorithm used to recover the value of Pis given below: 

1) Group points along the parallel extrema into complemen- 
tary pairs of points Q, and Q,! . 

2) For every pair of points Qi and QI. 
For every pair of extremal points Q, and Qi, i # j : 

a) Compute a solution for f i  
b) Increment hist[fl. 

Each pair of complementary pairs of points votes on a ,8 solution, 
and the bin corresponding to the peak in the histogram is consid- 
ered to be the approximate ,8 solution. 

Let us illustrate the algorithm with an example. For the SHGC 
shown in Fig. 7a, the algorithm just described was applied to 
points along the extrema. The 90 - p histogram is shown in Fig. 7b. 
The peak of the histogram occurs at ZOO, which corresponds to the 
20" rotation towards the viewer (from the vertical direction) that 
was used in generating the SHGC. Additional experiments on 
both real and synthetic SHGC images are presented in Section 6. 

5.2 Solving for SHGC Axis Translation 
In this section, we present an intensity-based method for the recov- 
ery of the 3D axis translation parameter k. A closed-form intensity- 
based solution for h was given in [I21 and [131, however, unlike the 
method described in this section, it did not allow for ambient and 
specular reflective components. We assume at this point in the re- 
covery process that the image axis has been recovered, the contour 
has been ruled (Section 41, and the slant parameter Phas been recov- 
ered (Section 5.1). These are prerequisites for recovering translation 
parameter k. In addition, we assume (as in the previous section) that 
there is an extrema of the sweeping function. 

We would like to derive some intensity-based error-of-fit 
(hereafter EOF) measure that is minimized for the correct value of 
k .  This EOF measure does not correspond to a distance metric so 
that some bias may be induced by the measure (see [Ill). Further 
study is required to determine whether such distance-metric EOF 
measures can be derived in the intensity domain. The algorithm 
presented in this section iterates through the k solution space and 

accepts as the solution fork the value that minimizes the intensity- 
based EOF measure. 

Assume for a moment that the translation parameter h is known. 
Then the underlying 3D SHGC can be fully parametrized (modulo 
scale). An expression for the surface normal is analogous to the one 
given in (3). One of the tools we consider helpful in finding photomet- 
ric invariants is to use an alternative orthogonal basis for the light 
sources such that the reflectance equation is simplified (i.e., reduced 
from 3D to 2D). We first observe from (3) that all the points along a 
given meridian M, will have surface normals perpendicular to the 
vector 

p ' i  + qt7 
In analyzing the intensities of points along the image of M,, then, it 
is natural to parametrize each light source with respect to the or- 
thogonal basis given by 

Then for any point P, on M,, its surface normal Rpl satisfies the 

constraint 

Thus, for any point light source in the scene, we need only be con- 
cerned with its Z1 and Z3 components. If the translation parameter 
is known then, using (19), the normal can be computed for any 
point on the ruled SHGC image. For the purpose of analyzing the 
intensities on an image meridian, we consider two image points Q, 
and Q, to be complements if their respective surface normals in- 

tersect the e, axis at opposite equal angles, such that 

+ + + +  + + 
N, = c,cos6e,+c,sin6e3, N2 = c,cos6e,-c,sin6e3. 

Now consider a unit light source direction L given by 
- 

+ + +  
L = I ,  el+ 1, e3. 

The image intensities at Q, and QZ, where I L  is the strength of the 
light source and the reflectance is purely Lambertian, are given by 

I ~ ,  = I ,  (1, COS 6 + I, sin s), = I, (1, cos 6 - I, sin 6). 

The intensity difference between Q, and Q2 is given by 

A(Q,, Q,) = -21L12 sin 6. 
If there are multiple light source and ambient lighting, with no 
specularity, then this expression for the intensity difference be- 
tween Q, and Q2 generalizes to 

since the ambient component is eliqinated by taking the intensity 
difference. But if k is known (the recovery algorithm iterates 
through k space so that there is always a current value for k )  and P 
is known (the value of p has already been recovered), then the 
value of &is also known. Dividing the above expression by -2 sin 
S, we obtain 

@(Qi/Q2) = X ~ L ~ ~ Z .  (26) 

The above expression should have a constant value for any set of 
complementary meridian points that we choose. Thus, an EOF 
measure that should be minimized for the correct value of k is ob- 
tained by computing the variance of the function given in (26) over 
all pairs of complementary points on a given image meridian. This 

1 
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EOF measure is given by 

This EOF measure is not particularly robust, and we could proba- 
bly obtain considerably more robustness using a least median of 
squares EOF measure. The general algorithm used to recover the 
translation parameter k is as follows: 

1) For each discrete value of k .  
a) Group points of an image meridian into complementary 
pairs. 
b) For each pair of complementary points i, j compute 
O(i, j ) .  
c) Compute EOFJk). 

EOF,(k). 
2) Iterating through k ,  find the value of k that minimizes 
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Fig. 8. Recovering the SHGC translation: an image meridian (top) and 
the graph fOF(h) obtained by iterating over h. 
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Fig 9 Recovering the rotation angle for an SHGC with two light 
sources: (a) an image parallel of an SHGC with two light sources IS 
used in (b) to compute a reliable histogram, while in (c) an image 
parallel intersecting a specular region results in (d) a less reliable ,B 
histogram. 
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€OF(h) graph. 

- 1 5  -1 4 5  0 0 5  1 1 5  
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Fig. 10. Recovering the translation parameter is also affected by 
specular regions: (a) Lambertian meridian and (b) the recovered graph 
for €OF(h) compared to (c) a nonLambertian meridian and (d) its 

Consider the SHGC shown in Fig. Sa. This is the same SHGC 
intensity image shown in Fig. 7a, except that one of the SHGC 
meridians has been marked. Running the algorithm on the image 
intensities of the meridian shown, the graph in Fig. 8b was ob- 
tained. The graph has a minima at k = 0 which is the correct solu- 
tion for k ,  corresponding to the fact that in this example the SHGC 
was generated with the SHGC axis intersecting the centroid of the 
cross-section curve. In the next section, additional experiments are 
presented on both synthetic and real SHGC images. 

6 EXPERIMENTAL RESULTS 
Consider the elliptical SHGC shown in Fig. 9a. It should be noted 
that in this image there are two light sources. The extrema1 cross- 
section curve used in recovering pis also shown. The slant angle pis 

90" when the SHGC . 
For the purpose of displaying the recovered rotational parameters in 
this section, we will display the vertical angle (90 - Bo, which we 
will refer to as the vertical angle. The vertical angle used to generate 
the SHGC intensity image was 30". The histogram shown in Fig. 9b 
attains its maximum value at 30". In this example, it is worth noting 
that a symmetry-based shape from contour method would not re- 
cover a unique solution since the contour is not bilaterally symmetric 
(i.e., it is not a surface of revolution) and there are an infinite number 
of elliptical SHGCs that could have generated the contour (i.e., an 
ellipse is infinitely skew symmetric). 

How robust is the algorithm to specularities? In Fig. 9c, the same 
elliptical SHGC is shown, except that this time one of the light 
sources has been moved so that it generates a specular highlight that 
covers part of the parallel extrema. The histogram is shown in Fig. 
9d, where the maximum vertical angle is attained at 31", one degree 
off the correct solution used in generating the image. 

Next, we consider recovering the axis translation h, where h = 0 
corresponds to an SHGC axis that intersects the centroid of the 
cross-section curve. In Fig. loa, the SHGC from Fig. 8 is shown, 
this time with a different meridian being analyzed. The graph in 
Fig. 10b is the result of running the translation recovery algorithm 
of Section 5.2 on the meridian shown. The minima occurs at k = 0, 
as expected. When the meridian goes through a specular region, 
however, some degree of error is introduced. For example, in Fig. 
10c a different meridian is considered, one that intersects a specu- 
lar region. The resulting graph in Fig. 10d no longer has a minima 
at k = 0. Of course, since each meridian yields a solution for k ,  
there are generally sufficient correct meridian solutions for h so 
that there is a clear cluster of solutions at the correct h value. 
Similarly, for the elliptical SHGC of Fig. 9, three meridians are 
shown in Fig. 11, together with their respective minima. The two 
"nonspecular" meridians correctly obtain a minima at h = 0, while 
the "specular" meridian does not. Once the rotation and transla- 
tion parameters have been recovered, the underlying 3D SHGC is 
now full-determined, modulo scale. Two of the recovered SHGCs 
are shown in Fig. 12. 

axis is parallel to the vertical image axis 
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Fig 11 Recovering the translation parameter of an SHGC with two light sources The recovered solutions for the Pambertian meridians are quite 
accurate (ad), while the meridian intersecting the specular region results in a less accurate recovery 

Fig. 12. The two recovered SHGCs are shown. 
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Fig. 13. Recovering a real SHGC: (a) the SHGC intensity image, (b) the recovered rulings, (c) and image parallel extrema, (d) the computed his- 
togram in p, (e) an image meridian and ( f )  its recovered EOFgraph, and (9) the recovered SHGC surface. 
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Fig. 14. Recovering a real "burnt" SHGC (not strictly Lambertian): (a) SHGC intensity image, (b) a parallel extema, (c) the intensity plot demon- 
strates that the curve IS not strictly Lambertian, and (d) the recovered histogram for the rotation parameter, accurate to within 1" of the correct 
solution 

I 

Fig 15. Recovering the parameters of an SHGC using contour alone: 
the skew symmetry of the projected cross-section curve can be used to 
recover rotation angle Pwhile the nonaccidentalness constraint can be 
used to recover translation parameter h 

We now try out the algorithm on a real SHGC image, as shown 
in Fig. 13a. First, the image contour is computed and the image 

limbs are separated from the image edges Next, the image axis is 
recovered T a h g  the top edge to be the top cross-section curve, 
the SHGC ruhng is then computed as shown in Fig 13b From the 
SHGC ruhng, a parallel extrema is found, see Fig 13c Using the 
intensity values along the extrema, a histogram is computed for 
the vertrcal rotation angle, as shown in Fig 13d The histogram 
attains a maximum at 19" from vertical alignment, while the actual 
value (which can be determined from the rotational symmetry) is 
approximately 20" Next, an image meridian is selected, as shown 
in Fig 13e The intensity-based translation recovery algorithm 
presented in Section 5 3 is used on this meridian and the graph of 
EOF(k) is shown in Fig 13f The mmma for the axs translahon EOF 
is obtamed at k = 0 05, i e ,  the axis of the SHGC roughly intersects 
the centroid of the cross-section curve, which is consistent with the 
mage axis mtersecting the projected center of the cross-section 
curve The recovered SHGC is shown in Fig 13g 

Next, we are interested 111 testrng the robustness of the algo- 
rithm to instances where the reflectance function is not purely 
Lambertian, but more closely resembles the "weak Lambertian 
function" given in [31 In this example, the object of interest shown 
in Fig 14a is known to be a surface of revolution (aka SORI by 
virtue of its bilateral symmetry In addition, the object seems to be 
somewhat "burnt" so that we do not expect it to follow a strict 
cosine rule The projected parallel extrema is shown in Fig 14b 
and corresponds to a vertical rotation of approximately 17" Tak- 
ing the brightest point on the parallel extrema as the direction of 
the light source, we graph the intensity along the parallel extrema 
as a function of the cosine angle between the light source and the 
surface normal In the graph, shown in Fig 14c, it appears that the 
observed image intensity is approximately a monotonically de- 
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creasing function of the cosine angle between the surface normal and 
the light source. The histogram of the recovered solution for the 
vertical rotation angle is shown in Fig. 14d, where the peak of the 
histogram is at 16", within a degree of the correct solution. 

Fig. 16. The intensity-based recovery algorithm applied to a tube sur- 
face, where heuristic methods cannot readily be applied: (a) Discs are 
recovered along the tube axis using the algorithm given for recovering 
SHGC rotation, and (b) the recovered discs are combined to form a 
tube mesh. 

Finally, we are interested in demonstrating the applicability of 
the intensity-based methods presented in this paper to object 
classes other than SHGCs. For most SHGCs, the contour is often 
sufficient to recover the 3D shape (modulo scale) as demonstrated 
in [14]. For example, the contour image of the SHGC in Fig. 7 is 
shown in Fig. 15. Since the projected cross-section curve is skew- 
symmetric, it seems reasonable to assume that the 3D cross-section 
curve is symmetric. Moreover, since the projected cross-sectional 
axes of symmetry and the SHGC image axis intersect at a point, 
we can safely assume (using the non-accidentalness criterion de- 
scribed in [14]) that these axes intersect in 3D and form an or- 
thogonal coordinate system. But since the projection of three or- 
thogonal axes in 3D has a unique solution (modulo a mirror rever- 
sal), both contour-unconstrained SHGC parameters can be deter- 
mined. Thus, if the SHGC is assumed to be both rotationally and 
bilaterally symmetric, its 3D shape can often be recovered without 
using the intensity image. The tools developed in Section 5, how- 
ever, can also be used to recover classes of surfaces that are pvova- 
bly unrecoverable from contour information alone (see [151). For exam- 
ple, the 3D shape of the tube shown in Fig. 1 cannot be recovered 
from contour alone. As shown in [15], the intensity image of the 
tube in Fig. la  has a unique solution, while the contour image in 
Fig. l b  has one degree of freedom corresponding to the slant of the 
disc at each point on the tube axis. Using the intensity-based slant 
recovery algorithm of Sec'tion 5.2, the orientation of discs along the 
tube can be recovered, as shown in Fig. 16a. This can be then be 
used to generate the image mesh (Fig. 16b) which uniquely deter- 
mines (modulo scale) the 3D shape of the underlying tube surface. 


